Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Radu, Claudia Maria (2009) Study of the origin of platelets coagulation protein S by human megakaryocyte cultures and characterization of platelets protein S in patients with inherited protein S deficiency. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
6Mb

Abstract (inglese)

Protein S (PS) is a vitamin K dependent plasma glycoprotein with multiple functions in coagulation, inflammation and apoptosis. The molecular weight of PS is approximately 70 kDa and its concentration in plasma is about 25 mg/L. In human plasma 40% of PS circulates as free form and the remaining 60% is complexes with complement C4b-binding protein, a component of the complement system. PS circulating in plasma is mainly derived from liver synthesis but, in addition, endothelial cells, testicular Leydig cells and a megakaryocytic cell line (MEG 01) can synthesize PS. Platelet contain PS, but whether this is derived from megakaryocytic synthesis or from uptake of plasma PS by megakaryocyte (Mk) is not known. Free PS acts as a cofactor for activated protein C (APC) in the inactivation of procoagulant factors Va and VIIIa. However, PS also has APC-independent anticoagulant functions, probably through direct inhibition of both the prothrombinase and the tenase complexes. It is hypothesized that intra-platelets PS, release upon platelets stimulation, plays a crucial role in regulating thrombin generation and therefore controlling procoagulant activity. PS deficiency is inherited as an autosomal dominant disordered and is classified in three types: I) reduced plasma levels of total and free PS antigen (PSAg); II) normal concentration of total and free PSAg but with low PS activity; III) low free PSAg; and
normal total PSAg. Inherited PS deficiency is generally associated with increased risk of deep venous thrombosis, pulmonary embolism and some cases of arterial thrombosis. The risk of venous thrombosis in PS deficiency increased if 2 associated with other genetic or acquired conditions these includes factor V (FV) Leiden, HR2 aplotype of FV and prothrombin mutation. Several
factors influence the concentration of plasma PS, pregnancy, oral contraceptive and oral anticoagulant therapy decreased the levels of PS. To clarify the origin of intra-platelets PS, we development an in vitro model of human megakaryocyte cell culture. Hematopoietic stem cells were isolated by the histopaque system from whole blood of healthy and PS deficiency subjects. Mononuclear cells have been grown in a serum free medium in presence of thrombopoietin (TPO) and interleuchin-3 (IL-3) to stimulate the differentiation into megakaryocytes lineage. The morphology of differentiated mononuclear cells was similar to MKs, and their positive stain with anti-CD41 antibody allowed us to conclude that these cells were indeed Mk. Mk was labeled with ??-tubulin and ?-tubulin antibodies and we observed the cytoplasmatic extensions called proplatelets and the release of platelets. In addition, through immunofluorescence techniques,
we detected FV in their cytoplasm whereas protein C was not present as expected. As for PS, it was present in the cytoplasm of MKs obtained from healthy and PS deficiency individuals. Our study demonstrated the PS biosynthesis by megakaryocyte. To study the mechanisms that regulate the
concentration of plasma and platelets PS we analyzed plasma and platelets PS from normal and PS deficiency subjects. PS contained in platelets have the same immunoblotting pattern respect to plasma PS. Plasma and platelet PS immunoblotting pattern demonstrated different molecular weight of PS in some deficient PS individuals as compared to normal control, suggesting different mutations in PS gene. We analyzed the presence of mutation and the presence of PS Heerlen allele. We investigated platelets PS antigen levels in type I and type III PS deficient patients. In type I subjects total and plasma free PS antigen levels were (PSAg) 62±7% and 37±12% 3 respectively. In carries of type III defect total and free PSAg levels were 85±13% and 41±13% respectively. Platelets PSAg in type I and type III were 66 ±32% and 80±37%.In a subgroup of healthy individuals total, free and platelet PSAg levels were 119±17%, 110±17% and 101±30%, respectively. The results indicate that type I and III subject’s total and plasma free PSAg levels were lower than normal individuals. Intra-platelets PSAg levels in type I and type III were lower than of healthy individuals. Our analysis demonstrates a strict correlation between total and free plasma PS and Plts PS. The reduction of platelet PS mirrors the reduced levels of free and total PSAg present in carries of the defect even though PS levels in Plts appears unexpectedly higher than the free PS counterpart. Moreover, we study the interaction of anticoagulant drugs on PSAg levels on 35 patient treatments with warfarin. The levels of total and free plasma PS decreased during treatment with oral anticoagulant, since PS is a vitamin K-dependent protein. Our study demonstrated significant decreased levels of platelet PS respectively plasma free and total PS. We valuated the effect of
anticoagulant drugs (warfarin) and of vitamin K on Mk cells. The Mk were treatment with 1?g/ml of warfarin or 1?g/ml of vitamin K and analyze synthesis of PS. We observed decreased PS synthesis on MKs with warfarin than control MKs; on the contrary, MKs cultured under vitamin K treatment increase PS synthesis.

Abstract (italiano)

La proteina S (PS) è una glicoproteina plasmatica, vitamina K-dipendente, con molteplici funzioni nell’ambito della coagulazione, infiammazione e apoptosi. Il suo peso molecolare è di 70 kDa e la sua concentrazione plasmatica di circa 25 mg/L. Nel plasma umano il 40% della PS circola in
forma libera, mentre il restante 60% è legato alla C4b-binding-protein, una proteina del sistema del complemento. La PS circolante nel plasma viene sintetizzata principalmente nel fegato ma anche le cellule endoteliali, le cellule di Leydig e una linea cellulare di megacariociti sono in grado di
sintetizzarla. Le piastrine contengono PS, anche se la sua origine non è ancora stata chiarita. Si ipotizza che derivi dalla sintesi dei megacariociti o che siano gli stessi megacariociti ad assumerla dal pool plasmatico mediante un meccanismo di endocitosi. La PS libera agisce da cofattore per la proteina C attivata (APC) nell’inattivazione dei fattori procoagulanti Va (FVa ) e VIIIa (FVIIIa). La
PS esercita anche un’azione anticoagulante APC-indipendente, probabilmente inibendo direttamente i complessi tenase e protrombinase. Si suppone che la PS rilasciata dalle piastrine in seguito alla loro attivazione regoli la generazione di trombina, controllando perciò l’attività
procoagulante. I difetti di PS sono a trasmissione autosomica dominante e vengono classificati in tre tipi: – difetto di tipo I, caratterizzato da ridotti livelli plasmatici di PS totale e libera; – difetto di tipo II, caratterizzato da livelli fisiologici di PS totale e libera associati ad una ridotta attività; 6 – difetto di tipo III, presenta una PS libera ridotta ed una PS totale nella norma. I difetti di PS sono generalmente associati ad un aumentato rischio di trombosi venosa profonda, embolismo polmonare ed, in qualche caso, a trombosi arteriosa. Nei deficit di PS il rischio di trombosi venosa aumenta se associato ad altre condizioni di carattere genetico o acquisito quali il FV Leiden, l’aplotipo HR2 del FV e mutazioni a carico del gene che codifica per la protrombina. Molteplici fattori, tra cui la gravidanza, la terapia anticoncezionale e anticoagulante orale, riducono la concentrazione plasmatica della PS. Al fine di chiarire l’origine della PS piastrinica, abbiamo messo a punto un
modello in vitro di colture di megacariociti umani. Le cellule staminali ematopoietiche sono state isolate con histopaque da sangue intero di soggetti sani e con difetto di PS. Le cellule mononucleate sono state coltivate in un terreno privo di siero ed in presenza di trombopoietina (TPO) e interleuchina 3 (IL3) per stimolarne la differenziazione in una linea magacariocitaria. Le cellule mononucleate differenziate presentavano una morfologia simile a quella dei megacariociti e risultavano positive all’anticorpo anti-CD41; questi elementi ci hanno permesso di confermare
che si trattasse effettivamente di megacariociti. Inoltre, la marcatura dei megacariociti con anticorpi anti ??-tubulina e ?-tubulina ha evidenziato sia la presenza di estensioni citoplasmatiche denominate “proplatelets” sia il rilascio di piastrine da parte dei megacariociti. In aggiunta, mediante
tecniche di immunofluorescenza, abbiamo rilevato la presenza del FV a livello citoplasmatico, mentre la PC era assente. La PS era presente nel citoplasma dei megacariociti isolati da individui sani e con difetto di PS. La nostra ricerca ha così dimostrato la sintesi di PS da parte dei megacariociti. 7 Per studiare il meccanismo che regola i livelli di PS presenti nel plasma e all’interno delle piastrine, abbiamo determinato la concentrazione di PS plasmatica e piastrinica in soggetti sani e portatori di difetto di PS. La PS piastrinica mostrava lo stesso pattern elettroforetico di quella isolata dal plasma. L’analisi immunologica ha inoltre evidenziato, per alcuni soggetti
portatori del difetto, una PS plasmatica con differente peso molecolare rispetto ai controlli sani; questo ci ha suggerito la presenza di mutazioni nel gene della PS. Abbiamo quindi testato la presenza di eventuali mutazioni e dell’allele Heerlen. In soggetti portatori di difetto di PS di tipo I i livelli di PS totale plasmatici, e libera erano: 62±7% e 37±12% . In soggetti portatori di difetto di PS di tipo III i livelli di PS totale e libera nel plasma erano di 85±13% e 41±13%. I livelli di PS nelle piastrine nei soggetti portatori di difetto di PS di tipo I e di tipo III erano di 66 ±32% e 80±37%. In un gruppo di persone sane i livelli di PS totale, libera e piastrinica erano di 119±17%, 110±17% e 101±30%, rispettivamente. Dall’analisi dei livelli plasmatici e piastrinici di PS in soggetti portatori del difetto di tipo I e III è emerso che a) nei pazienti con difetto i livelli di PS
totale e libera erano più bassi rispetto ai soggetti sani; b) i pazienti con difetto presentavano livelli di PS piastrinica ridotti rispetto agli individui sani utilizzati come controllo. La nostra analisi ha dimostrato una stretta correlazione tra la PS plasmatica (libera e totale) e quella piastrinica. La diminuzione della concentrazione di PS piastrinica, osservata negli individui portatori del difetto, riflette l’abbassamento del livello di PS plasmatica, sebbene la quota di PS all’interno delle piastrine risulti maggiore rispetto a quella della PS presente nel plasma in forma libera. In seguito abbiamo studiato l’effetto di sostanze anticoagulanti sui livelli plasmatici e piastrinici di PS in pazienti 8 sani in trattamento con warfarina. E’ noto che la warfarina abbassa i livelli plasmatici di PS in quanto quest’ultima è una proteina vitamina Kdipendente. Anche i livelli di PS plasmatica, (totale e libera), e piastrinica dei medesimi soggetti in terapia con warfarina risultano ridotti rispetto alla norma ma l’abbassamento della concentrazione di PS appare molto più marcata all’interno delle piastrine piuttosto che nel plasma. Infine abbiamo valutato l’effetto della warfarina e della vitamina K sulla sintesi di PS da parte dei megacariociti. Mediante tecniche di immunofluorescenza abbiamo osservato una ridotta sintesi della PS nei megacariociti trattati con warfarina rispetto alle cellule di controllo; al contrario, i megacariociti coltivati in un terreno supplementato con vitamina K mostravano un incremento della sintesi di PS.

Statistiche Download
Tipo di EPrint:Tesi di dottorato
Relatore:Pangan, Antonio - Simioni, Paolo
Dottorato (corsi e scuole):Ciclo 21 > Scuole per il 21simo ciclo > SCIENZE MEDICHE, CLINICHE E SPERIMENTALI > SCIENZE CARDIOVASCOLARI
Data di deposito della tesi:02 Febbraio 2009
Anno di Pubblicazione:02 Febbraio 2009
Parole chiave (italiano / inglese):Platelets; Megakaryocytes; Protein S;
Settori scientifico-disciplinari MIUR:Area 06 - Scienze mediche > MED/11 Malattie dell'apparato cardiovascolare
Struttura di riferimento:Dipartimenti > pre 2012 - Dipartimento di Medicina Clinica e Sperimentale
Codice ID:1970
Depositato il:02 Feb 2009
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Wright JH . The origin and nature of blood platelets. Boston Med Surg J 1906;154:643 Cerca con Google

Harker LA. Megakaryocyte quantitation. J Clin Invest 1968;47:452 Cerca con Google

Ebb S. Biology of megakaryocytes. Prog Hemost Thromb 1976;3:211 Cerca con Google

Tavassoli M. Megakaryocyte-platelet axis and the process of platelet formation and release. Blood 1980;55:537 Cerca con Google

Stenberg PE, Levin J. Mechanism of platelet production. Blood cells 1989; 15:23 Cerca con Google

Ravid K, Zimmer JM and Jones MR. Roads to polyploidy: the megakaryocytes example. J Cell. Physiol. 190: 7-20. Cerca con Google

Moore MAS., Broxymeyer HE., Sheridan APC., et al. Continuous human bone marrow culture. In antigen characterization of probably pluripotential stem cells. Blood. 1980;55:682. Cerca con Google

Ogawa M., Porter PN., Nakahata T. Renewal and commitment to Cerca con Google

differentiation of hematopoietic stem cells( an interpretive review). Blood. 1983; 61:823. Cerca con Google

Nakeff A. and Daniels-McQueen S. In vitro colony assays for a new class of megakaryocyte precursor: Colony forming unit megakaryocytes (CFUM). Proc Soc Exp Biol Med. 1976;151, 587-590. Cerca con Google

Briddell R., Brandt J., Stravena J., Srour E. and Hoffman R. Characterization of the human brust –forming unit megakaryocyte. Blood. 1989; 74: 145-151. Cerca con Google

Long M., Williams N. and Ebbe S. Immature megakaryocytes in the mouse: Physical characteristics, cell cycle status, and in vitro 98 responsiveness to thrombopoietic stimulatory factor. Blood. 1982;59: 569- 575. Cerca con Google

Odell T., Jackson C. and Friday T. Megakaryocytopoiesis in rats with special reference to polyploidy. Blood. 1970;35:775-782. Cerca con Google

Roy L., Coullin P., Vitrat N .,et al. Asymmetrical segregation of Cerca con Google

chromosomes with normal metaphase/anaphase checkpoint in polyploid magakaryocytes. Blood.2001;97:2238-2247. Cerca con Google

Raslova H., Roy L., Vourc’h C., et al. Megakaryocytes polyploidization is associated with funcional gene amplification. Blood. 2003; 101: 541- 544. Cerca con Google

Raslova H., Kauffmann A., Sekkai D. Et al. Interrelation between polyploidization and megakaryocyte differentiation: a gene profiling approach. Blood. 2007; 109: 3225 Cerca con Google

Emilia G., Donelli A., Ferrari S. et al. Cellular levels of mRNA from cmyc, c-myb and c-fes onc-genes in normal myeloid and erythroid precursors of human bone marrow: an in situ hybridization study. Br J Haematol. 1986;62:287. Cerca con Google

Gewirtz AM., Shen YM. Effect of phorbol myristate acetate on c-myc, beta-actin and Factor V gene expression in morphologically recognizable human megakaryocytes: a kinetic analysis employing in situ hybridization. Exp Hematol. 1990;18: 945. Cerca con Google

Ferrai S., Calabretta B., Battini R., Cosenza SC., Owen TA., Soprano KJ. Expression of c-myc and induction of DNA synthesis by platelet –poor plasma in human diploid fibroblast. Exp Cell Res. 1988;174:25. Cerca con Google

Owen TA., Cosenza SC., Soprano DR., Soprano KJ. Time of c-fos and c-myc expression in human diploid fibroblast stimulated to proliferate after prolonged periods in quiescence. J Biol Chem. 1987; 262: 15111. Cerca con Google

Hunter T., Pines J. Cyclins and cancer. Cell. 1991; 66:1071. Cerca con Google

Dou QP., Levin AH., Zhao S., et al. Cyclitn E and cyclin A as candidates for the restriction point protein. Cancer Res. 1993; 53:1493. Cerca con Google

Pagano M., Pepperkok R., Verde F., et al. Cyclin A is required at two points in the human cell cycle. EMBO J.1992;11:961. Cerca con Google

Yonemura Y., Kawakita M., Masuda T., et al. Synergistic effects of interleukin 3 and interleukin 11 on murine megakaryopoiesis in serum free culture. Exp Hematol. 1992;20:1011. Cerca con Google

Koff A., Giordino A., Desai D., et al. Formulation and activation of a cyclin E-cdk2 complex during G1 phase of the human cell cycle. Science. 1992;71:323. Cerca con Google

Matsushime H., Ewen ME., Strom DK., et al. Identification and Cerca con Google

properties of an atypical catalytic subunit (p34 psk-j3/cdk4) for mammalian D type G1 cyclins. Cell. 1992; 71: 323. Cerca con Google

Masuda H., McDonald KL. And Cande WZ. The mechanism of Cerca con Google

anaphase spindle elongation: Uncoupling of tubulin Incorporation and microtubule sliding during in vitro spindle reactivation. J Cell Biol. 1988;107:623-633. Cerca con Google

Kaunz J. and De Marsh QB. Electron microscopy of sectioned blood and bone marrow elements. Rev Hematol. 1995;10:314-323. Cerca con Google

Yamada F. The fine structure of the megakaryocyte in the mouse spleen. Acta Anat. 1957;29: 267-290. Cerca con Google

Handagama P., George J., Shuman M., McEver R and Bainton DF. Incorporation of circulating protein into megakaryocyte and platelet granules. PNAS.1987;84.861-865. Cerca con Google

Coller BS., Seligsohn U., West SM., Scudder LE. and Norton KJ. Platelet fibrinogen and vitronectin in Glanzmann Thrombasthenia: Evidence consistent with specific roles for glycoprotein IIb/IIIA and alpha V beta 3 integrins in platelet protein trafficking. Blood. 1991;78: 2603- 2610. Cerca con Google

Handagama P., Bainton DF., Jacques Y., Conn MT., Lazzarus RA and Shuman MA. Kistrin and integrin antagonist, blocks endocytosis of fibrinogen into guinea pig megakaryocyte and alpha granules. J Clini Invest. 1993;91: 193-200. Cerca con Google

Handagama P., Scarborough RM., Shuman MA. and Bainton DF. Endocytosis of fibrinogen into megakaryocyte and platelet alpha granules is mediated by alpha IIb beta 3 (glycoprotein IIb-IIIa). Blood. 1993;82: 135-138. Cerca con Google

Michelson Alan D. Platelets (Second Edition).2007. Cerca con Google

Hartwig JH., Italiano JR. Cytoskeletal mechanisms for platelet production. Blood Cells, Molecules Desease. 2006. Cerca con Google

Djaldetti M., Fishman P., Bessler H., Notti I. SEM observations on the mechanism of platelet release from megakaryocytes. Thromb Haemost. 1979;42, 61-620. Cerca con Google

Ihzumi T., Hattori A., Sanada M., and Muto M. Megakaryocyte and platelet formation: A scanning electron microscope study in mouse spleen. Arch Histol Jpon. 1977; 40, 305-320. Cerca con Google

Yamada E. The fine structure of the megakaryocyte in the mouse spleen. Acta Anat (Basel). 1957;29:267-290. Cerca con Google

Shaklai M., and Tavassoli M. Demarcation membrane system in rat megakaryocyte and the mechanism of platelet formation: A membrane reorganization process. J Ultrastruct Res. 1978; 62, 270-285. Cerca con Google

Kosaki G. In Vivo Platelet Production from Mature Megakaryocytes: Does Platelet Release Occur via Proplatelets?. Int J Hematol, 2005;81, 208- 219. Cerca con Google

Radley JM, Haller CJ. Megakaryocyte fragments and the microtubule coil. Blood Cells.1987;12:603- 608. Cerca con Google

Battinelli EM., Hartwig JH., Italiano JR. Delivering new insight into the biology of megakaryopoiesis and thrombopoiesis. Curr Opin hematol. 2007;124:419-426. Cerca con Google

Thiery JB and Bessis M. Platelets genesis from megakaryocytes observed in live cells. 1956; Acad Sci.242, 290. Cerca con Google

Behnke O. An electron microscope study of the rat megakaryocyte. II. Some aspects of platelet release and microtubules. J Ultrastruct Res1969; 26: 111–29. Cerca con Google

Becker RP, DeBruyn PP. The transmural passage of blood cells into myeloid sinusoids and the entry of platelets into the sinusoidal circulation; a scanning electron microscopic investigation. Am J Anat 1976; 145: 1046–52. Cerca con Google

Radley JM, Haller CJ. The demarcation membrane system of the megakaryocyte: a misnomer? Blood. 1982;60:213-219. Cerca con Google

Schnitt A., Guichard J., Masse J., Debili N., Cramer EM. Of mice and men : Comparison of the ultrastructure of megakaryocytes and platelets. Exp Hematol. 2001;29: 1295-1302. Cerca con Google

Choi ES, Nichol JL, Hokom MM, Hornkohl AC, Hunt P. Platelets generated in vitro from proplatelet-displaying human megakaryocytes are functional. Blood. 1995;85:402-413. Cerca con Google

Cramer EM, Norol F, Guichard J, et al. Ultrastructure of platelet formation by human megakaryocytes cultured with the Mpl ligand. Blood. 1997;89:2336-2346. Cerca con Google

Level RM. Megakaryocyte motilityn and platelet formation. Scanning Micros; 1987;1: 1701-1709. Cerca con Google

Tablin F, Castro M, Leven RM. Blood platelet formation in vitro: the role of the cytoskeleton in megakaryocyte fragmentation. J CellSci. 1990;97:59-70. Cerca con Google

Handagama PJ, Feldman BF, Jain NC, Farver TB,Kono CS. In vitro platelet release by rat megakaryocytes: effect of metabolic inhibitors and cytoskeletal disrupting agents. Am J Vet Res. 1987;48:1142-1146. Cerca con Google

Miyazaki H., Inoue H., Yanagida M., et al. Purification of rat megakaryocyte colony-formimg cells using monoclonal antibody against rat platelet glycoprotein IIb/IIIa. Expe Hematol. 1997; 20:855-861. Cerca con Google

Choi E. Regulation of proplatelet and platelet formation in vitro.Thrombopoiesis and thrombopoietins: Molecular, Cellular, Pre Clinical and Clinical biology. 271-284. Cerca con Google

Kessal KG. and Kardon RH. Tissues and organs: A text: Atlas of scanning electron microscopy. San Francisco: Freeman. Cerca con Google

Shivdasani RA, Rosenblatt MF, Zucker-Franklin D, et al. Transcription factor NF E2 is required for platelet formation independent of the actions of thrombopoietin /MGDF in megakaryocyte development. Cell 1995;81:695-704. Cerca con Google

Shivdasani RA., Fujiwara Y., McDevitt MA. and Orkin SH. A lineage – selective knockout establishes the critical role of transcription factor GATA-1 in megakaryocytes growth and platelet development. EMBO J. 1997;16:3965-3973. Cerca con Google

Lecine P, Villeval JL, Vyas P, Swencki B, Xu Y, Shivdasani RA. Mice lacking transcription factor NF-E2 provide in vivo validation of the proplatelet model of thrombocytopoiesis and show a platelet production defect that is intrinsic to megakaryocytes. Blood. 1998;92:1608-1616. Cerca con Google

Italiano JE Jr, Lecine P, Shivdasani RA, Hartwig JH. Blood platelets are assembled principally at the ends of proplatelet processes produced by differentiated megakaryocytes. J Cell Biol.1999;147:1299-1312. Cerca con Google

Italiano JE., Patel-Hett S. and Hartwig H. Mechanics of proplatelet elaboration. 2007; 5: 18-23 Cerca con Google

Tablin F, CastroM, LevenRM. Blood platelet formation in vitro: the role of the cytoskeleton in megakaryocyte fragmentation. J Cell Sci.1990; 97: 59–70. Cerca con Google

Italiano JR., Bergmeier W, Tiwari S, Falet H, Hartwig JH, Hoffmeister KM, Andre P, Wagner DD, Shivdasani RA. Mechanisms and implications of platelet discoid shape. Blood 2003; 101: 4789–96. Cerca con Google

Schwer HD, Lecine P, Tiwari S, Italiano JE Jr, Hartwig JH, Shivdasani RA. A lineage-restricted and divergent beta-tubulin isoform is essential for the biogenesis, structure and function of blood platelets. Curr Biol 2001; 11: 579–86. Cerca con Google

Hunt P., Hokom M., Wiemann B., Level RM. And Arakawa T. Megakaryocyte proplatelet- formation in vitro is inhibited by serum prothrombin, a process which is blocked by matrix-bound Cerca con Google

glycosaminoglycans. Exp Hematol.1993:21,372-381. Cerca con Google

Schulze H., Korpal M., Bergmeier W., Italiano JR. Et al. Interactions between the megakryocyte platelet-specific beta 1 tubulin and the secretory leucocyte protease inhibitor SLPI suggest a role for regulated proteolysis in platelets functions. Blood 2004;104: 3949-3957. Cerca con Google

Patel SR, Richardson J, Schulze H, Kahle E, Galjart N, Drabek K, Shivdasani RA, Hartwig JH, Italiano Jr JE. Differential roles of microtubule assembly and sliding in proplatelet formation by megakaryocytes. Blood 2005; 106: 4076–85. Cerca con Google

Patel HS., Richardson JL.,et al. Visualization of microtubule growth in living platelets reveals a dynamic marginal band with multiple microtubules. Blood. Jan 29. 2008 Cerca con Google

Rojnuckarin P. and Kaushansky K. Actin reorganization and proplatelet formation in murine megakaryocytes. The role of protein kinase alpfa. Blood; 97:154-161 Cerca con Google

Kelley MJ., Jawien W., Ortel TL. and Korczak JF. Mutation of MYH9 encoding non-muscle myosin heavy chain A, in May-Hegglin anomaly. Nat gene 2000;26.106-108. Cerca con Google

Kunishima S., Kojimqa T., Matsushita T., et al Mutations in the NMMHC-A gene cause autosomal dominant macrothrombocytopenia with leukocyte inclusions ( May-Hegglin anomaly/Sebastian syndrome). Blood. 2001; 97:1147-11149. Cerca con Google

Richardson J., Shivdasani R., Boers C., Hartwig J and Italiano Jr. Mecanisms of organelle transport and capture along proplatelets during platelet production. Blood. 2005; 106:4066-4075. Cerca con Google

Patel SR., Hartwig JH.; Italiano JR. The biogenesis of platelets from megakaryocytes proplatelets. The Journal of Clinical Investigation. 2005. 115: 3348-3354. Cerca con Google

Radley JM. and Haller CJ. Fate of senescent megakaryocytes in the bone marrow. Br J Haematol. 1983;53: 277-287. Cerca con Google

Falcieri E., Bassini A., Pierpaoli S., et al. Ultrastructural characterization of maturation, platelets release, and senescence of human cultured megakaryocytes. Anat Rec. 2000; 258: 90-99. Cerca con Google

Zauli G., Vitale M., Falcieri E., et al. In vitro senescence and apoptotic cell death of human megakaryocytes .Blood. 1997;90: 2234-2243. Cerca con Google

Kaluzhny Y.and Ravid K. Role of apoptotic processes in platelet biogenesis. Acta Haematool;2004: 111, 67-77. Cerca con Google

De Botton S., Sabri S., Daugas E., et al. Platelet formation in the consequence of caspase activation within megakaryocytes. Blood. 2002; 100: 1310-1317. Cerca con Google

Kaluzhny Y., Yu G. Sun S., et al. BclxL over expression in megakaryocytes leads to impaired platelet fragmentation. Blood; 2002: 100: 1670-1678. Cerca con Google

Gordge MP. Megakaryocytes apoptosis : Sorting out the signals. Br J Pharmacol. 2005; 145: 271-273. Cerca con Google

Lichtman MA, Chamberlain JK, Simon W, Santillo PA. Parasinusoidal location of megakaryocytes in marrow: a determinant of platelet release. Am J Hematol. 1978;4:303-312. Cerca con Google

Scurfield G, Radley JM. Aspects of platelet formation and release. Am J Hematol. 1981;10:285-296. Cerca con Google

Koop HG., Avecilla ST., Hooper AT. and Rafii S. The bone marrow vascular niche: Home of HSC differentiantion and mobilization. Physiol.2005; 20: 349-356. Cerca con Google

Avecilla ST, Hattori K, Heissig B, et al. Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis. Nat Med. 2004;10:64-71. Cerca con Google

Avraham H., Banu N., Scadden CT., Abraham J and Groopman JE. Modulation of megakaryocytopoiesis by human basic fibroblast growth factor. Blood. 1994; 83: 2126-2132. Cerca con Google

Avraham H., Cowley S., Chi SY., Jiang S. and Goopman JE.Characterization of adhesive interactions between human endothelial cells and megakarycytes. J Clin Invest. 1993; 91: 2378-2384. Cerca con Google

Behnke O. and Forer A. From megkatyocytes to platelets: Platelets morphogenesis takes place in the blood stream.Eur J Haemotol Suppl. 1998;60:3-23. Cerca con Google

Minot G . Megacaryocytes in the peripheral circulaation. J Exp Med. 1922; 36:1-4. Cerca con Google

Hansen M. and Pedersen NT. Circulating megakaryocytes in blood from the antecubital vein in healthy adult human.Scan J Haemtol,. 20;371-376. Cerca con Google

Efrati P. and Rozenszajn L. The morphology of buffy coat in normal human adults. Blood .16; 16: 1012-1219. Cerca con Google

Melamed MR., Clifften E., Mercer C. and Koss G. The megakaryocytes blood count. Am J Med Sci. 1966; 252: 301-302. Cerca con Google

Tong M, Seth P, Penington DG. Proplatelets and stress platelets. Blood. 1987;69:522-528. Cerca con Google

Cramer L. Molecular mechanism of actin-dependent retrograde flow in lamellipodia of motile cells. Front Bio.1997; 2: 260-270. Cerca con Google

Howell WH, Donahue DD. The production of blood platelets in the lungs. J Exp Med. 1937;65:177-203 Cerca con Google

Jordan H. Origin and significance of megakaryocytes of lung. Anat. Rec , 77,91-101. Cerca con Google

Ascoff L. Ueber cappilare embolie von riesenkernhaltigen zellen. Arc Path Anat Physiol. 1893;134:11-14. Cerca con Google

Kinosita R, Ohno S. Biodynamics of thrombopoiesis. In: Johnson SA, Monto RW, Rebuck JW, Horn RC, eds. Blood Platelets. Boston, Mass: Little Brown; 1961:611-616. Cerca con Google

Tavassoli M, Aoki M. Migration of entire megakaryocytes through the marrow-blood barrier. Br J Haematol. 1981;48:25-29. Cerca con Google

Tavassoli M. and Aoki M. Localization of megakaryocytes in the bone marrow. Blood Cells. 1989; 15:3-14. Cerca con Google

Pederson NT. The pulmonary vessels as a filter for citculating megakaryocytes in rats. Scan J Haematol.1974; 225-231. Cerca con Google

Twobridge EA., Martin JF. and Slater DN. Evidence for a theory of physical fragmentation of megakaryocytes, implying that all the platelets are produced in the pulmonary circulation. Thromb Res. 1982;28: 461-475 Cerca con Google

Scheinin T and Koivuneimi A. Megakaryocytes in pulmonary circulation.Blood ;22: 82-87. Cerca con Google

101 Kaufman R., Airo R. And Pollak S. Origin of pulmonary megakaryocytes. Blood. 1965; 25: 767-775. Cerca con Google

Kaufman RM., Airo R., Pollak S. and Crosby WH. Circulating megakartyocytes and platelets release i n the lung. Blood. 1965; 26:720- 728. Cerca con Google

Pedersen N. Occurence in various vessels and their retension in the pulmonary capilaries in man. Scan J Haematol. 1978;21:369-375. Cerca con Google

Davis RE, Stenberg PE, Levin J, Beckstead JH. Localization of megakaryocytes in normal mice and following administration of platelet antiserum, 5-fluorouracil, or radiostrontium: evidence for the site of platelet production. Exp Hematol. 1997;25:638-648. Cerca con Google

Kaushansky K. Regulation of megakaryocytopoiesis. Cerca con Google

Kaushansky K.The molecular mechanism that control thrombopoiesis. J Clin Invest. 2005; 115: 339-347 Cerca con Google

Kaushansky K. Thrombopoietin. The primary regulator of platelet production. Blood. 1995;85:419-431. Cerca con Google

Broudy VC., Lin NL., Kaushansky K.Thrombopoietin (c-mpl lingand) acts synergistically with erythropoietin, stem cell factor, and interleukin-11 to enhance murine megakaryocytes colony growth and increases megakaryocytes ploidy in vitro. Blood 1995; 85: 1719-1726. Cerca con Google

Visvader J., Elefanty A., Strasser A. and Adams J. GATA-1 but not SCL induces megakaryocytic differentiation in an early myeloid line. EMBO. 1992; 11: 4557-4564. Cerca con Google

Nichols K., Crispino JD., Poncz M. et al. Familial dyserythropoietic anaemia and thrombocytopenia due to an inherited mutation in GATA-1. Nat Gene2000; 266-270. Cerca con Google

Schwer HD, Lecine P, Tiwari S, Italiano JE Jr, Hartwig JH, Shivdasan RA. A lineage-restricted and divergent beta-tubulin isoform is essential for the biogenesis, structure and function of blood platelets. Curr Biol 2001; 11: 579–86. Cerca con Google

Andrews R., Shen Y.,Gardiner E., Dong J., Lopez. and Berndt M. The glycoprotein Ib-IX-V complex in platelet adhesion and signaling. Thromb Haemost . 1999; 82: 357-364. Cerca con Google

Lopez JA., Andrews RK., Afshar-Kharghan V., and Berndt M. Bernard- Soulier Syndrome. Blood ;91:4397-4418. Cerca con Google

Canobbio I., Noris P., Pecci A.,Balduini CL., and Torti M. Altered cytoskeleton organization in platelets from patients with MYH9-related disease. J Thromb Haemost. 2005;3:1026-1035. Cerca con Google

Seri M., Cusano R., Gangarossa S. Mutations in MYH9 result in the May-Hegglin anomaly, and Fechtner and Sebastian syndromes. The May- Hegglin/Fechtner Syndrome Consortiu. Nat Gene. 2000;26:103-105. Cerca con Google

Franke JD., Dong F., et al. Rod mutations associated with MYH9- related disorders disrupt nonmuscle myosin-IIA assembly. Blood; 105:161- 169. Cerca con Google

Raccuglia G. Gray platelet syndrome. Am J Med.1971;51: 818-828. Cerca con Google

DiScipio RG, Davie EW. Characterization of protein S, a gammacarboxyglutamic acid containing protein from bovine and human plasma. Biochemistry. 1979; 18: 899–904. Cerca con Google

Björn Dahlbäck, Villoutreix BO. The anticoagulant protein C pathway. FEBS Letters.2005; 579: 3310-3316. Cerca con Google

Rosing J., Maurissen LFA., Tchaikovski SN., Tans TM., Hackeng TM. Protein S is cofactor for tissue factor pathway inhibitor. Thrombosis Research.2008;122:S60-S63. Cerca con Google

Castoldi E. and Hackeng . Regulation of coagulation by protein S. Current Opinion in Hematology. 2008;15:529-536. Cerca con Google

Dahlbäck B, Stenflo J. The Protein C Anticoagulant System. In: The Molecular Basis of Blood Disease. 3rd ed. W.B. Saunders Company, Philadelphia, 2000: pp.614–656. Cerca con Google

Björn Dahlbäck. The tale of protein S and C4b-binding protein, a story of affection. Thromb Haemost.2007;98:90-96. Cerca con Google

Rigby AC, Grant MA. Protein S: a conduit between anticoagulation and inflammation. Crit Care Med 2004; 32 (5 Suppl): S336–341. Cerca con Google

Dahlbäck B. Protein S and C4b-binding protein: components involved in the regulation of the protein C anticoagulant system. Thromb Haemost 1991;66:49–61. Cerca con Google

Nelsestuen GL, Shah AM, Harvey SB. Vitamin K-dependent proteins. Vitam Horm 2000; 58:355 389. Cerca con Google

Dahlbäck B. Purification of human vitamin K-dependent protein S and its limited proteolysis by thrombin. Biochem J. 1983; 209: 699-705. Cerca con Google

Saller F, Villoutreix BO, Amelot A, et al. The gammacarboxyglutamic acid domain of anticoagulant protein S is involved in activated protein C cofactor activity, independently of phospholipid binding. Blood 2005; 105: 122–130. Cerca con Google

Walker FJ. Regulation of vitamin K-dependent protein S. Inactivation by thrombin. J Biol Chem. 1984; 259: 10335-10339. Cerca con Google

Dahlbäck B, Hildebrand B, Malm J. Characterization of functionally important domains in human vitamin K-dependent protein S using monoclonal antibodies. J Biol Chem 1990; 265:8127–8135. Cerca con Google

Dahlbäck B. Inhibition of protein C a cofactor function of human and bovine protein S by C4b-binding protein. J Biol Chem 1986; 261:12022– 12027. Cerca con Google

Comp PC, Nixon RR, Cooper MR, Esmon CT. Familial protein S deficiency is associated with recurrent thrombosis. J Clin Invest 1984;74:2082–8. Cerca con Google

Dahlbäck B, Stenflo J. High molecular weight complex in human plasma between vitamin K-dependent protein S and complement component C4b-binding protein. Proc Natl Acad Sci U S A. 1981; 78:2512–2516. Cerca con Google

Griffin JH, Gruber A, Fernandez JA. Reevaluation of total, free, and bound protein S and C4b-binding protein levels in plasma anticoagulated with citrate or hirudin. Blood.1992; 79:3203–3211. Cerca con Google

Dahlbäck B, Smith CA, Muller-Eberhard HJ. Visualization of human C4b-binding protein and its complexes with vitamin K-dependent protein S and complement protein C4b. Proc Natl Acad Sci USA. 1983; 80: 3461– 3465. Cerca con Google

Dahlbäck B, Muller-Eberhard HJ. Ultrastructure of C4b-binding protein fragments formed by limited proteolysis using chymotrypsin. J Biol Chem 1984; 259:11631–11634. Cerca con Google

Härdig Y., Dahlbäck B. The amino-terminal module of the C4-binding protein β-chain contains the protein S-binding site. J Biol Chem.1996;271: 20861-20867. Cerca con Google

García de Frutos, Alim RI, Hardig Y, Zöller B, Dahlbäck B. Differential regulation of alpha and beta chains of C4b-binding protein during acutephase response resulting in stable plasma levels of free anticoagulant protein S. Blood 1994;84:815–22. Cerca con Google

Schwarz HP., Heeb MJ., Wencel-Drake JD and Griffin JH. Identification and quantitation of protein S in human platelets. Blood. 1985; 66: 1452-1455. Cerca con Google

Ogura M, Tanabe N, Nishioka J, Susuki K, Saito H. Biosynthesis and secretion of functional protein S by a human megakaryoblastic cell line (MEG-01). Blood. 1987; 70:301-306. Cerca con Google

Yegneswaran S, Wood GM, Esmon CT, et al. Protein S alters the active site location of activated protein C above the membrane surface. A fluorescence resonance energy transfer study of topography. J Biol Chem 1997; 272: 25013–25021. Cerca con Google

Dahlback B.,Villoutreix BO. Regulation of Blood Coagulation by the Protein C Anticoagulant Pathway Novel Insights Into Structure–Function Relationships and Molecular Recognition. Arterioscler. Thromb. Vasc. Biol. 2005;25;1311-1320; Cerca con Google

Nicolaes GA, Dahlback B. Factor V and thrombotic disease: description of a janus-faced protein. Arterioscler Thromb Vasc Biol 2002; 22: 530–538. Cerca con Google

Van't Veer C, Hackeng TM, Biesbroeck D, et al. Increased prothrombin activation in protein S-deficient plasma under flow conditions on endothelial cell matrix: an independent anticoagulant function of protein S in plasma. Blood. 1995; 85: 1815–1821. Cerca con Google

Hackeng T, Sere KM, Tans G, et al. Protein S stimulates inhibition of the tissue factor pathway by tissue factor pathway inhibitor. Proc Natl Acad Sci USA 2006; 103: 3106-3111. Cerca con Google

Blom AM, Villoutreix BO, Dahlback B. Complement inhibitor C4bbinding protein-friend or foe in the innate immune system? Mol Immunol. 2004; 40: 1333–1346. Cerca con Google

Rezende SM., Simmonds RE. and Lane DA. Coagulation, inlammation, and apoptosis: different roles for protein S and the protein SC4 binding protein complex. Blood. 2004;103:1192-1201. Cerca con Google

Villoutreix BO, Blom AM, Webb J, et al. The complement regulator C4b-binding protein analyzed by molecular modeling, bioinformatics and computeraided experimental design. Immunopharmacology. 1999; 42: 121–134. Cerca con Google

Dahlback B. Inhibition of protein Ca cofactor function of human and bovine protein S by C4b-binding protein. J Biol Chem 1986; 261: 12022– 12027. Cerca con Google

Webb JH, Blom AM, Dahlback B. Vitamin K-dependent protein S localizing complement regulator C4b-binding protein to the surface of apoptotic cells. J Immunol. 2002; 169: 2580–2586. Cerca con Google

Dahlback B, Wiedmer T, Sims PJ. Binding of anticoagulant vitamin Kdependent protein S to platelet derived microparticles. Biochemistry. 1992; 31: 12769–12777. Cerca con Google

Anderson HA, Maylock CA, Williams JA, et al. Serum-derived protein S binds to phosphatidylserine and stimulates the phagocytosis of apoptotic cells. Nat Immunol. 2003; 4: 87-91. Cerca con Google

Kask L, Trouw LA, Dahlback B, et al. The C4b-binding proteinprotein S complex inhibits the phagocytosis of apoptotic cells. J Biol Chem 2004; 279: 23869–23873. Cerca con Google

Hans Peter Schwarz, Mary Jo Heeb, June D. Wencel-Drake, and John H. Griffin. Identification and Quantitation of Protein S in Human Platelets. Blood.1985;66:1452-1455. Cerca con Google

Schwarz HP., HeebMJ., Lammle B., Berrettini M., Griffin JH. Quantitative immunoblotting of plasma and platelet protein S. Thromb Haemostas. 1986; 56:382 Cerca con Google

Schwarz HP., HeebMJ., Lottenberg R., Rhoberts H., Griffin JH. Familial protein S deficiency with a variant protein S molecule in plasma and platelets.Blood.1999;74;213-22146b. Cerca con Google

Gould W., Simioni P., Silvera JR., Tormene D., Kalafatis M and Tracy PB. Megakaryocytes endocytose and subsequently modify human factor V in vivo to form the entire pool of a unique platelet derived cofactor. J Thromb Haemost 2005; 3: 450–6. Cerca con Google

Comp PC., Nixon R., Cooper MR., and Esmon C. Familial Protein S Deficiency is associated with Recurrent Thrombosis. J Clin. Invst. 1984;74: 2082-2088. Cerca con Google

Simioni P, Sanson BJ, Prandoni P, Tormene D, Friederich PW, Girolami B, et al. Incidence of venous thromboembolism in families with inherited thrombophilia. Thromb Haemost.1999;81:198-202. Cerca con Google

Tormene D, Fortuna S, Tognin G, Gavasso S, Pagnan A, Prandoni P ,Simioni P. The incidence of venous thromboembolism in carriers of antithrombin, protein C or protein S deficiency associated with the HR2 haplotype of factor V: a family cohort study. J Thromb Haemost 2005; 3: Cerca con Google

1414–20. 58 Cerca con Google

De Stefano V, Simioni P., Rossi E., Tormene D., Za T., Pagnan A., Leone G. The risk of recurrent venous thromboembolism in patients with inherited deficiency of natural anticoagulants antithrombin, protein C and protein S. Haematologica 2006; 91:695-698 Cerca con Google

Zoller B, Garcia de Frutos P, Dahlback B. Evaluation of the relationship between protein S and C4b-binding protein isoforms in hereditary protein S deficiency demonstrating type I and type III deficiencies to be phenotypic variants of the same genetic disease. Blood. 1995; 85: 3524–3531. Cerca con Google

Persson KE, Dahlback B, Hillarp A. Diagnosing protein S deficiency: analytical considerations. Clin Lab 2003; 49: 103–110 Cerca con Google

Espinosa PY., Navarro G., Morell M., et al. Houmozygosity for the protein S Heerlen allele is associated with type I PS deficiency in a thrombophilic pedigree with multiple risk factors. Thromb Haemost. 2000. 83: 102; 6. Cerca con Google

Bertin RM., Ploos van Amstel HK., et al. Heerlen polymorphism of protein S, an immunologic polymorphism of residue 460. Blood. 1990; 76: 538-548. Cerca con Google

Koenen R., Gomes L., Tans G., Rosing J., Hackeng TM. The Ser460Pro mutation in recombinant protein S Heerle does not affect its APC-cofactor and APC-independent anticoagulant activities. Thromb Haemost. 2004; 91:1105-14. Cerca con Google

Haran MZ., Lichman I., Berebbi A., et al. Unbalanced protein S deficiency II to warfarin treatment as a possible cause for thrombosis. British Journal of Haematology. 2007; 139:310-311. Cerca con Google

Song KS., Park YS., Kim HK. Prevalence of anti protein S antibodies in patients with systemic lupus erythematosus. Arthritis Rheum. 2000; 43:557-560. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record