Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Sharova, Evgeniya (2009) Horse heart study: left ventricular cardiomyocytes isolation, histidine-rich Ca2+ - binding protein and myostation espression. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
Documento PDF
4Mb

Abstract (english)

SUMMARY
The horse has always been considered as a sport champion in the animal world. Horse
athletic ability depends of many factors. The most important are cardiovascular system and
heart physiology. It is noteworthy that horse heart rate is slow at rest (25-40 bmp) but can
elevate rapidly during exercise to over 240 beats per minutes. In addition, horse heart is
characterized by an higher cardiac action potential duration (APD) (0.6-1s) compared to
that of other mammals (0.2-0.35s). Significantly differences in frequency, amplitude and
calcium wave velocity have also been observed. These extraordinary features of the horse
heart could be explained by some hypothesis: it may be a result of high calcium loading
capacity of sarcoplasmic reticulum of horse cardiomyocytes or altered quantity/function of
calcium bindings proteins that participate in excitation contraction coupling cycle of
cardiac cell (Loughrey et al. 2004). These special characteristics of horse heart put my
attention to two proteins, histidine-rich Ca2+-binding protein and myostatin. Histidine-rich
Ca2+-binding protein (HRC) is one of the best candidates to regulate reticulum calcium
sequestration and cardiac function. While myostatin is member of the transforming growth
factor- superfamily, shown to be regulated during different physiological and pathological
situations which affect cardiac muscle mass, including cardiac growth modulation (McKoy
G et al. 2007), athletic hypertrophy (Matsakas A et al. 2006), postmyocardial infarction
remodeling process, infarction-associated inflammation (MacLellan et al., 1993, Sharma M
et al. 1999), fibrosis of the myocardium, and cardiac dysfunction (Hoenig MR, 2008).
HRC has a similar protein structure and function to calsequestrin in skeletal muscle and
seems to play the particular role in the heart. This low affinity and high capacity Ca2+
binding protein has a Ca2+ storage role in cardiac SR during EC-coupling (Gregory et al.
2006). Due to its important role as regulator of Ca release and normal cardiac function,
recently HRC has been suggested to be an additional component of SR protein quaternary
molecular complex (Lee H et al. 2001), associating into a stable complex at the junctional
membrane: the Ryanodine channel, calsequestrin and its putative “anchoring” proteins
triadin and junctin. HRC could be a key protein that manipulates the facilitation of Ca2+
release from SR through protein-protein interaction.
In this work we hypothesed that the particular characteristic of the horse heart and long
APD could be explained by HRC alteration in equine horse heart. On the other hand
understanding of the MSTN pathway could have an important approach into veterinary
clinical practice used during horse training when athletic hypertrophy is a common
phenomenon.
To achieve objective of this work we have used Real-time PCR and Standard PCR to
investigate in details the expression of HRC and myostatin in various compartments of
horse heart. We also compared the HRC mRNA expression of horse heart vs that of
bovine. In order to gain insight protein level expression of HRC in horse heart,
electrophoretic gel analysis were performed on membrane fractions extracted from horse
cardiac muscle followed by Western blotting. Besides of immunofluorescence experiments
on longitudinal cryosections from left ventricle have been carried out to study the cellular
localization of HRC in horse heart.
Our findings showed that HRC mRNA is mainly expressed in ventricles. Moreover, by
comparison with another species of veterinarian interest, such as cattle, Real Time PCR
data showed that the enhanced expression of HRC seems restricted to equine species. The
dissimilar HRC mRNA expression in atria and ventricles may be due to the intrinsic
features of heart parts, that could be emphasize by the special equine action potential
duration. On account of the special features exhibited by horse cardiac tissue, taken
together my data showing the overexpression of HRC in ventricular chambers, could
strengthen the hypothesis of HRC as a candidate regulator of SR Ca2+ cycling during ECC.
The interesting results revealed the upregulation of MSTN gene expression detected in left
ventricular of horse heart could be an interesting data in favor to this hypothesis since the
left ventricular chamber has a primary role in heart adaptation increased blood volume
(stroke volume) to be injected during exhaustive sport exercise and therefore incrementing
the final cardiac output.

Abstract (italian)

SOMMARIO
Il cavallo è da sempre considerato un “campione sportivo” nell’ambito del mondo animale.
Le capacità atletiche di questo animale dipendono da molti fattori. I più significativi sono il
suo sistema cardiovascolare e le caratteristiche fisiologiche del cuore equino. E’ di
notevole importanza il fatto che la frequenza cardiaca del cuore di cavallo a riposo è bassa
(25-40 battiti al min) ma che può aumentare rapidamente durante l’esercizio fisico fino a
raggiungere i 240 battiti al min e oltre. Inoltre il cuore di cavallo si caratterizza una
maggiore durata del potenziale d’azione (0.6-1 s) se paragonato a quella degli altri
mammiferi (0.2-0.35 s). Il cuore di equino presenta inoltre significative differenze per quel
che riguarda la frequenza, l’ampiezza e la velocità dei transienti di calcio. Per spiegare
queste caratteristiche peculiari del cuore di cavallo sono state fatte delle ipotesi. Una più
elevata capacità di immagazzinamento del calcio da parte del reticolo sarcoplasmatico, o
un’alterazione nella quantità o nella funzionalità di alcune proteine leganti calcio implicate
nel processo di eccitamento/contrazione, sono state proposte come possibili cause di queste
particolarità dei cardiomiociti equini /Loughrey et al. 2004). Queste caratteristiche hanno
fatto ricadere la mia attenzione su due proteine: la “histidine-rich Ca2+-binding protein”
(HRC) e la miostatina.
L’ HRC è una proteina a cui è stato assegnato un ruolo nella regolazione
dell’immagazzinamento del calcio da parte del reticolo sarcoplasmatico e nelle
funzionamento cardiaco. La Miostatina invece è un componente della superfamiglia dei
“transforming growth factor-” che viene regolata in situazioni fisiologiche e patologiche
che coinvolgono la massa muscolare cardiaca, tra cui la modulazione della crescita
cardiaca (McKoy G et al. 2007), l’ipertrofia dovuta ad attività atletica (Matsakas A et al.
2006), i processi di rigenerativi post infartuali, l’infiammazione post infartuale (MacLellan
et al., 1993, Sharma M et al. 1999), i processi fibrotici del miocardio e le disfunzioni
cardiache (Hoenig MR, 2008).
L’HRC nel muscolo scheletrico, è risultata per struttura e funzione simile alla
calsequestrina, ma sembra avere un ruolo importante e particolare anche nel cuore.
L’HRC, una proteina che lega calcio a bassa affinità ma ad elevata capacità, presenta un
ruolo nell’immagazzinamento del calcio nel reticolo sarcoplasmatico delle cellule
cardiache durante il processo di accoppiamento eccitamento/contrazione (Gregory et al.
2006). Grazie al suo ruolo come regolatore del rilascio di calcio e della funzionalità
cardiaca, recentemente all’HRC è stato assegnato un ruolo come ulteriore componente di
un complesso molecolare costituito da quattro proteine(Lee H et al. 2001), che localizzato
a livello della componente giunzionale del reticolo sarcoplasmatico: il recettore della
Rianodina/canale di rilascio del calcio, la calsequestrina e la sue proteine di ancoraggio
triadina e giuntina. L’HRC potrebbe rappresentare una proteina chiave in questo
complesso, in grado di facilitare il rilascio del calcio dal reticolo sarcoplasmatico mediante
l’interazione proteina-proteina.
In questo periodo di Dottorato, io ho ipotizzato che le particolari caratteristiche del cuore
di cavallo tra cui la durata del potenziale d’azione, potessero trovare una spiegazione nelle
caratteristiche e/o alterazione dell’HRC. Inoltre la maggior comprensione dei meccanismi
regolativi della miostatina, potrebbero essere di utilità nella pratica di clinica veterinaria
poiché l’ipertrofia cardiaca nei cavalli atleti è un fenomeno comune.
Per raggiungere gli obiettivi preposti in questo lavoro, ho usato tecniche di Real time PCR
e standard PCR all scopo di studiare in dettaglio l’espressione della HRC e della miostatina
nelle varie parti anatomiche del cuore equino. Inoltre l’espressione dell’HRC nel cuore
equino è stata paragonata nel cuore di bovino. Per studiare invece l’espressione dell’HRC a
livello proteico, dopo estrazione e purificazione do membrane del reticolo sarcoplasmatico,
sono stati eseguiti esperimenti di Western blotting. Esperimenti di immunofluorescenza su
sezioni longitudinali di ventricolo sinistro di cavallo hanno permesso di studiare la
localizzazione dell’HRC.
I miei risultati mostrano che l’HRC a livello di mRNA è maggiormente espressa nei
ventricoli. Inoltre, dal confronto con il bovino, un’altra specie animale di interesse
veterinario, è emerso che la sovra espressione dell’HRC è ristretta alla specie equina. La
diversa espressione di HRC in atri e ventricoli, potrebbe essere dovuta a caratteristiche
intrinseche alle porzioni anatomiche che potrebbero in qualche modo essere evidenziate
dalla particolare durata del potenziale d’azione di questa specie. A tal proposito,
nell’insieme i miei dati che indicano una overespressione di HRC nei ventricoli,
potrebbero rafforzare l’ipotesi che vede l’HRC un regolatore del calcio nel reticolo
sarcoplasmatico durante il processo di eccitamento/contrazione.
I dati ottenuti riguardanti la espressione del gene della miostatina principalmente nel
ventricolo sinistro, potrebbero invece rappresentare un ulteriore sostegno a favore di questa
ipotesi, visto che il ventricolo sinistro ha un ruolo primario nel fenomeno di adattamento
all’aumento del volume di sangue (stroke volume) che viene pompato durante nelle varie
fasi di esercizi fisici estremi, così da incrementare l’output cardiaco finale.

Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Mascarello, Francesco
Ph.D. course:Ciclo 21 > Scuole per il 21simo ciclo > SCIENZE VETERINARIE > SCIENZE BIOMEDICHE VETERINARIE E COMPARATE
Data di deposito della tesi:02 February 2009
Anno di Pubblicazione:02 February 2009
Key Words:Horse heart, cardiomyocytes isolation, HRC, myostatin, MSTN
Settori scientifico-disciplinari MIUR:Area 07 - Scienze agrarie e veterinarie > VET/01 Anatomia degli animali domestici
Struttura di riferimento:Dipartimenti > pre 2012 - Dipartimento di Scienze Sperimentali Veterinarie
Codice ID:1978
Depositato il:02 Feb 2009
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Anderson JP, Dodou E, Heidt AB, De Val SJ, Jaehnig EJ, Greene SB, Olson EN and Black BL. 2004. HRC is a direct transcriptional target of MEF2 during cardiac, skeletal, and arterial smooth muscle development in vivo. Mol Cell Biol. 24: 3757-3768. Cerca con Google

Appaix F, Guerrero K, Rampal D, Izikki M, Kaambre T, Sikk P, Brdiczka D, Riva- Lavieille C, Olivares J, Longuet M, Antonsson B, Saks VA. 2003. Possibile role of cytoskeleton in intracellular arrangement and regulation of mitochondria. Exp Physiol 88: 175-90 Cerca con Google

Artaza JN, Reisz-Porszasz S, Dow JS, Kloner RA, Tsao J, Bhasin S, Gonzalez-Cadavid NF. 2007. Alterations in myostatin expression are associated with changes in cardiac left ventricular mass but not ejection fraction in the mouse. J Endocrinol 194:63-76 Cerca con Google

Arvanitis DA, Sanoudou D, Kolokathis F, Vafiadaki E, Papalouka V, Kontrogianni- Konstantopoulos A, theodorakis GN, Paraskevaidis I, Adamopoulos S, Dorn II GW, Kremasthinos Th.D, Kranias EG. 2008. The Ser96Ala variant in histidine-rich calciumbinding protein is associated with life-threatening ventricular arrhythmias in idiopathic dilated cardiomyopathy. Eur Heart J 29: 2514-25 Cerca con Google

Arvanitis DA, Vafiadaki E, Fan GC, Mitton BA, Gregory KN, Del Monte F, Kontrogianni- Konstantopoulos A, Sanoudou D, Kranias EG. 2007. Histidine-rich Ca-binding protein interacts with sarcoplasmic reticulum Ca-ATPase. Am J Physiol Heart Circ Physiol 293:H1581–H1589. Cerca con Google

Ayettey AS and Navaratnam V. 1978. The T-tubule system in the specialized and general myocardium of the rat. J Anat 127: 125-140 Cerca con Google

Beard NA, Laver DR, Dulhunty AF. 2004. Calsequestrin and the calcium release channel of skeletal and cardiac muscle. Prog Biophys Mol Biol 85:33-69 Cerca con Google

Berridge MJ. 2002. The endoplasmic reticulum: a multifunctional signaling organelle. Cell Calcium 32:235-249 Cerca con Google

Bers DM. 2000. Calcium fluxes involved in control of cardiac myocyte contraction. Circ Res 87:275-81 Cerca con Google

Bers DM. 2001. Excitation-contraction coupling and cardiac contractile force. Klumer Academic Publishers, Dordrecht. Bers DM. 2002. Cardiac excitation-contraction coupling. Nature 415:198-205 Cerca con Google

Bortolami R, Callegari E, Beghelli V. Anatomia e fisiologia degli animali domestici. Edagricole. 2006 Cerca con Google

Braunwald E.1997. Heart Disease. 5th edn. Philadelphia: W.B. Saunders. Cerca con Google

Brutsaert DL. 1989. The endocardium. Ann Rev Physiol 51:263-273 Cerca con Google

Budras KD, Sack WO and Röck S. Anatomy of the horse. An illustrated text. Schlütersche, Honnover and Mosby-Wolfe, London 1994. Edn 2 Cerca con Google

Bustin SA. 2000. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. Journal of Molecular Endocrinology 25:169–193 Cerca con Google

Campball PN and Sargent JR. 1967. Techniques in protein biosynthesis. 299-311 Cerca con Google

Campbell KP, MacLennan DH, Jorgensen AO, Mintzer MC. 1983. Purification and characterization of calsequestrin from canine cardiac sarcoplasmic reticulum and identification of the 53,000 Dalton glycoprotein. J Biol Chem 258:1197– 1204 Cerca con Google

Chen X, Zhang X, Kubo H, Harris DM, Mills GD, Moyer J, et al. 2005. Ca2+ influxinduced sarcoplasmic reticulum Ca overload causes mitochondrial-dependent apoptosis in ventricular myocytes. Circ Res 97:1009–17 Cerca con Google

Chen-Izu Y, McCulle SL, Ward CW, Soeller C, Allen BM, Rabang C, Cannell MB, Balke CW and Izu LT. 2006. Three-dimensional distribution of ryanodine receptor clusters in cardiac myocytes. Biophys J 91:1-13 Cerca con Google

Cohn RD, Liang HY, Shetty R, Abraham T and Wanger KR. 2007. Myostatin does not regulate cardiac hypertrophy or fibrosis. Neuromuscular Disorders 17: 290–296 Cerca con Google

Damiani E, Tobaldin G, Bortoloso E and Margreth A. 1997. Functional behaviour of the ryanodine receptor/Ca2+-release channel in vesiculated derivatives of the junctional membrane of terminal cisternae of rabbit fast muscle sarcoplasmic reticulum. Cell Calcium 22: 129±151 Derman KD and Noakes TD. 1994. Comparative aspects of exercise physiology. In the Athletic Horse pp.13-27 Cerca con Google

Dyce KM, Sack WO, Wensing CJG. Textbook of veterinary anatomy. Antonio Delfino Editore. 2006. Edn 3 Cerca con Google

Dzeja PP, Vitkevicius KT, Redfield MM, Burnett JC, Terzik A. 1999. Adenylate-kinase catalyzed phosphotransfer in the myocardium: increased contribution in heart failure. Circ Res 84:1137–1143. Cerca con Google

Dzeja PP, Zeleznikar RJ and Goldberg ND.1998. Adenylate kinase: kinetic behaviour in intact cells indicates it is integral to multiple cellular processes. Mol Cell Biochem 184: 169–182 Cerca con Google

Eldar M, Pras E, Lahat H. 2003. A missense mutation in the CASQ2 gene is associated with autosomal-recessive catecholamine-induced polymorphic ventricular tachycardia. Trends Cardiovasc Med 13:148–151 Cerca con Google

Fan GC, Gregory KN, Zhao W, Park WJ, and Kranias EG. 2004. Regulation of myocardial function by histidine-rich, calcium-binding protein. Am J Physiol Heart Circ Physiol. 287:H1705–H1711 Cerca con Google

Fan GC, Yuan Q, Zhao W, Chu G, Kranias EG. 2007. Junctin is a prominent regulator of contractility in cardiomyocytes. Biochem Biophis Res Commun 352: 617-622. Cerca con Google

Finley MR, Li Y, Hua F, Lillich J, Mitchell KE, Ganta S, Gilmour RF Jr, and Freeman LC. 2002. Expression and coassociation of ERG1, KCNQ1, and KCNE1 potassium channel proteins in horse heart. Am J Physiol Heart Circ Physiol 283: H126–H138 Cerca con Google

Frank JS, Mottino G, Reid D, Molday RS, Philipson KD. 1992. Distribution of the Na+/Ca2+ exchanger protein in mammalian cardiac myocytes: an immunofluorescence and imunocolloidal gold-labeling study. The Journal of Cell Biology 117:2, 337-45 Cerca con Google

Franzini-Armstrong C, Kenney L, Varriano-Marston E. 1987. The structure of calsequestrin in triads of vertebrate skeletal muscle: a deep-etch study. J Cell Biol 105:45–56 Cerca con Google

Franzini-Armstrong C, Protasi F and Ramesh V. 1999. Shape, size, and distribution of Ca2+ release units and couplons in skeletal and cardiac muscles. Biophys J 77:1528-1539 Cerca con Google

Franzini-Armstrong C, Protasi F and Tijskens P. 2005. The assembly of calcium release units in cardiac muscle. Ann NY Acad Sci 1047:76-85 Cerca con Google

Fryer MW, Stephenson DG. 1996. Total and sarcoplasmic reticulum calcium contents of skinned fibres from rat and skeletal muscle. J Physiol 493:357-370 Cerca con Google

Gaussin V and Depre C. 2005. Myostatin, the cardiac chalone of insulin-like growth factor-1. Cardiovascular Research 68: 347–349 Cerca con Google

Gay WA and Elbert PA.1973. Functional, metabolic, and morphologic effects of potassium/induced cardiologia. Surgery 74(2):284-90 Cerca con Google

Gorelik J, Gu Y, Spohr HA, Shevchuk AI, Lab MJ, Harding SE, et al. 2002. Ion channels in small cells and subcellular structures can be studied with a smart patch-clamp system. Biophys J 83:3296-303 Cerca con Google

Grant RP. 1965. Notes on the muscular architecture of the heart. Circulation 32:301-8 Cerca con Google

Gregory KN, Ginsburg KS, Bodi I, Hahn H, Marreez YM, Song Q, Padmanabhan PA, Mitton BA, Waggoner JR, Del Monte F, Park WJ, Li GW, Bers DM, Kranias EG. 2006. Histidine-rich Ca2+-binding protein: a regulator of sarcoplasmic reticulum calcium sequestration and cardiac function. J Mol Cell Cardiol 40:653-665 Cerca con Google

Gunn HM. 1989. Heart weight and running ability. Journal of Anatomy 167:225-233 Cerca con Google

Györke I, Hester N, Jones LR, Györke S. 2003. The role of calsequestrin, triadin, and Cerca con Google

junctin in conferring cardiac ryanodine receptor responsiveness to luminal calcium. Cerca con Google

Biophys J 84: 2082 (abstract) Cerca con Google

Gyorke I, Hester N, Jones LR, Gyorke S. 2004. The role of calsequestrin, triadin, and junctin in conferring cardiac ryanodine receptor responsiveness to luminal calcium. Biophys J 86:2121–2128 Cerca con Google

Hoenig MR. 2008. Hypothesis: myostatin is a mediator of cardiac cachexia. Int J Cardiol 124(2):131-133 Cerca con Google

Hofmann S, Brown MS, Lee E, Pathak RK, Anderson RG, and Goldstein J. 1989. Cerca con Google

Purification of a sarcoplasmic reticulum protein that binds Ca21 and plasma lipoproteins. J Biol Chem 264: 8260–8270 Cerca con Google

Hofmann S, Goldstein J, Orth K, Moomaw CR, Slaughter C and Brown M. 1989. Cerca con Google

Molecular cloning of a histidine-rich Ca2+-binding protein of sarcoplasmic reticulum that contains highly conserved repeated elements. J. Biol. Chem. 264: 18083– 18090 Cerca con Google

Hofmann S, Topham M, Hsieh C-L, and Francke U. 1991. cDNA and genomic cloning of HRC, a human sarcoplasmic reticulum protein, and localization of the gene to human chromosome 19 and mouse chromosome 7. Genomics 9: 656–669 Cerca con Google

Hong CS, Cho MC, Kwak YG, Song CH, Lee YH, Lim JS, Kwon YK, Chae SW, Kim DH. 2002. Cardiac remodeling and atrial fibrillation in transgenic mice overexpressing junctin, FASEB J 16:1310– 1312 Cerca con Google

Houle TD, Ram ML, Cala SE. 2004.Calsequestrin mutant D307H exhibits depressed binding to its protein targets and a depressed response to calcium. Cardiovasc Res 64:227–233. Cerca con Google

Ikemoto N, Antoniu B, Kang JJ, Meszaros LG, Ronjat M. 1991. Intravesicular calcium transient during calcium release from sarcoplasmatic reticulum. Biochemistry 30:5230- 5237 Cerca con Google

Ikemoto N, Bhatnagar GM, Nagy B, Gergely J. 1972. Interaction of divalent cations with the 55,000-dalton protein component of the sarcoplasmic reticulum.mStudies of fluorescence and circular dichroism. J Biol Chem 247:7835-37 Cerca con Google

Iseri LT, French JH. 1984. Magnesium: neture’s physiologic calcium blocker. Am Heart J 108:188-193 Cerca con Google

Jones LR, Suzuki YJ, Wang W, Kobayashi YM, Ramesh V, Franzini-Armstrong C, Cleemann L and Morad M. 1998. Regulation of Ca21 signaling in transgenic mouse cardiac myocytes overexpressing calsequestrin. J Clin Invest 101:1385–1393 Cerca con Google

Jones LR, Zhang L, Sanborn K, Jorgensen AO, and Kelley J. 1995. Purification, primary structure, and immunological characterization of the 26-kDa calsequestrin binding protein (junctin) from cardiac junctional sarcoplasmic reticulum. J Biol Chem 270:30787–30796. Cerca con Google

Jones PP, Bazzazi H, Kargacin GJ and Colyer J. 2006. Inhibition of cAMPdependent protein kinase under conditions occurring in the cardiac dyad during a Ca2+ transient. Biophys J 91: 433-443 Cerca con Google

Jorgensen AO and Campbell KP. 1984. Evidence for the presence of calsequestrin in two structurally different regions of myocardial sarcoplasmic reticulum. J Cell Biol 98(4):1597-602 Cerca con Google

Jorgensen AO, Broderick R, Somlyo AP, Somlyo AV. 1988. Two structurally distinct calcium storage sites in rat cardiac sarcoplasmic reticulum: an electron microprobe analysis study. Circ Res 63(6): 1060-1069 Cerca con Google

Jorgensen AO, McLeod AG, Campbell KP, Denney GH. 1984. Evidence for the presence of calsequestrin in both peripherial and interior regions of sheep Purkinje fibers. Circ Res 55(2):267-70 Cerca con Google

Jorgensen AO, Shen AC, Arnold W, McPherson PS and Campbell KP. 1993. The Ca2+- release channel/ryanodine receptor is localized in junctional and corbular sarcoplasmic reticulum in cardiac muscle. J Cell Biol 120: 969-980 Cerca con Google

Jorgensen AO, Shen AC, Campbell KP. 1985. Ultrastructural localization of calsequestrin in adult rat atrial and ventricular muscle cells. J Cell Biol 101(1): 257-68 Cerca con Google

Jorgensen AO, Shen AC, Daly P, MacLennan DH. 1982. Localization of Ca2+ + Mg2+ - ATPase of the sarcoplasmic reticulum in adult rat papillary muscle. J Cell Biol 93(3): 883-92 Cerca con Google

Katz AM. Physiology of the heart. Lippincott Williams & Wilkins 2006. Edn 4 Cerca con Google

Kim E, Shin DW, Hong CS, Jeong D, Kim do H, Park WJ. 2003. Increased Ca2+ storage capacity in the sarcoplasmic reticulum by overexpression of HRC (histidine-rich Ca2+ binding protein). Biochem Biophys Res Commun 300:192-196 Cerca con Google

Kirchhefer U, Hanske G, Jones LR, Justus I, Kaestner L, Lipp P et al. 2006. Overexpression of junctin causes adaptive changes in cardiac myocyte Ca(2+) signaling. Cell Calcium 39:131–142 Cerca con Google

Kirchhefer U, Neumann J, Baba HA, Begrow F, Kobayashi YM, Reinke U et al. 2001. Cerca con Google

Cardiac hypertrophy and impaired relaxation in transgenic mice overexpressing triadin 1. J Biol Chem 276:4142–4149. Cerca con Google

Kirchhefer U, Neumann J, Bers DM, Buchwalow IB, Fabritz L, Hanske G et al. 2003. Impatred relaxation in transgenic mice overexpressing junctin. Cardiovasc Res 59:369– 379 Cerca con Google

Kubalova Z, Györke I, Terentyeva R, Viatchenko-Karpinski S, Terentyev D, Williams SC, Györke S. 2004. Modulation of cytosolic and intra-sarcoplasmic reticulum calcium waves by calsequestrin in rat cardiac myocytes. J Physiol 561(Pt 2):515-24 Cerca con Google

Laemmli UK.1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277:680-685 Cerca con Google

Lahat H, Pras E, Olender T, Avidan N, Ben-Asher E, Man O et al. 2001. A missense mutation in a highly conserved region of CASQ2 is associated with autosomal recessive catecholamine-induced polymorphic ventricular tachycardia in Bedouin families from Israel. Am J Hum Genet 69:1378–1384 Cerca con Google

Lee HG, Kang H, Kim DH and Park WJ. 2001 Interaction of HRC (histidine-rich Ca21- binding protein) and triadin in the lumen of sarcoplasmic reticulum. J Biol Chem 276:39533–39538 Cerca con Google

Lee SJ, Reed LA, Davies MV, et al. 2005. Regulation of muscle growth by multiple ligands signaling through activin type II receptors. Proc Natl Acad Sci USA 102:18117–22 Cerca con Google

Livak KJ and Schmittgen TD. 2001. Analysis of relative gene expression data using realtime quantitative PCR and the 2_DDCt. Method 25:402–408 Cerca con Google

Lo HM, Lin FY, Lin JL, Hsu KL, Chiang FT, Tseng CD and Tseng YZ. 1999. Impaired cardiac performance relating to delayed left atrial activation after atrial compartment operation for chronic atrial fibrillation. Pacing Clin Electrophysiol 22: 379-381 Cerca con Google

Loughrey CM, Smith GL, MacEachern KE. 2004. Comparison of Ca2+ release and uptake characteristics of the sarcoplasmic reticulum in isolated horse and rabbit cardiomyocytes. Am J Physiol Heart Circ Physiol 287(3):H1149-59 Cerca con Google

Lowry OH, Rosebrough NJ, Farr AL and Randall RJ. 1951. Protein measurement with the Folin phenol reagent. J Biol Chem 265:10118-10124 Cerca con Google

Luss I, Boknik P, Jones LR, Kirchhefer U, Knapp J, Linck B, Luss H, Meissner A, Muller FU, Schmitz W et al.1999. Expression of cardiac calcium regulatory proteins in atrium vs ventricle in different species. J Mol Cell Cardiol 31:1299-1314. Cerca con Google

Mackenzie L, Bootman MD, Berridge MJ and Lipp P. 2001. Predetermined recruitment of calcium release sites underlies excitation-contraction coupling in rat atrial myocytes. J Physiol 530: 417-429 Cerca con Google

Mackenzie L, Roderick HL, Berridge MJ, Conway SJ and Bootman MD. 2004. The spatial pattern of atrial cardiomyocyte calcium signalling modulates contraction. J Cell Sci 117: 6327-6337 Cerca con Google

MacLellan WR, Brand T, Schneider MD. 1993. Transforming growth factor- in cardiac ontogeny and adaption. Circ Res 73:783–791 Cerca con Google

MacLennan DH and Kranias EG. 2003. Phospholamban: a crucial regulator of cardiac contractility. Nat Rev Mol Cell Biol 4:566-577 Cerca con Google

Malysheva AN, Storey KB, Lopina OD, Rubtsov AM. 2001. Ca-ATPase activity and protein composition of sarcoplasmic reticulum membranes isolated from skeletal muscles of typical hibernator, the ground squirrel Spermophilus undulatus. Biosci Rep 21(6): 831-8 Cerca con Google

Marx SO, Reiken S, Hisamatsu Y, Jayaraman T, Burkhoff D, Rosemblit N et al. 2000. PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell 101:365–376 Cerca con Google

Matsakas A, Bozzo C, Cacciani N, Caliaro F, Reggiani C, Mascarello F and Patruno M. 2006. Effect of swimming on myostatin expression in white and red gastrocnemius muscle and in cardiac muscle of rat. Exp Physiol 91:983–994 Cerca con Google

McKeever KH, Hinchcliff KW, Reed SM, Robertson JT. 1993. Role of decreased plasma volume in hematocrit alterations during incremental treadmill exercise in horses. Am J Physiol 265:R404-408 Cerca con Google

McKoy G, Bicknell KA, Patel K and Brooks G. 2007. Developmental expression of myostatin in cardiomyocytes and its effect on fetal and neonatal rat cardiomyocyte proliferation. Cardiovascular Research 74: 304–312 Cerca con Google

McPherron AC, Lawler AM, Lee SJ. 1997. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387: 83–90 Cerca con Google

Meissner G. 2004. Molecular regulation of cardiac ryanodine receptor ion channel. Cell. Calcium 35:621-628 Cerca con Google

Mitchell RD, Simmerman HK, Jones LR. 1988. Ca2þ binding effects on protein conformation and protein interactions of canine cardiac calsequestrin. J Biol Chem 263:1376–1381 Cerca con Google

Mitcheson JS, Hancox J, Levi AJ. 1996. Action potentials, ion channel currents and transverse tubule density in adult rabbit ventricular myocytes maintained for 6 days in cell culture. Pflug Arch 431:814-827 Cerca con Google

Morissette MR, Cook SA, Foo S, et al. 2006. Myostatin regulates cardiomyocyte growth through modulation of Akt signaling. Circ Res 99:15–24 Cerca con Google

Orrenius S, Zhivotovsky B, Nicotera P. 2003. Regulation of cell death: the calciumapoptosis link. Nat Rev Mol Cell Biol 4:552–65 Cerca con Google

Ostbye TK, Galloway TF, Nielsen C, Gabestad I, Bardal T, Anderson O. 2001. European Journal of Biochemistry 268: 5249-5257 Cerca con Google

Park H, Wu S, Dunker AK, Kang C. 2003. Polymerization of calsequestrin. Implications for Ca2+ regulation. J Biol Chem 278:16176–16182. Cerca con Google

Patruno M, Caliaro F, Maccatrozzo L, Sacchetto R, Martinello T, Toniolo L, Reggiani C, Mascarello F. 2008. Myostatin shows a specific expression pattern in pig skeletal and extraocular muscles durino pre- and post-natal growth. Differentiation 76(2):168-181 Cerca con Google

Patruno M, Maccatrozzo L, Funkenstein B and Radaelli G. 2006. Cloning and expression of insulin-like growth factor I and II in the Shi drum (Umbrina cirrosa). Comp Biochem Physiol B 144:137–151 Cerca con Google

Peskoff A and Langer GA. 1998. Calcium concentration and movement in the ventricular cardiac cell during an excitation-contraction cycle. Biophys J 74: 153-174 Cerca con Google

Picello E, Damiani E, and Margreth A. 1992. Low-affinity Ca21-binding sites versus Zn2+-binding sites in histidine-rich Ca2+-binding protein of skeletal muscle sarcoplasmic reticulum. Biochem Biophys Res Commun 186: 659–667 Cerca con Google

Pogwizd SM and Bers DM. 2004. Cellular basis of triggered arrhythmias in heart failure. Trends Cardivasc Med 14:61-66 Cerca con Google

Poole DC and Erikson HH. 2003. Heart and vessels: function during exercise and response to traning. Equine Sports Medicine and Surgery. Cerca con Google

Postma AV, Denjoy I, Hoorntje TM, Lupoglazoff JM, Da Costa A, Sebillon P et al. 2002. Absence of calsequestrin 2 causes severe forms of catecholaminergic polymorphic ventricular tachycardia. Circ Res 91:e21–e26 Cerca con Google

Realini C, Rechsteiner M. 1995. A proteosome activator subunit binds calcium. J Biol Chem 270 (50): 29664–29667 Cerca con Google

Realini C, Rogers SW and Rechsteiner M. 1994. KEKE motifs. Proposed roles in proteinprotein association and presentation of peptides by MHC class I receptors. FEBS Lett Cerca con Google

348: 109–113 Cerca con Google

Ridgeway AG, Petropulos H, Siu A, Ball JK, and Skerjanc I. 1999. Cloning, tissue distribution, subcellular localization and overexpression of murine histidine-rich Ca2+ binding protein. FEBS Lett 456: 399–402 Cerca con Google

Sacchetto R, Damiani E, Turcato F, Nori A, Margreth A. 2001. Ca(2+)-dependent interaction of triadin with histidine-rich Ca(2+)-binding protein carboxyl-terminal region. Biochem Biophys Res Commun 289(5):1125-34 Cerca con Google

Sacchetto R, Turcato F, Damiani E, and Margreth A. 1999. Interaction of triadin with histidine-rich Ca21-binding protein at the triadic junction in skeletal muscle fibers. J Muscle Res Cell Motil 20: 403–415 Cerca con Google

Saito A, Seiler S, Chu A, and Fleischer S. 1984. Preparation and morphology of sarcoplasmic reticulum terminal cisternae from rabbit skeletal muscle. J Cell Biol 99, 875–885 Cerca con Google

Saks VA, Kuznetsov AV, Khuchua ZA, Vasilyeva EV, Belikova JO, Kesvatera T and Tiivel T.1995. Control of cellular respiration in vivo by mitochondrial outer membrane and by creatine kinase. A new speculative hypothesis: possible involvement of mitochondrial-cytoskeleton interactions. J Mol Cell Cardiol 27:625–645 Cerca con Google

Sathish V, Xu A, Karmazyn M, Sims SM and Narayanan N. 2006. Mechanistic basis of the differences in Ca2+ - handling properties of sarcoplasmic reticulum in right and left ventricles of normal rat myocardium. Am J Physiol Heart Circ Physiol 291: H88-H96 Cerca con Google

Sato Y, Ferguson DG, Sako H, Dorn GW 2nd, Kadambi VJ, Yatani A et al. 1998. Cardiac specific overexpression of mouse cardiac calsequestrin is associated with depressed cardiovascular function and hypertrophy in transgenic mice. J Biol Chem 273:28470- 28477 Cerca con Google

Scott BT, Simmerman HK, Collins JH, Nadal-Ginard B, Jones LR. 1988. Complete amino acid sequence of canine cardiac calsequestrin deduced by cDNA cloning. J Biol Chem 263:8958–8964 Cerca con Google

Scriven DR, Dan P, Moore ED. 2000. Distribution of proteins implicated in excitationcontraction coupling in rat ventricular myocytes. Biophys J 79:2682-91 Cerca con Google

Sequence detection systems chemistry guide. Applied Biosystem, 2003 Cerca con Google

Sham JSK, Cleemann L, Morad M. 1995. Functional coupling of Ca2+ channels and ryanodine receptors in cardiac myocytes. Proc Natl Acad Sci USA 92:121–125 Cerca con Google

Sharma M, Kambadur R, Matthews KG, SomersWG, Devlin GP, Conaglen JV, Fowke PJ and Bass JJ. 1999. Myostatin, a transforming growth factor-beta superfamily member, is expressed in heart muscle and is upregulated in cardiomyocytes after infarct.J Cell Physiol 180(1):1-9 Cerca con Google

Shyu KG, Ko WH, Yang WS,Wang BW and Kuan P. 2005. Insulin-like growth factor-I mediates stretch-induced upregulation of myostatin expression in neonatal rat cardiomyocytes. Cardiovasc Res 68: 405–414 Cerca con Google

Takemoto N, Kuroda H, Mori T.1992. The reciprocal protective effects of magnesium and calcium in hyperkalemic cardioplegic solutions on ischemic myocardium. Basic Res Cardiol 87:559-569 Cerca con Google

Takeshima H, Nishimura S, Matsumoto T, Ishida H, Kangawa K, Minamino N, et al. 1989. Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor. Nature 339:439-445 Cerca con Google

Tanaami T, Ishida H, Seguchi H, Hirota Y, Kadono T, Genka C, Nakazawa H and Barry WH. Difference in propagation of Ca2+ release in atrial and ventricular myocytes. JJP 2005; 55: 81-91. Cerca con Google

Terentyev D, Cala SE, Houle TD, Viatchenko-Karpinski S, Györke I, Terentyeva R et al. 2005. Triadin overexpression stimulates excitationcontraction coupling and increases predisposition to cellular arrhythmia in cardiac myocytes. Circ Res 96:651–658 Cerca con Google

Terentyev D, Viatchenko-Karpinski S, Györke I, Volpe P, Williams SC, Györke S. 2003. Cerca con Google

Calsequestrin determines the functional size and stability of cardiac intracellular calcium stores: Mechanism for hereditary arrhythmia. Proc Natl Acad Sci USA 100:11759–11764. Cerca con Google

Thomas M, Langley B, Berry C, Sharma M, Kirk S, Bass J & Kambadur R. 2000. Cerca con Google

Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. J Biol Chem 275: 40235–40243 Cerca con Google

Towbin H, Staehelin T and Gordon J.1979. Electrophoretic transfer of protein from polyacrilamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350-4354 Cerca con Google

Viatchenko-Karpinski S, Terentyev D, Gyorke I, Terentyeva R, Volpe P, Priori SG et al. 2004. Abnormal calcium signaling and sudden cardiac death associated with mutation of calsequestrin. Circ Res 94:471–477 Cerca con Google

Wang S, Trumble WR, Liao H, Wesson CR, Dunker AK, Kang CH. 1998. Crystal structure of calsequestrin from rabbit skeletal muscle sarcoplasmic reticulum. Nat Struct Biol 5:476–483 Cerca con Google

Workman AJ, Kane AK, Rankin AC. 2001. The contribution of ionic currents to changes in refractoriness of human atrial associated with chronic atrial fibrillation. Cardiovascular research 52:226-235 Cerca con Google

Yamasaki Y, Furuya Y, Araki K, Matsuura K, Kobayashi M and Ogata T. 1997. Ultrahigh- resolution scanning electron microscopy of the sarcoplasmic reticulum of the rat atrial myocardial cells. Anat Rec 248: 70-75 Cerca con Google

Young LE. 2003. Equine athletes, the equine athlete’s heart and racing success. Experimental physiology 88(5):659-663 Cerca con Google

Zhang L, Kelley J, Schmeisser G, Kobayashi YM, Jones LR. 1997. Complex formation between junctin, triadin, calsequestrin, and the ryanodine receptor. Proteins of the cardiac junctional sarcoplasmic reticulum membrane. J Biol Chem 272:23389–23397 Cerca con Google

Zhou X, Fan GC, Ren X, Waggoner JR, Gregory KN, Chen G, et al. 2007. Overexpression of histidine-rich Ca-binding protein protects against ischemia/reperfusion-induced cardiac injury. Cardiovasc Res 75:487–97. Cerca con Google

Zimmerman ANE, Daems W, Hulsmann WC, Snijder J, Wisse E, Durrer D. 1967. Morphological changes of heart muscle caused by successive perfusion with calciumfree and calcium-containing solutions (calcium paradox). Cardiovasc Res 1:201-209 Cerca con Google

Zimmerman ANE, Hulsmann WC. 1966. Paradoxical influence of calcium ions on the permeability of the cell membranes of the isolated rat heart. Nature 211:646-647 Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record