Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Dyar, Kenneth (2009) Activity-dependent and -independent control of circadian rhythms in mammalian skeletal muscle. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
3071Kb

Abstract (inglese)

Autonomous biological rhythms allow organisms to coordinate internal processes with environmental conditions. Mammals exhibit a diverse array of both behavioral and physiological rhythms that are generated by an endogenous molecular timing system composed of a central pacemaker within the suprachiasmatic nucleus (SCN) of the hypothalamus in addition to autonomous oscillators within the cells of peripheral tissues. Previous reports have shown that clock-controlled outputs are essential for the temporally coordinated execution of many tissue-specific functions, yet specific entrainment pathways for skeletal muscle, a peripheral tissue that accounts for the majority of daily energy consumption, remain largely speculative. Studies suggest that both neural and humoral factors contribute to phase-coordinate the expression of rhythmic genes in peripheral tissues, and locomotor activity, autonomic innervation and metabolic signals resulting from food availability are all probable mediators of rhythmic gene expression in skeletal muscle. Here we investigated entrainment of the skeletal muscle core oscillator by selectively manipulating each proposed pathway in vivo while monitoring expression profiles of the core clock genes Bmal1, Per1 and Per2. Monitoring circadian nucleocytoplasmic shuttling and transcriptional activity of the nerve activity-dependent sensor NFAT, we demonstrate that while some rhythmically expressed genes are strictly activity-dependent, motor innervation is not an important factor regulating phase entrainment of the core oscillator. Similarly, a chemical sympathectomy with 6-OHDA failed to significantly alter the phase of the core clock genes. However, two weeks of a restricted feeding schedule significantly shifted the phase of Bmal1 expression in skeletal muscle as in liver, while, surprisingly, both Per1 and Per2 expression lost rhythmicity. These results clearly show that the circadian transcriptome in skeletal muscle is composed of both activity-dependent and –independent genes, and furthermore, that entrainment of the skeletal muscle circadian oscillator depends on metabolic factors rather than on neural activity.

Abstract (italiano)

I ritmi biologici autonomi permettono agli organismi di coordinare i processi interni con le condizioni ambientali. I mammiferi mostrano diversi tipi di ritmi comportamentali e fisiologici, che sono generati da un orologio molecolare endogeno composto da un “pacemaker” centrale presente all'interno del nucleo soprachiasmatico (SCN) dell'ipotalamo e degli oscillatori autonomi all'interno delle cellule dei tessuti periferici. Studi precedenti hanno indicato che i segnali generati da questo sono essenziali per la coordinazione temporale di molte funzioni tessuto-specifiche. Tuttavia, rimane in gran parte speculativo quale sia ruolo specifico di questo sistema nel muscolo scheletrico, un tessuto periferico in cui avviene la maggior parte del consumo di energia quotidiano. Alcuni studi suggeriscono che sia i fattori neuronali che quelli umorali contribuiscono all'espressione dei geni ritmici nei tessuti periferici e dall'attività locomotoria e che l’innervazione autonoma ed i segnali metabolici regolati dalla disponibilità di cibo sono i probabili mediatori dell'espressione di geni ritmici nel muscolo scheletrico. In questo lavoro di tesi abbiamo studiato il ruolo dell’orologio biologico nel muscolo scheletrico, analizzando selettivamente ogni via di segnale proposta “in vivo” e controllando i profili di espressione dei geni dell'orologio Bmal1, Per1 e Per2. L’osservazione della traslocazione circadiana nucleo-citoplasma e l’attività trascrizionale del fattore NFAT, un sensore dell’attività nervo-dipendente, ci ha permesso di dimostrare che l’espressione dei geni dell’orologio e’ direttamente correlato con l’attività e che l’innervazione non e’ essenziale nella regolazione dell’orologio biologico. Similmente, l’uso di un composto chimico (6-hydroxydopamine) non ci ha permesso di alterare significativamente la fase dei geni dell'orologio. Tuttavia, sottoponendo gli animali a due settimane di programma d'alimentazione limitato abbiamo osservato un significativo spostamento di fase dell’espressione Bmal1 nel muscolo scheletrico e nel fegato, mentre, l’espressione sia di Per1 che di Per2 ha perso la fase di ritmo. Questi risultati indicano chiaramente che la transcritoma circadiano nel muscolo scheletrico comprende sia geni attività-dipendente che indipendente e, che l’oscillazioni dell’orologio circadiano nel muscolo scheletrico dipendono dai fattori metabolici e non dall’attività neuronale.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Schiaffino, Stefano
Dottorato (corsi e scuole):Ciclo 21 > Scuole per il 21simo ciclo > BIOSCIENZE > BIOLOGIA CELLULARE
Data di deposito della tesi:02 Febbraio 2009
Anno di Pubblicazione:29 Gennaio 2009
Parole chiave (italiano / inglese):NFAT, skeletal muscle, circadian rhythms, entrainment
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/11 Biologia molecolare
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze Biomediche Sperimentali
Codice ID:1956
Depositato il:02 Feb 2009
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Albrecht U, Bordon A, Schmutz I & Ripperger J. (2007). The multiple facets of Per2. Cold Spring Harb Symp Quant Biol 72, 95-104. Cerca con Google

Almon RR, Yang E, Lai W, Androulakis IP, Ghimbovschi S, Hoffman EP, Jusko WJ & Dubois DC. (2008). Cerca con Google

Relationships between Circadian Rhythms and Modulation of Gene Expression by Glucocorticoids in Skeletal Muscle. American journal of physiology. Cerca con Google

Amasaki Y, Adachi S, Ishida Y, Iwata M, Arai N, Arai K & Miyatake S. (2002). A constitutively nuclear form of NFATx shows efficient transactivation activity and induces differentiation of CD4(+)CD8(+) T cells. The Journal of biological chemistry 277, 25640-25648. Cerca con Google

Aschoff J. (1991). Activity in anticipation and in succession of a daily meal. Bollettino della Societa italiana di biologia sperimentale 67, 213-228. Cerca con Google

Asher G, Gatfield D, Stratmann M, Reinke H, Dibner C, Kreppel F, Mostoslavsky R, Alt FW & Schibler U. (2008). SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134, 317- 328. Cerca con Google

Bae K, Lee K, Seo Y, Lee H, Kim D & Choi I. (2006). Differential effects of two period genes on the physiology and proteomic profiles of mouse anterior tibialis muscles. Mol Cells 22, 275-284. Cerca con Google

Balsalobre A, Brown SA, Marcacci L, Tronche F, Kellendonk C, Reichardt HM, Schutz G & Schibler U. (2000). Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science (New York, NY 289, 2344-2347. Cerca con Google

Balsalobre A, Damiola F & Schibler U. (1998). A serum shock induces circadian gene expression in Cerca con Google

mammalian tissue culture cells. Cell 93, 929-937. Cerca con Google

Balsalobre A, Marcacci L & Schibler U. (2000). Multiple signaling pathways elicit circadian gene expression in cultured Rat-1 fibroblasts. Curr Biol 10, 1291-1294. Cerca con Google

Barker D & Saito M. (1981). Autonomic innervation of receptors and muscle fibres in cat skeletal muscle. Proc R Soc Lond B Biol Sci 212, 317-332. Cerca con Google

Baron R, Janig W & Kollmann W. (1988). Sympathetic and afferent somata projecting in hindlimb nerves and the anatomical organization of the lumbar sympathetic nervous system of the rat. The Journal of comparative neurology 275, 460-468. Cerca con Google

Bartness TJ, Song CK & Demas GE. (2001). SCN efferents to peripheral tissues: implications for biological rhythms. Journal of biological rhythms 16, 196-204. Cerca con Google

Beaver LM, Gvakharia BO, Vollintine TS, Hege DM, Stanewsky R & Giebultowicz JM. (2002). Loss of circadian clock function decreases reproductive fitness in males of Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America 99, 2134-2139. Cerca con Google

Bombardi C, Grandis A, Chiocchetti R, Bortolami R, Johansson H & Lucchi ML. (2006). Cerca con Google

Immunohistochemical localization of alpha(1a)-adrenoreceptors in muscle spindles of rabbit masseter muscle. Tissue & cell 38, 121-125. Cerca con Google

Bray MS, Shaw CA, Moore MW, Garcia RA, Zanquetta MM, Durgan DJ, Jeong WJ, Tsai JY, Bugger H, Zhang D, Rohrwasser A, Rennison JH, Dyck JR, Litwin SE, Hardin PE, Chow CW, Chandler MP, Abel ED & Young ME. (2008). Disruption of the circadian clock within the cardiomyocyte influences myocardial contractile function, metabolism, and gene expression. Am J Physiol Heart Circ Physiol 294, H1036-1047. Cerca con Google

Braz JC, Bueno OF, Liang Q, Wilkins BJ, Dai YS, Parsons S, Braunwart J, Glascock BJ, Klevitsky R, Kimball TF, Hewett TE & Molkentin JD. (2003). Targeted inhibition of p38 MAPK promotes hypertrophic cardiomyopathy through upregulation of calcineurin-NFAT signaling. J Clin Invest 111, 1475-1486. Cerca con Google

Brown SA, Zumbrunn G, Fleury-Olela F, Preitner N & Schibler U. (2002). Rhythms of mammalian body temperature can sustain peripheral circadian clocks. Curr Biol 12, 1574-1583. Cerca con Google

Buijs RM, Wortel J, Van Heerikhuize JJ, Feenstra MG, Ter Horst GJ, Romijn HJ & Kalsbeek A. (1999). Cerca con Google

Anatomical and functional demonstration of a multisynaptic suprachiasmatic nucleus adrenal (cortex) pathway. Eur J Neurosci 11, 1535-1544. Cerca con Google

Carroll KF & Nestel PJ. (1973). Diurnal variation in glucose tolerance and in insulin secretion in man. Diabetes 22, 333-348. Cerca con Google

Chin ER, Olson EN, Richardson JA, Yang Q, Humphries C, Shelton JM, Wu H, Zhu W, Bassel-Duby R & Williams RS. (1998). A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type. Genes Dev 12, 2499-2509. Cerca con Google

Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F & Schibler U. (Balsalobre #64). Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev 14, 2950-2961. Cerca con Google

Davidson AJ. (2006). Search for the feeding-entrainable circadian oscillator: a complex proposition. American journal of physiology 290, R1524-1526. Cerca con Google

Davidson AJ, Yamazaki S, Arble DM, Menaker M & Block GD. (2008). Resetting of central and peripheral circadian oscillators in aged rats. Neurobiol Aging 29, 471-477. Cerca con Google

Dodd AN, Salathia N, Hall A, Kevei E, Toth R, Nagy F, Hibberd JM, Millar AJ & Webb AA. (2005). Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science (New York, NY 309, 630-633. Cerca con Google

Downes M, Carozzi AJ & Muscat GE. (1995). Constitutive expression of the orphan receptor, Rev-erbA alpha, inhibits muscle differentiation and abrogates the expression of the myoD gene family. Mol Endocrinol 9, 1666-1678. Cerca con Google

Elder GC & Toner LV. (1998). Muscle shortening induced by tenotomy does not reduce activity levels in rat soleus. The Journal of physiology 512 ( Pt 1), 251-265. Cerca con Google

Elenkov IJ, Wilder RL, Chrousos GP & Vizi ES. (2000). The sympathetic nerve--an integrative interface between two supersystems: the brain and the immune system. Pharmacological reviews 52, 595-638. Cerca con Google

Ellingsen T, Bener A & Gehani AA. (2007). Study of shift work and risk of coronary events. J R Soc Health 127, 265-267. Cerca con Google

English AW & Schwartz G. (2002). Development of sex differences in the rabbit masseter muscle is not restricted to a critical period. J Appl Physiol 92, 1214-1222. Cerca con Google

Fleming BP, Gibbins IL, Morris JL & Gannon BJ. (1989). Noradrenergic and peptidergic innervation of the extrinsic vessels and microcirculation of the rat cremaster muscle. Microvasc Res 38, 255-268. Cerca con Google

Freyssenet D. (2007). Energy sensing and regulation of gene expression in skeletal muscle. J Appl Physiol 102, 529-540. Cerca con Google

Fulco M, Cen Y, Zhao P, Hoffman EP, McBurney MW, Sauve AA & Sartorelli V. (2008). Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt. Dev Cell 14, 661-673. Cerca con Google

Grassi G & Esler M. (1999). How to assess sympathetic activity in humans. Journal of hypertension 17, 719- 734. Cerca con Google

Green CB, Takahashi JS & Bass J. (2008). The meter of metabolism. Cell 134, 728-742. Cerca con Google

Guo H, Brewer JM, Champhekar A, Harris RB & Bittman EL. (2005). Differential control of peripheral circadian rhythms by suprachiasmatic-dependent neural signals. Proceedings of the National Academy of Sciences of the United States of America 102, 3111-3116. Cerca con Google

Guo H, Brewer JM, Lehman MN & Bittman EL. (2006). Suprachiasmatic regulation of circadian rhythms of gene expression in hamster peripheral organs: effects of transplanting the pacemaker. J Neurosci 26, 6406-6412. Cerca con Google

Hastings MH, Reddy AB & Maywood ES. (2003). A clockwork web: circadian timing in brain and periphery, in health and disease. Nat Rev Neurosci 4, 649-661. Cerca con Google

Hein L. (2006). Adrenoceptors and signal transduction in neurons. Cell and tissue research 326, 541-551. Cerca con Google

Hennig R & Lomo T. (1985). Firing patterns of motor units in normal rats. Nature 314, 164-166. Cerca con Google

Henriksson J, Svedenhag J, Richter EA, Christensen NJ & Galbo H. (1985). Skeletal muscle and hormonal adaptation to physical training in the rat: role of the sympatho-adrenal system. Acta physiologica Scandinavica 123, 127-138. Cerca con Google

Hirota T, Okano T, Kokame K, Shirotani-Ikejima H, Miyata T & Fukada Y. (2002). Glucose down-regulates Per1 and Per2 mRNA levels and induces circadian gene expression in cultured Rat-1 fibroblasts. The Journal of biological chemistry 277, 44244-44251. Cerca con Google

Hodgson JA, Wichayanuparp S, Recktenwald MR, Roy RR, McCall G, Day MK, Washburn D, Fanton JW, Kozlovskaya I & Edgerton VR. (2001). Circadian force and EMG activity in hindlimb muscles of rhesus monkeys. J Neurophysiol 86, 1430-1444. Cerca con Google

Ishida N, Kaneko M & Allada R. (1999). Biological clocks. Proceedings of the National Academy of Sciences of the United States of America 96, 8819-8820. Cerca con Google

Kalsbeek A, Kreier F, Fliers E, Sauerwein HP, Romijn JA & Buijs RM. (2007). Minireview: Circadian control of metabolism by the suprachiasmatic nuclei. Endocrinology 148, 5635-5639. Cerca con Google

Kardos A, Taylor DJ, Thompson C, Styles P, Hands L, Collin J & Casadei B. (2000). Sympathetic denervation of the upper limb improves forearm exercise performance and skeletal muscle bioenergetics. Circulation 101, 2716-2720. Cerca con Google

Karlsson B, Knutsson A & Lindahl B. (2001). Is there an association between shift work and having a metabolic syndrome? Results from a population based study of 27,485 people. Occup Environ Med 58, 747-752. Cerca con Google

Karlsson J & Smith HJ. (1983). The effect of lumbar sympathectomy on fiber composition, contractility of skeletal muscle and regulation of central circulation in dogs. Acta physiologica Scandinavica 119, 1-6. Cerca con Google

Kirschbaum BJ, Simoneau JA, Bar A, Barton PJ, Buckingham ME & Pette D. (1989). Chronic stimulationinduced changes of myosin light chains at the mRNA and protein levels in rat fast-twitch muscle. European journal of biochemistry / FEBS 179, 23-29. Cerca con Google

Kondratov RV, Kondratova AA, Gorbacheva VY, Vykhovanets OV & Antoch MP. (2006). Early aging and age-related pathologies in mice deficient in BMAL1, the core componentof the circadian clock. Genes Dev 20, 1868-1873. Cerca con Google

Kornmann B, Schaad O, Bujard H, Takahashi JS & Schibler U. (2007). System-driven and oscillatordependent circadian transcription in mice with a conditionally active liver clock. PloS Biol 5, e34. Cerca con Google

Kornmann B, Schaad O, Reinke H, Saini C & Schibler U. (2007). Regulation of circadian gene expression in liver by systemic signals and hepatocyte oscillators. Cold Spring Harb Symp Quant Biol 72, 319-330. Cerca con Google

Krieger DT, Hauser H & Krey LC. (1977). Suprachiasmatic nuclear lesions do not abolish food-shifted circadian adrenal and temperature rhythmicity. Science (New York, NY 197, 398-399. Cerca con Google

Kubis HP, Scheibe RJ, Meissner JD, Hornung G & Gros G. (2002). Fast-to-slow transformation and nuclear import/export kinetics of the transcription factor NFATc1 during electrostimulation of rabbit muscle cells in culture. The Journal of physiology 541, 835-847. Cerca con Google

Lin J, Handschin C & Spiegelman BM. (2005). Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab 1, 361-370. Cerca con Google

Liu C, Li S, Liu T, Borjigin J & Lin JD. (2007). Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism. Nature 447, 477-481. Cerca con Google

Liu Y & Schneider MF. (1998). Fibre type-specific gene expression activated by chronic electrical stimulation of adult mouse skeletal muscle fibres in culture. The Journal of physiology 512 ( Pt 2), 337-344. Cerca con Google

Lynch GS & Ryall JG. (2008). Role of beta-adrenoceptor signaling in skeletal muscle: implications for muscle wasting and disease. Physiological reviews 88, 729-767. Cerca con Google

Marshall JM. (1982). The influence of the sympathetic nervous system on individual vessels of the Cerca con Google

microcirculation of skeletal muscle of the rat. The Journal of physiology 332, 169-186. Cerca con Google

Maspers M, Ekelund U, Bjornberg J & Mellander S. (1991). Protective role of sympathetic nerve activity to exercising skeletal muscle in the regulation of capillary pressure and fluid filtration. Acta physiologica Scandinavica 141, 351-361. Cerca con Google

McCarthy JJ, Andrews JL, McDearmon EL, Campbell KS, Barber BK, Miller BH, Walker JR, Hogenesch JB, Takahashi JS & Esser KA. (2007). Identification of the circadian transcriptome in adult mouse skeletal muscle. Physiol Genomics 31, 86-95. Cerca con Google

McCullagh KJ, Calabria E, Pallafacchina G, Ciciliot S, Serrano AL, Argentini C, Kalhovde JM, Lomo T & Schiaffino S. (2004). NFAT is a nerve activity sensor in skeletal muscle and controls activitydependent myosin switching. Proceedings of the National Academy of Sciences of the United States of America 101, 10590-10595. Cerca con Google

McDearmon EL, Patel KN, Ko CH, Walisser JA, Schook AC, Chong JL, Wilsbacher LD, Song EJ, Hong HK, Bradfield CA & Takahashi JS. (2006). Dissecting the functions of the mammalian clock protein BMAL1 by tissue-specific rescue in mice. Science (New York, NY 314, 1304-1308. Cerca con Google

McNamara P, Seo SB, Rudic RD, Sehgal A, Chakravarti D & FitzGerald GA. (2001). Regulation of CLOCK and MOP4 by nuclear hormone receptors in the vasculature: a humoral mechanism to reset a peripheral clock. Cell 105, 877-889. Cerca con Google

Meissner JD, Gros G, Scheibe RJ, Scholz M & Kubis HP. (2001). Calcineurin regulates slow myosin, but not fast myosin or metabolic enzymes, during fast-to-slow transformation in rabbit skeletal muscle cell culture. The Journal of physiology 533, 215-226. Cerca con Google

Miller BH, McDearmon EL, Panda S, Hayes KR, Zhang J, Andrews JL, Antoch MP, Walker JR, Esser KA, Hogenesch JB & Takahashi JS. (2007). Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation. Proceedings of the National Academy of Sciences of the United States of America 104, 3342-3347. Cerca con Google

Minokoshi Y, Kim YB, Peroni OD, Fryer LG, Muller C, Carling D & Kahn BB. (2002). Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 415, 339-343. Cerca con Google

Moser M, Schaumberger K, Schernhammer E & Stevens RG. (2006). Cancer and rhythm. Cancer Causes Control 17, 483-487. Cerca con Google

Mrosovsky N. (1999). Masking: history, definitions, and measurement. Chronobiology international 16, 415- 429. Cerca con Google

Nakahata Y, Kaluzova M, Grimaldi B, Sahar S, Hirayama J, Chen D, Guarente LP & Sassone-Corsi P. (2008). Cerca con Google

The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and Cerca con Google

circadian control. Cell 134, 329-340. Cerca con Google

Pai-Silva MD, Ueda AK, Resende LA, Pai VD, Alves A, Faleiros AT & De Castro Rodrigues A. (2001). Cerca con Google

Morphological aspects of rabbit masseter muscle after cervical sympathectomy. International journal of experimental pathology 82, 123-128. Cerca con Google

Panda S, Antoch MP, Miller BH, Su AI, Schook AB, Straume M, Schultz PG, Kay SA, Takahashi JS & Hogenesch JB. (2002). Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109, 307-320. Cerca con Google

Pauly JE & Scheving LE. (1967). Circadian rhythms in blood glucose and the effect of different lighting schedules, hypophysectomy, adrenal medullectomy and starvation. Am J Anat 120, 627- 36. Cerca con Google

Pearen MA, Myers SA, Raichur S, Ryall JG, Lynch GS & Muscat GE. (2008). The orphan nuclear receptor, NOR-1, a target of beta-adrenergic signaling, regulates gene expression that controls oxidative metabolism in skeletal muscle. Endocrinology 149, 2853-2865. Cerca con Google

Perreau-Lenz S, Pevet P, Buijs RM & Kalsbeek A. (2004). The biological clock: the bodyguard of temporal homeostasis. Chronobiology international 21, 1-25. Cerca con Google

Philipp M & Hein L. (2004). Adrenergic receptor knockout mice: distinct functions of 9 receptor subtypes. Pharmacology & therapeutics 101, 65-74. Cerca con Google

Pick J. (1970). The autonomic nervous system; morphological, comparative, clinical, and surgical aspects. Lippincott, Philadelphia,. Cerca con Google

Pircher P, Chomez P, Yu F, Vennstrom B & Larsson L. (2005). Aberrant expression of myosin isoforms in skeletal muscles from mice lacking the rev-erbAalpha orphan receptor gene. American journal of physiology 288, R482-490. Cerca con Google

Preitner N, Damiola F, Lopez-Molina L, Zakany J, Duboule D, Albrecht U & Schibler U. (2002). The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110, 251-260. Cerca con Google

Ralph MR, Foster RG, Davis FC & Menaker M. (1990). Transplanted suprachiasmatic nucleus determines circadian period. Science (New York, NY 247, 975-978. Cerca con Google

Rattigan S, Appleby GJ, Edwards SJ, McKinstry WJ, Colquhoun EQ, Clark MG & Richter EA. (1986). Alphaadrenergic receptors in rat skeletal muscle. Biochemical and biophysical research communications 136, 1071-1077. Cerca con Google

Reilly DF, Curtis AM, Cheng Y, Westgate EJ, Rudic RD, Paschos G, Morris J, Ouyang M, Thomas SA & FitzGerald GA. (2008). Peripheral circadian clock rhythmicity is retained in the absence of adrenergic signaling. Arterioscler Thromb Vasc Biol 28, 121-126. Cerca con Google

Reppert SM & Weaver DR. (2002). Coordination of circadian timing in mammals. Nature 418, 935-941. Cerca con Google

Rotto-Percelay DM, Wheeler JG, Osorio FA, Platt KB & Loewy AD. (1992). Transneuronal labeling of spinal interneurons and sympathetic preganglionic neurons after pseudorabies virus injections in the rat medial gastrocnemius muscle. Brain Res 574, 291-306. Cerca con Google

Rudic RD, McNamara P, Curtis AM, Boston RC, Panda S, Hogenesch JB & Fitzgerald GA. (2004). BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol 2, e377. Cerca con Google

Ryall JG, Gregorevic P, Plant DR, Sillence MN & Lynch GS. (2002). Beta 2-agonist fenoterol has greater effects on contractile function of rat skeletal muscles than clenbuterol. American journal of physiology 283, R1386-1394. Cerca con Google

Ryall JG, Schertzer JD & Lynch GS. (2007). Attenuation of age-related muscle wasting and weakness in rats after formoterol treatment: therapeutic implications for sarcopenia. J Gerontol A Biol Sci Med Sci 62, 813-823. Cerca con Google

Ryall JG, Sillence MN & Lynch GS. (2006). Systemic administration of beta2-adrenoceptor agonists, formoterol and salmeterol, elicit skeletal muscle hypertrophy in rats at micromolar doses. British journal of pharmacology 147, 587-595. Cerca con Google

Sato TK, Yamada RG, Ukai H, Baggs JE, Miraglia LJ, Kobayashi TJ, Welsh DK, Kay SA, Ueda HR & Hogenesch JB. (2006). Feedback repression is required for mammalian circadian clock function. Cerca con Google

Nature genetics 38, 312-319. Cerca con Google

Schiaffino S & Reggiani C. (1996). Molecular diversity of myofibrillar proteins: gene regulation and functional significance. Physiological reviews 76, 371-423. Cerca con Google

Schiaffino S & Serrano A. (2002). Calcineurin signaling and neural control of skeletal muscle fiber type and size. Trends Pharmacol Sci 23, 569-575. Cerca con Google

Serrano AL, Murgia M, Pallafacchina G, Calabria E, Coniglio P, Lomo T & Schiaffino S. (2001). Calcineurin controls nerve activity-dependent specification of slow skeletal muscle fibers but not muscle growth. Cerca con Google

Proceedings of the National Academy of Sciences of the United States of America 98, 13108- 3113. Cerca con Google

Shen T, Liu Y, Cseresnyes Z, Hawkins A, Randall WR & Schneider MF. (2006). Activity- and calcineurinindependent nuclear shuttling of NFATc1, but not NFATc3, in adult skeletal muscle fibers. Molecular biology of the cell 17, 1570-1582. Cerca con Google

Smith SA, Mitchell JH & Garry MG. (2006). The mammalian exercise pressor reflex in health and disease. Experimental physiology 91, 89-102. Cerca con Google

Stephan FK. (2002). The "other" circadian system: food as a Zeitgeber. Journal of biological rhythms 17, 284- 292. Cerca con Google

Stephan FK, Swann JM & Sisk CL. (1979). Entrainment of circadian rhythms by feeding schedules in rats with suprachiasmatic lesions. Behavioral and neural biology 25, 545-554. Cerca con Google

Stokkan KA, Yamazaki S, Tei H, Sakaki Y & Menaker M. (2001). Entrainment of the circadian clock in the liver by feeding. Science (New York, NY 291, 490-493. Cerca con Google

Storch KF, Lipan O, Leykin I, Viswanathan N, Davis FC, Wong WH & Weitz CJ. (2002). Extensive and divergent circadian gene expression in liver and heart. Nature 417, 78-83. Cerca con Google

Stratmann M & Schibler U. (2006). Properties, entrainment, and physiological functions of mammalian peripheral oscillators. Journal of biological rhythms 21, 494-506. Cerca con Google

Takahashi JS, Hong HK, Ko CH & McDearmon EL. (2008). The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat Rev Genet 9, 764-775. Cerca con Google

Terazono H, Mutoh T, Yamaguchi S, Kobayashi M, Akiyama M, Udo R, Ohdo S, Okamura H & Shibata S. (2003). Adrenergic regulation of clock gene expression in mouse liver. Proceedings of the National Academy of Sciences of the United States of America 100, 6795-6800. Cerca con Google

Thomas GD & Segal SS. (2004). Neural control of muscle blood flow during exercise. J Appl Physiol 97, 731- 738. Cerca con Google

Tothova J, Blaauw B, Pallafacchina G, Rudolf R, Argentini C, Reggiani C & Schiaffino S. (2006). NFATc1 nucleocytoplasmic shuttling is controlled by nerve activity in skeletal muscle. J Cell Sci 119, 1604- 1611. Cerca con Google

Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E, Laposky A, Losee-Olson S, Easton A, Jensen DR, Eckel RH, Takahashi JS & Bass J. (2005). Obesity and metabolic syndrome in circadian Clock mutant mice. Science (New York, NY 308, 1043-1045. Cerca con Google

Ueyama T, Krout KE, Nguyen XV, Karpitskiy V, Kollert A, Mettenleiter TC & Loewy AD. (1999). Cerca con Google

Suprachiasmatic nucleus: a central autonomic clock. Nat Neurosci 2, 1051-1053. Cerca con Google

Um JH, Yang S, Yamazaki S, Kang H, Viollet B, Foretz M & Chung JH. (2007). Activation of 5'-AMPactivated kinase with diabetes drug metformin induces casein kinase Iepsilon (CKIepsilon)-dependent degradation of clock protein mPer2. The Journal of biological chemistry 282, 20794-20798. Cerca con Google

Vieira E, Nilsson EC, Nerstedt A, Ormestad M, Long YC, Garcia-Roves PM, Zierath JR & Mahlapuu M. (2008). Relationship between AMPK and the transcriptional balance of clock-related genes in skeletal muscle. Am J Physiol Endocrinol Metab 295, E1032-1037. Cerca con Google

Vujovic N, Davidson AJ & Menaker M. (2008). Sympathetic input modulates, but does not determine, phase of peripheral circadian oscillators. American journal of physiology 295, R355- 60. Cerca con Google

Windisch A, Gundersen K, Szabolcs MJ, Gruber H & Lomo T. (1998). Fast to slow transformation of denervated and electrically stimulated rat muscle. The Journal of physiology 510 ( Pt 2), 623-632. Cerca con Google

Woelfle MA, Ouyang Y, Phanvijhitsiri K & Johnson CH. (2004). The adaptive value of circadian clocks: an experimental assessment in cyanobacteria. Curr Biol 14, 1481-1486. Cerca con Google

Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC & Spiegelman BM. (1999). Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98, 115-124. Cerca con Google

Yamamoto T, Nakahata Y, Tanaka M, Yoshida M, Soma H, Shinohara K, Yasuda A, Mamine T & Takumi T. (2005). Acute physical stress elevates mouse period1 mRNA expression in mouse peripheral tissues via a glucocorticoid-responsive element. The Journal of biological chemistry 280, 42036-42043. Cerca con Google

Yamazaki S, Numano R, Abe M, Hida A, Takahashi R, Ueda M, Block GD, Sakaki Y, Menaker M & Tei H. (2000). Resetting central and peripheral circadian oscillators in transgenic rats. Science (New York, NY 288, 682-685. Cerca con Google

Yang X, Downes M, Yu RT, Bookout AL, He W, Straume M, Mangelsdorf DJ & Evans RM. (2006). Nuclear receptor expression links the circadian clock to metabolism. Cell 126, 801-810. Cerca con Google

Zambon AC, McDearmon EL, Salomonis N, Vranizan KM, Johansen KL, Adey D, Takahashi JS, Schambelan M & Conklin BR. (2003). Time- and exercise-dependent gene regulation in human skeletal muscle. Genome Biol 4, R61. Cerca con Google

Zeman RJ, Ludemann R, Easton TG & Etlinger JD. (1988). Slow to fast alterations in skeletal muscle fibers caused by clenbuterol, a beta 2-receptor agonist. The American journal of physiology 254, E726-732. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record