Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Bonaldi, Anna Valentina (2008) Component separation for all-sky CMB temperature maps. [Ph.D. thesis]

Full text disponibile come:

Documento PDF

Abstract (english)

The work described in this Thesis is related to the PLANCK mission, scheduled for launch in 2008, which will observe the microwave sky with unprecedent resolution and sensitivity. The PLANCK collaboration involves hundreds of scientists and profits from the contributions of research groups in many countries. Among them, an Italian collaboration has a key role on component separation. This is a crucial step of the data reduction process, aimed at disentangling the Cosmic Microwave Background (CMB) and all the astrophysical components which are mixed in the nine observational channels of PLANCK The most important diffuse components are, besides the CMB, synchrotron, free-free and thermal dust emissions due to our own Galaxy. Moreover, the PLANCK maps will contain radio and infrared extragalactic sources as well as the Sunyaev-Zel'dovich effects from clusters of galaxies. All the components which mix with the CMB are referred to as ``foregrounds'', as they are placed between the CMB and the observer.

The main goal of component separation is to provide a map of the CMB, from which the relevant cosmological information will be derived, clean from foreground contamination. On the other hand, maps of astrophysical components are of great interest per se. The accuracy of the component separation process will ultimately set that of the final results PLANCK will provide.

Our work was mainly focused on the development and testing of a new method for the separation of diffuse foregrounds, the Correlated Component Analysis (CCA), proposed by Bedini et al. (2005). This technique exploits second-order statistics to estimate the ``mixing matrix'', which contains the frequency behavior of the components mixed in the data. It is necessary to adopt a model for such components, i.e. to parametrize their frequency scaling in a suitable way. Our approach is to estimate the mixing matrix separately in different regions of the sky, where the spectral dependencies of foregrounds can be assumed to be constant.
Once the mixing matrix is known, several methods are available to perform component separation, such as Wiener Filtering (WF), Maximum Entropy Method (MEM) or other Bayesian inversion techniques.
After having suitably implemented the CCA method, we tested its performances on simulated PLANCK data.
In Bonaldi et al. (2006) we applied the method to different sets of simulated PLANCK channels and estimated the errors on the mixing matrix with a Monte Carlo approach. The simulations included realistic diffuse foregrounds, with spatially varying spectral properties, and Gaussian noise at the nominal level for the PLANCK satellite.
This test showed that the method is efficient and that the errors on the mixing matrix estimation produce a minor contribution to the errors on the CMB power spectrum.

We then partecipated in a blind comparative test of component separation methods coordinated by the PLANCK working group on ``component separation''.
The test used a more sophisticated simulation of PLANCK data, which included, besides diffuse foreground emissions, also point sources and extragalactic background and a more realistic treatment of the noise. On these data, we tested CCA combined with harmonic Wiener Filtering. We focused on the reconstruction of the CMB map and on the power spectrum estimation, and obtained in both cases very good results, highly competitive with those provided with the best methods developed so far. We also got satisfactory reconstructions of Galactic dust emission, which is the dominant foreground in the highest resolution (high frequency) PLANCK channels.

In Bonaldi et al. (2007b) we tested the same strategy on real data i.e. the first three years of WMAP data. Our results are generally compatible with the result published by the WMAP team. We investigated the presence in the data of the so-called "microwave anomalous emission", an additional foreground component which could dominate in the lowest frequency WMAP channel (23 GHz). This component, revealed by cross correlations of microwave data with IR maps, appears to be correlated with thermal dust emission and has been interpreted as emission due to spinning dust grains (Draine & Lazarian 1998) or, alternatively, as synchrotron emission from dusty active star-forming regions (Hinshaw et al. 2006). We adopted various models for the frequency scaling of such component, whose properties are still poorly known.
We then applied several quality tests to the maps reconstructed for each model and selected a subset of models having a good compatibility with the data. We also managed to get the first, albeit preliminary, template of the anomalous emission over about 90% of the sky.

We then estimated how our imperfect knowledge of the foreground components affects the CMB power spectrum. To this end we compared the CMB power spectra obtained adopting different foreground models that passed our quality tests. A significant spread has been found for the largest scales, where anomalies of the WMAP power spectrum compared to the expectations from the best fit cosmological model have been reported. Taking into account modelization errors, we find no large scale power spectrum anomalies significant at > 1.5 sigma, except for the excess power at l=40,
which is significant at around the 4 sigma level.

A minor part of this Thesis was devoted to the study of the Sunyaev-Zel'dovich (SZ) effect, due to inverse Compton scattering of CMB photons by hot electrons in the astrophysical plasmas bound to the cosmic structures. PLANCK is expected to provide a big sample of galaxy clusters observed through the SZ effect. One exploitation of the PLANCK cluster sample is related to the study of the physics of the intra-cluster (IC) gas. In Bonaldi et al. (2007a) we investigated
the observable effects of different modeling of the physics of the IC gas.
Another research field related to the SZ effect concerns the study of the Large Scale Structure of the Universe. In Dolag et al. (2006) we analysed the SZ emission due to the so-called cosmic web, the network of filamentary structures which is now believed to connect galaxy clusters. The signal is too weak to be detected but its presence may bias the observed properties of galaxy clusters both in the X-ray band and in the microwaves.

Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:De Zotti, Gianfranco
Supervisor:Tormen, Giuseppe and Salerno, Emanuele
Ph.D. course:Ciclo 20 > Corsi per il 20simo ciclo > ASTRONOMIA
Data di deposito della tesi:31 January 2008
Anno di Pubblicazione:31 January 2008
Key Words:cosmic microwave background- data analysis- cosmology
Settori scientifico-disciplinari MIUR:Area 02 - Scienze fisiche > FIS/05 Astronomia e astrofisica
Struttura di riferimento:Dipartimenti > pre 2012 - Dipartimento di Astronomia
Codice ID:207
Depositato il:27 Oct 2008
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Aarts, E. H. L. and Korst, J. (1989). Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial optimization. Chichester, New York: Wiley, 1989. Cerca con Google

2. Aghanim, N. and Forni, O. (1999). Searching for the non-Gaussian signature of the CMB secondary anisotropies. A&A, 347:409-418. Cerca con Google

3. Allen, T. J., Grinstein, B., and Wise, M. B. (1987). NonGaussian density perturbations in inflationary cosmologies. Physics Letters B, 197:66-70. Cerca con Google

4. Alton, P. B., Davies, J. I., and Trewhella, M. (1998). The distribution of far-infrared emission from edge-on galaxies. MNRAS, 296:773-784. Cerca con Google

5. Amendola, L., Gordon, C., Wands, D., and Sasaki, M. (2002). Correlated Perturbations from In-ation and the Cosmic Microwave Background. Physical Review Letters, 88(21):211302-+. Cerca con Google

6. Antonucci, R. (1993). Unified models for active galactic nuclei and quasars. ARA&A, 31:473-521. Cerca con Google

7. Baccigalupi, C., Bedini, L., Burigana, C., De Zotti, G., Farusi, A., Maino, D., Maris, M., Perrotta, F., Salerno, E., To-olatti, L., and Tonazzini, A. (2000). Neural networks and the separation of cosmic microwave background and astrophysical signals in sky maps. MNRAS, 318:769-780. Cerca con Google

8. Bahcall, N. A., Ostriker, J. P., Perlmutter, S., and Steinhardt, P. J. (1999). The Cosmic Triangle: Revealing the State of the Universe. Science, 284:1481-+. Cerca con Google

9. Banday, A. J., Gorski, K. M., Bennett, C. L., Hinshaw, G., Kogut, A., and Smoot, G. F. (1996). Noncosmological Signal Contributions to the COBE DMR 4 Year Sky Maps. ApJ, 468:L85+. Cerca con Google

10. Banday, A. J. and Wolfendale, A. W. (1990). Fluctuations in the cosmic microwave background. MNRAS, 245:182-191. Cerca con Google

11. Banday, A. J. and Wolfendale, A. W. (1991). Fluctuations in the galactic synchrotron radiation. I - Implications for searches for fluctuations of cosmological origin. MNRAS, 248:705-714. Cerca con Google

12. Bardeen, J. M., Steinhardt, P. J., and Turner, M. S. (1983). Spontaneous creation of almost scale-free density perturbations in an inflationary universe. Physical Review D, 28:679-693. Cerca con Google

13. Bardelli, S., Zucca, E., Zamorani, G., Moscardini, L., and Scaramella, R. (2000). A study of the core of the Shapley Concentration - IV. Distribution of intercluster galaxies and supercluster properties. MNRAS, 312:540- Cerca con Google

14. 556. Cerca con Google

15. Barker, R. et al. (2006). High-significance Sunyaev-Zel'dovich measurement: Abell 1914 seen with the Arcminute Microkelvin Imager. MNRAS, 369:L1-L4. Cerca con Google

16. Bedini, L., Herranz, D., Salerno, E., Baccigalupi, C., Kuruo§lu, E. E., and Tonazzini, A. (2005). Separation of correlated astrophysical sources using multiple-lag data covariance matrices. EURASIP Journal on Applied Signal Processing, 2005(15):2400-2412. doi:10.1155/ASP.2005.2400. Cerca con Google

17. Begelman, M. C. (1996). Baby Cygnus A's, pages 209-+. Cygnus A - Studay of a Radio Galaxy. Cerca con Google

18. Belouchrani, A., Abed-Meraim, K., Cardoso, J., and Moulines, E. (1997). A blind source separation technique using second orser statistics. IEEE Transactions on Signal processing, 45:434. Cerca con Google

19. Bennett, C. L. et al. (2003). The WMAP First Year Source Catalog (WMAP1) (Bennett+, 2003). VizieR Online Data Catalog, 214:80097-+. Cerca con Google

20. Benoît, A. et al. (2004). First detection of polarization of the submillimetre diffuse galactic dust emission by Archeops. A&A, 424:571-582. Cerca con Google

21. Bernardeau, F. (1997). Weak lensing detection in CMB maps. A&A, 324:15-26. Cerca con Google

22. Bharadwaj, S. and Pandey, B. (2004). Using the Filaments in the Las Campanas Redshift Survey to Test the ¤CDM Model. ApJ, 615:1-6. Cerca con Google

23. Birkinshaw, M. and Gull, S. F. (1983). A test for transverse motions of clusters of galaxies. Nat, 302:315-317. Cerca con Google

24. Blain, A. W., Smail, I., Ivison, R. J., Kneib, J.-P., and Frayer, D. T. (2002). Submillimeter galaxies. Phys. Rep., 369:111-176. Cerca con Google

25. Bonaldi, A., Bedini, L., Salerno, E., Baccigalupi, C., and de Zotti, G. (2006). Estimating the spectral indices of correlated astrophysical foregrounds by a second-order statistical approach. MNRAS, 373:271-279. Cerca con Google

26. Bonaldi, A., Ricciardi, S., Leach, S., Stivoli, F., Baccigalupi, C., and de Zotti, G. (2007a). WMAP 3-yr data with Correlated Component Analysis: anomalous emission and impact of component separation on the CMB power Cerca con Google

27. spectrum. MNRAS, 382:1791-1803. Cerca con Google

28. Bonaldi, A., Tormen, G., Dolag, K., and Moscardini, L. (2007b). Sunyaev-Zel'dovich profiles and scaling relations: modelling effects and observational biases. MNRAS, 378:1248-1258. Cerca con Google

29. Bond, J. R., Efstathiou, G., and Silk, J. (1980). Massive neutrinos and the large-scale structure of the universe. Physical Review Letters, 45:1980-1984. Cerca con Google

30. Bond, J. R., Efstathiou, G., and Tegmark, M. (1997). Forecasting cosmic parameter errors from microwave background anisotropy experiments. MNRAS, 291:L33-L41. Cerca con Google

31. Bond, J. R., Kofman, L., and Pogosyan, D. (1996). How filaments of galaxies are woven into the cosmic web. Nat, 380:603-+. Cerca con Google

32. Borgani, S. (2006). Cosmology with clusters of galaxies. preprint, astro-ph/0605575. Cerca con Google

33. Bouchet, F. R. and Gispert, R. (1999). Foregrounds and CMB experiments I. Semi-analytical estimates of contamination. New Astronomy, 4:443-479. Cerca con Google

34. Brandt, W. N., Lawrence, C. R., Readhead, A. C. S., Pakianathan, J. N., and Fiola, T. M. (1994). Separation of foreground radiation from cosmic microwave background anisotropy using multifrequency measurements. Cerca con Google

35. ApJ, 424:1-21. Cerca con Google

36. Bregman, J. N., Dupke, R. A., and Miller, E. D. (2004). Cosmic Filaments in Superclusters. ApJ, 614:31-36. Cerca con Google

37. Cen, R., Ostriker, J. P., and Peebles, P. J. E. (1993). A Hydrodynamic Approach to Cosmology: The Primeval Baryon Isocurvature Model. ApJ, 415:423-+. Cerca con Google

38. Cole, S. and Efstathiou, G. (1989). Gravitational lensing of fluctuations in the microwave background radiation. MNRAS, 239:195-200. Cerca con Google

39. Davies, R. D., Dickinson, C., Banday, A. J., Jaffe, T. R., Górski, K. M., and Davis, R. J. (2006). A determination of the spectra of Galactic componentsobserved by the Wilkinson Microwave Anisotropy Probe. MNRAS, 370:1125- 1139. Cerca con Google

40. Oliveira-Costa, A., Kogut, A., Devlin, M. J., Netter field, C. B., Page, L. A., and Wollack, E. J. (1997). Galactic Microwave Emission at Degree Angular Scales. ApJ, 482:L17. Cerca con Google

41. de Oliveira-Costa, A., Tegmark, M., Davies, R. D., Gutiérrez, C. M., Lasenby, A. N., Rebolo, R., and Watson, R. A. (2004). The Quest for Microwave Foreground X. ApJ, 606:L89-L92. Cerca con Google

42. de Oliveira-Costa, A., Tegmark, M., Finkbeiner, D. P., Davies, R. D., Gutierrez, C. M., Ha-ner, L. M., Jones, A. W., Lasenby, A. N., Rebolo, R., Reynolds, R. J., Tufte, S. L., and Watson, R. A. (2002). A New Spin on Galactic Dust. ApJ, 567:363-369. Cerca con Google

43. de Oliveira-Costa, A., Tegmark, M., Gutierrez, C. M., Jones, A. W., Davies, R. D., Lasenby, A. N., Rebolo, R., and Watson, R. A. (1999). Cross-Correlation of Tenerife Data with Galactic Templates-Evidence for Spinning Cerca con Google

44. Dust? ApJ, 527:L9-L12. Cerca con Google

45. de Oliveira-Costa, A., Tegmark, M., Page, L. A., and Boughn, S. P. (1998). Galactic Emission at 19 GHZ. ApJ, 509:L9-L12. Cerca con Google

46. de Zotti, G., Ricci, R., Mesa, D., Silva, L., Mazzotta, P., Toffolatti, L., and González-Nuevo, J. (2005). Predictions for high-frequency radio surveys of extragalactic sources. A&A, 431:893-903. Cerca con Google

47. [de Zotti et al., 1999] de Zotti, G., To-olatti, L., Argüeso, F., Davies, R. D., Mazzotta, P., Partridge, R. B., Smoot, G. F., and Vittorio, N. (1999). The Planck Surveyor Mission: Astrophysical Prospects. In Maiani, L., Melchiorri, F., and Vittorio, N., editors, 3K cosmology, volume 476 of American Institute of Physics Conference Series, Cerca con Google

48. pages 204-+. Cerca con Google

49. Delabrouille, J. and Cardoso, J. . (2007). Diffuse source separation in CMB observations. ArXiv Astrophysics e-prints. Cerca con Google

50. Dickinson, C., Davies, R. D., and Davis, R. J. (2003). Towards a free-free template for CMB foregrounds. MNRAS, 341:369-384. Cerca con Google

51. Dolag, K., Meneghetti, M., Moscardini, L., Rasia, E., and Bonaldi, A. (2006). Simulating the physical properties of dark matter and gas inside the cosmic web. MNRAS, 370:656-672. Cerca con Google

52. Doroshkevich, A. G., Zeldovich, Y. B., Syunyaev, R. A., and Khlopov, M. Y. (1980). Astrophysical implications of the neutrino rest mass. II - The density-perturbation spectrum and small-scale -uctuations in the microwave background. III - Nonlinear growth of perturbations and the missing mass. Pis ma Astronomicheskii Zhurnal, 6:457-469. Cerca con Google

53. Draine, B. T. and Lazarian, A. (1998). Electric Dipole Radiation from Spinning Dust Grains. ApJ, 508:157-179. Cerca con Google

54. Dupac, X., Bernard, J.-P., Boudet, N., Giard, M., Lamarre, J.-M., Mény, C., Pajot, F., Ristorcelli, I., Serra, G., Stepnik, B., and Torre, J.-P. (2003). Inverse temperature dependence of the dust submillimeter spectral index. A&A, 404:L11-L15. Cerca con Google

55. Ebeling, H., Barrett, E., and Donovan, D. (2004). Discovery of a Large-Scale Filament Connected to the Massive Galaxy Cluster MACS J0717.5+3745 at z=0.551,. ApJ, 609:L49-L52. Cerca con Google

56. Efstathiou, G. and Bond, J. R. (1999). Cosmic confusion: degeneracies among cosmological parameters derived from measurements of microwave background anisotropies. MNRAS, 304:75-97. Cerca con Google

57. Eisenstein, D. J., Hu, W., and Tegmark, M. (1999). Cosmic Complementarity: Joint Parameter Estimation from Cosmic Microwave Background Experiments and Redshift Surveys. ApJ, 518:2-23. Cerca con Google

58. Eke, V. R., Cole, S., and Frenk, C. S. (1996). Cluster evolution as a diagnostic for Omega. MNRAS, 282:263-280. Cerca con Google

59. Eriksen, H. K., Dickinson, C., Lawrence, C. R., Baccigalupi, C., Banday, A. J., Górski, K. M., Hansen, F. K., Lilje, P. B., Pierpaoli, E., Sei-ert, M. D., Smith, K. M., and Vanderlinde, K. (2006). Cosmic Microwave Background Component Separation by Parameter Estimation. ApJ, 641:665-682. Cerca con Google

60. Falk, T., Rangarajan, R., and Srednicki, M. (1993). The angular dependence of the three-point correlation function of the cosmic microwave background radiation as predicted by inflationary cosmologies. ApJ, 403:L1-L3. Cerca con Google

61. Fanti, C., Fanti, R., Dallacasa, D., Schilizzi, R. T., Spencer, R. E., and Stanghellini, C. (1995). Are compact steep-spectrum sources young? A&A, 302:317-+. Cerca con Google

62. [Finkbeiner, 2003] Finkbeiner, D. P. (2003). A Full-Sky H® Template for Microwave Foreground Prediction. ApJ, 146:407-415. Cerca con Google

63. Finkbeiner, D. P. (2004). Microwave Interstellar Medium Emission Observed by the Wilkinson Microwave Anisotropy Probe. ApJ, 614:186-193. Cerca con Google

64. Finkbeiner, D. P., Davis, M., and Schlegel, D. J. (1999). Extrapolation of Galactic Dust Emission at 100 Microns to Cosmic Microwave Background Radiation Frequencies Using FIRAS. ApJ, 524:867-886. Cerca con Google

65. Gangui, A., Lucchin, F., Matarrese, S., and Mollerach, S. (1994). The three-point correlation function of the cosmic microwave background in inflationary models. ApJ, 430:447-457. Cerca con Google

66. Geller, M. J. and Huchra, J. P. (1989). Mapping the universe. Science, 246:897-903. Cerca con Google

67. Giardino, G., Banday, A. J., Górski, K. M., Bennett, K., Jonas, J. L., and Tauber, J. (2002). Towards a model of full-sky Galactic synchrotron intensity and linear polarisation: A re-analysis of the Parkes data. A&A, 387:82-97. Cerca con Google

68. González-Nuevo, J., Argüeso, F., López-Caniego, M., Toffolatti, L., Sanz, J. L., Vielva, P., and Herranz, D. (2006). The Mexican hat wavelet family: application to point-source detection in cosmic microwave background maps. MNRAS, 369:1603-1610. Cerca con Google

69. Górski, K. M., Hivon, E., Banday, A. J., Wandelt, B. D., Hansen, F. K., Reinecke, M., and Bartelmann, M. (2005). HEALPix: A Framework for High- Resolution Discretization and Fast Analysis of Data Distributed on the Sphere. ApJ, 622:759-771. Cerca con Google

70. Granato, G. L., Lacey, C. G., Silva, L., Bressan, A., Baugh, C. M., Cole, S., and Frenk, C. S. (2000). The Infrared Side of Galaxy Formation. I. The Local Universe in the Semianalytical Framework. ApJ, 542:710-730. Cerca con Google

71. Guth, A. H. (1981). Inflationary universe: A possible solution to the horizon and flatness problems. Physical Review D, 23:347-356. Cerca con Google

72. Guth, A. H. and Pi, S.-Y. (1985). Quantum mechanics of the scalar field in the new inflationary universe. Physical Review D, 32:1899-1920. Cerca con Google

73. Haslam, C. G. T., Salter, C. J., Sto-el, H., and Wilson, W. E. (1982). A 408 MHz all-sky continuum survey. II - The atlas of contour maps. A&AS, 47:1-+. Cerca con Google

74. Herranz, D., Sanz, J. L., Barreiro, R. B., and Martínez- González, E. (2002a). Scale-adaptive Filters for the Detection/Separation of Compact Sources. ApJ, 580:610-625. Cerca con Google

75. Herranz, D., Sanz, J. L., Hobson, M. P., Barreiro, R. B., Diego, J. M., Martínez-González, E., and Lasenby, A. N. (2002b). Filtering techniques for the detection of Sunyaev-Zel'dovich clusters in multifrequency maps. MNRAS, Cerca con Google

76. 336:1057-1068. Cerca con Google

77. Hinshaw, G. et al. (2006). Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Temperature Analysis. submitted to ApJ(astro-ph/0603451). Cerca con Google

78. Hivon, E., Górski, K. M., Netter-eld, C. B., Crill, B. P., Prunet, S., and Hansen, F. (2002). MASTER of the Cosmic Microwave Background Anisotropy Power Spectrum: A Fast Method for Statistical Analysis of Large and Complex Cosmic Microwave Background Data Sets. ApJ, 567:2-17. Cerca con Google

79. Hobson, M. P., Jones, A. W., Lasenby, A. N., and Bouchet, F. R. (1998). Foreground separation methods for satellite observations of the cosmic microwave background. MNRAS, 300:1-29. Cerca con Google

80. Hobson, M. P. and Lasenby, A. N. (1998). The entropic prior for distributions with positive and negative values. MNRAS, 298:905-908. Cerca con Google

81. Howk, J. C. and Savage, B. D. (1999). Dust in the Ionized Medium of the Galaxy: GHRS Measurements of AL III and S III. ApJ, 517:746-766. Cerca con Google

82. Hu, W. (2001). Angular trispectrum of the cosmic microwave background. Physical Review D, 64(8):083005-+. Cerca con Google

83. Hu, W. and Dodelson, S. (2002). Cosmic Microwave Background Anisotropies. ARA&A, 40:171-216. Cerca con Google

84. Hu, W. and White, M. (1997). The Damping Tail of Cosmic Microwave Background Anisotropies. ApJ, 479:568-+. Cerca con Google

85. Hummel, E., Dahlem, M., van der Hulst, J. M., and Sukumar, S. (1991). The large-scale radio continuum structure of the edge-on spiral galaxy NGC 891. A&A, 246:10-20. Cerca con Google

86. Hyvarinen, A. (1999). Fast and Robust Fixed-Point Algorithms for Independent Component Analysis. IEEE Transactions on Neural Networks, 10:626- 634. Cerca con Google

87. Inoue, K. T. (2001). Exploring Topology of the Universe in the Cosmic Microwave Background. astro-ph/0103158. Cerca con Google

88. Knox, L. (1995). Determination of inflationary observables by cosmic microwave background anisotropy experiments. Physical Review D, 52:4307-4318. Cerca con Google

89. Kogut, A. (1999). Anomalous Microwave Emission. In de Oliveira-Costa, A. and Tegmark, M., editors, Microwave Foregrounds, volume 181 of Astronomical Society of the Paci-c Conference Series, pages 91-+. Cerca con Google

90. Kogut, A., Banday, A. J., Bennett, C. L., Gorski, K. M., Hinshaw, G., Smoot, G. F., and Wright, E. I. (1996). Microwave Emission at High Galactic Latitudes in the Four-Year DMR Sky Maps. ApJ, 464:L5+. Cerca con Google

91. Komatsu, E. (2003). Wilkinson Microwave Anisotropy Probe constraints on non-Gaussianity. New Astronomy Review, 47:797-803. Cerca con Google

92. Lagache, G. (2003). The large-scale anomalous microwave emission revisited by WMAP. A&A, 405:813-819. Cerca con Google

93. Leitch, E. M., Readhead, A. C. S., Pearson, T. J., and Myers, S. T. (1997). An Anomalous Component of Galactic Emission. ApJ, 486:L23+. Cerca con Google

94. Liguori, M., Yadav, A., Hansen, F. K., Komatsu, E., Matarrese, S., and Wandelt, B. (2007). Temperature and Polarization CMB Maps from Primordial non-Gaussianities of the Local Type. ArXiv e-prints, 708. Cerca con Google

95. López-Caniego, M., Herranz, D., González-Nuevo, J., Sanz, J. L., Barreiro, R. B., Vielva, P., Argüeso, F., and To-olatti, L. (2006). Comparison of filters for the detection of point sources in Planck simulations. MNRAS, 370:2047-2063. Cerca con Google

96. Magliocchetti, M., Maddox, S. J., Wall, J. V., Benn, C. R., and Cotter, G. (2000). The redshift distribution of FIRST radio sources at 1mJy. MNRAS, 318:1047-1067. Cerca con Google

97. Maino, D., Farusi, A., Baccigalupi, C., Perrotta, F., Banday, A. J., Bedini, L., Burigana, C., De Zotti, G., Górski, K. M., and Salerno, E. (2002). Allsky astrophysical component separation with Fast Independent Component Analysis (FASTICA). MNRAS, 334:53-68. Cerca con Google

98. Massardi, M. (2006). Realistic point source maps at Planck frequencies. In CMB and Physics of the Early Universe. Cerca con Google

99. Mather, J. C., Fixsen, D. J., Shafer, R. A., Mosier, C., and Wilkinson, D. T. (1999). Calibrator Design for the COBE Far-Infrared Absolute Spectrophotometer (FIRAS). ApJ, 512:511-520. Cerca con Google

100. McCullough, P. R., Gaustad, J. E., Rosing, W., and Van Buren, D. (1999). Implications of H® Observations for Studies of the CMB. In de Oliveira-Costa, A. and Tegmark, M., editors, Microwave Foregrounds, volume 181 of Astronomical Society of the Paci-c Conference Series, pages 253-+. Cerca con Google

101. Melin, J.-B., Bartlett, J. G., and Delabrouille, J. (2006). Catalog extraction in SZ cluster surveys: a matched filter approach. A&A, 459:341-352. Cerca con Google

102. Metcalf, R. B. and Silk, J. (1997). Gravitational Magnification of the Cosmic Microwave Background. ApJ, 489:1-+. Cerca con Google

103. Moscardini, L., Coles, P., Lucchin, F., and Matarrese, S. (1998). Modelling galaxy clustering at high redshift. MNRAS, 299:95-110. Cerca con Google

104. Mukherjee, P., Jones, A. W., Kneissl, R., and Lasenby, A. N. (2001). On dust-correlated Galactic emission in the Tenerife data. MNRAS, 320:224- 234. Cerca con Google

105. Nagai, D. (2006). The Impact of Galaxy Formation on the Sunyaev- Zel'dovich Effect of Galaxy Clusters. ApJ, 650:538-549. Cerca con Google

106. Page, L. et al. (2006). Three Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Polarization Analysis. submitted to ApJ(astroph/0603450). Cerca con Google

107. Paladini, R., De Zotti, G., Davies, R. D., and Giard, M. (2005). Analysis of the thin layer of Galactic warm ionized gas in the range. MNRAS, 360:1545-1552. Cerca con Google

108. Pandey, B. and Bharadwaj, S. (2005). A twodimensional analysis of percolation and filamentarity in the Sloan Digital Sky Survey Data Release One. MNRAS, 357:1068-1076. Cerca con Google

109. Peebles, P. J. E. (1979a). The mean mass density estimated from the Kirshner, Oemler, Schechter galaxy redshift sample. AJ, 84:730-734. Cerca con Google

110. Peebles, P. J. E. (1979b). The problems of cosmology. In Scientific research with the Space Telescope (IAU Colloq. No. 54), p. 295 - 312, pages 295-312. Cerca con Google

111. Pimbblet, K. A., Drinkwater, M. J., and Hawkrigg, M. C. (2004). Intercluster filaments of galaxies programme: abundance and distribution of filaments in the 2dFGRS catalogue. MNRAS, 354:L61-L65. Cerca con Google

112. Plionis, M., Benoist, C., Maurogordato, S., Ferrari, C., and Basilakos, S. (2003). Galaxy Alignments as a Probe of the Dynamical State of Clusters. ApJ, 594:144-153. Cerca con Google

113. Polatidis, A., Wilkinson, P. N., Xu, W., Readhead, A. C. S., Pearson, T. J., Taylor, G. B., and Vermeulen, R. C. (1999). Compact Symmetric Objects in a complete flux density limited sample. New Astronomy Review, 43:657- Cerca con Google

114. 661. Cerca con Google

115. Polnarev, A. G. (1985). Polarization and Anisotropy Induced in the Microwave Background by Cosmological Gravitational Waves. Soviet Astronomy, 29:607-+. Cerca con Google

116. Ponthieu, N. et al. (2005). Temperature and polarization angular power spectra of Galactic dust radiation at 353 GHz as measured by Archeops. A&A, 444:327-336. Cerca con Google

117. Porter, S. C. and Raychaudhury, S. (2005). The Pisces-Cetus supercluster: a remarkable filament of galaxies in the 2dF Galaxy Redshift and Sloan Digital Sky surveys. MNRAS, 364:1387-1396. Cerca con Google

118. Press, W. H. and Schechter, P. (1974). Formation of Galaxies and Clusters of Galaxies by Self-Similar Gravitational Condensation. ApJ, 187:425-438. Cerca con Google

119. Readhead, A. C. S., Taylor, G. B., Xu, W., Pearson, T. J., Wilkinson, P. N., and Polatidis, A. G. (1996). The Statistics and Ages of Compact Symmetric Objects. ApJ, 460:612-+. Cerca con Google

120. Rees, M. J. and Sciama, D. W. (1968). Larger scale Density Inhomogeneities in the Universe. Nat, 217:511-+. Cerca con Google

121. Reich, P. and Reich, W. (1988). A map of spectral indices of the Galactic radio continuum emission between 408 MHz and 1420 MHz for the entire northern sky. A&AS, 74:7-20. Cerca con Google

122. Rosati, P., Borgani, S., and Norman, C. (2002). The Evolution of X-ray Clusters of Galaxies. ARA&A, 40:539-577. Cerca con Google

123. Sachs, R. K. and Wolfe, A. M. (1967). Perturbations of a Cosmological Model and Angular Variations of the Microwave Background. ApJ, 147:73-+. Cerca con Google

124. Sanz, J. L., Herranz, D., and Martínez-Gónzalez, E. (2001). Optimal Detection of Sources on a Homogeneous and Isotropic Background. ApJ, 552:484- 492. Cerca con Google

125. Schlegel, D. J., Finkbeiner, D. P., and Davis, M. (1998). Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds. ApJ, 500:525-+. Cerca con Google

126. Seljak, U. (1996). Rees-Sciama E-ect in a Cold Dark Matter Universe. ApJ, 460:549-+. Cerca con Google

127. Silk, J. (1968). Cosmic Black-Body Radiation and Galaxy Formation. ApJ, 151:459-+. Cerca con Google

128. Skilling, J., editor (1989). Maximum entropy and bayesian methods : 8 : 1988. Cerca con Google

129. Smoot, G. F. (1998). Galactic Free-free and H-alpha Emission. ArXiv Astrophysics e-prints. Cerca con Google

130. Snellen, I. A. G., Schilizzi, R. T., Miley, G. K., de Bruyn, A. G., Bremer, M. N., and Röttgering, H. J. A. (2000). On the evolution of young radio-loud AGN. MNRAS, 319:445-456. Cerca con Google

131. Spergel, D. N. et al. (2006). Wilkinson Microwave Anisotropy Probe (WMAP) Three Year Results: Implications for Cosmology. submitted to ApJ(astro-ph/0603449). Cerca con Google

132. Stolyarov, V., Hobson, M. P., Ashdown, M. A. J., and Lasenby, A. N. (2002). All-sky component separation for the Planck mission. MNRAS, 336:97- 111. Cerca con Google

133. Stolyarov, V., Hobson, M. P., Lasenby, A. N., and Barreiro, R. B. (2005). All-sky component separation in the presence of anisotropic noise and dust temperature variations. MNRAS, 357:145-155. Cerca con Google

134. Sunyaev, R. A. and Zeldovich, Y. B. (1972). The Observations of Relic Radiation as a Test of the Nature of X-Ray Radiation from the Clusters of Galaxies. Comments on Astrophysics and Space Physics, 4:173-+. Cerca con Google

135. Takada, M. and Futamase, T. (2001). Detectability of the Gravitational Lensing Effect on the Two-Point Correlation Function of Hot Spots in Cosmic Microwave Background Maps. ApJ, 546:620-634. Cerca con Google

136. Taylor, G. B., Marr, J. M., Pearson, T. J., and Readhead, A. C. S. (2000). Kinematic Age Estimates for Four Compact Symmetric Objects from the Pearson-Readhead Survey. ApJ, 541:112-119. Cerca con Google

137. Tegmark, M. and de Oliveira-Costa, A. (1998). Removing Point Sources from Cosmic Microwave Background Maps. ApJ, 500:L83+. Cerca con Google

138. Tegmark, M. and Efstathiou, G. (1996). A method for subtracting foregrounds from multifrequency CMB sky maps**. MNRAS, 281:1297- 1314. Cerca con Google

139. Tegmark, M., Eisenstein, D. J., Hu, W., and de Oliveira-Costa, A. (2000). Foregrounds and Forecasts for the Cosmic Microwave Background. ApJ, 530:133-165. Cerca con Google

140. The Planck Collaboration (2005). The Scientific Programme of Planck. ESA-SCI(2005)1 (astro-ph/0604069). Cerca con Google

141. Tschager, W., Schilizzi, R. T., Röttgering, H. J. A., Snellen, I. A. G., and Miley, G. K. (2000). The GHz-peaked spectrum radio galaxy 2021+614: detection of slow motion in a compact symmetric object. A&A, 360:887-895. Cerca con Google

142. Urry, C. M. and Padovani, P. (1995). Unified Schemes for Radio-Loud Active Galactic Nuclei. PASP, 107:803-+. Cerca con Google

143. Valls-Gabaud, D. (1998). Cosmological applications of H-alpha surveys. Publications of the Astronomical Society of Australia, 15:111-17. Cerca con Google

144. Verde, L., Wang, L., Heavens, A. F., and Kamionkowski, M. (2000). Large-scale structure, the cosmic microwave background and primordial non-Gaussianity. MNRAS, 313:141-147. Cerca con Google

145. Viana, P. T. P. and Liddle, A. R. (1996). The cluster abundance in flat and open cosmologies. MNRAS, 281:323-+. Cerca con Google

146. Voit, G. M. (2005). Tracing cosmic evolution with clusters of galaxies. Reviews of Modern Physics, 77:207-258. Cerca con Google

147. Watson, R. A., Rebolo, R., Rubiño-Martín, J. A., Hildebrandt, S., Gutiérrez, C. M., Fernández-Cerezo, S., Hoyland, R. J., and Battistelli, E. S. (2005). Detection of Anomalous Microwave Emission in the Perseus Molecular Cloud with the COSMOSOMAS Experiment. ApJ, 624:L89-L92. Cerca con Google

148. White, M., Hernquist, L., and Springel, V. (2002). Simulating the Sunyaev-Zeldovich Effect(s): Including Radiative Cooling and Energy Injection by Galactic Winds. ApJ, 579:16-22. Cerca con Google

149. White, S. D. M., Efstathiou, G., and Frenk, C. S. (1993). The amplitude of mass fluctuations in the universe. MNRAS, 262:1023-1028. Cerca con Google

150. Winitzki, S. and Kosowsky, A. (1998). Minkowski functional description of microwave background Gaussianity. New Astronomy, 3:75- 100. Cerca con Google

151. Zaldarriaga, M. (2000). Lensing of the CMB: Non-Gaussian aspects. Physical Review D, 62(6):063510-+. Cerca con Google

152. Zaldarriaga, M., Spergel, D. N., and Seljak, U. (1997). Microwave Background Constraints on Cosmological Parameters. ApJ, 488:1-+. Cerca con Google

153. Zavarise, P. (2007). Component separation for cosmic microwave background experiments. Master's thesis, University of Padova, Italy. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record