Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Costacurta, Stefano (2008) Mesoporous films obtained by supramolecular self-assembly and their characterisation by advanced techniques. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
19Mb

Abstract (inglese)

Mesoporous films are characterised by the presence of ordered porosity in the 2 to 50 nm range. These systems are extremely interesting from a technological viewpoint due to the very high specific surface area (on the order of 1000 m^2/g) and the possibility to tune important parameters such as chemical composition, pore size and shape, pore accessibility. This doctorate work was aimed at the study on mesoporous thin films, a goal that has been tackled following two directions. The first goal was to promote a basic study on the synthetic and processing parameters through which mesoporous films are obtained: for example, using different precursors in order to vary the chemical composition of the films and modify physical parameters such as pore size and shape. The second direction followed in this work was to pursue an explorative study regarding applications of mesoporous coatings, for example for hierarchical multiscale porosity materials and in patterning of mesoporous thin films. Whilst dealing with these subjects, advanced characterisation techniques using synchrotron radiation were developed for the basic study of mesoporous films.


Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Guglielmi, Massimo
Correlatore:Innocenzi, Plinio
Dottorato (corsi e scuole):Ciclo 20 > Scuole per il 20simo ciclo > SCIENZA E INGEGNERIA DEI MATERIALI
Data di deposito della tesi:Gennaio 2008
Anno di Pubblicazione:Gennaio 2008
Parole chiave (italiano / inglese):Mesoporous, mesostructured, sol-gel, supramolecular, self-assembly
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/22 Scienza e tecnologia dei materiali
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria Meccanica
Codice ID:211
Depositato il:03 Ott 2008
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] G. Stix. Little big science. Scientific American, 2001, 285(3), 32–38. Cerca con Google

[2] G. A. Ozin, A. C. Arsenault. Nanochemistry. A chemical approach to nanomaterials. The Royal Society of Chemistry, Cambridge, UK, 2005. Cerca con Google

[3] D. M. Eigler, E. K. Schweizer. Positioning single atoms with a scanning tunnelling microscope. Nature, 1990, 344, 524–526. Cerca con Google

[4] Avaliable online at http://www.zyvex.com/nanotech/feynman.html (accessed December 2007). Vai! Cerca con Google

[5] http://www.foresight.org/nanodot/?p=1188 (December 2007). Vai! Cerca con Google

[6] N. M. Pugno. Space elevator: out of order? Nano Today, 2007, 2, 44–47. Cerca con Google

[7] C. A. Haberzettl. Nanomedicine: destination or journey? Nanotechnology, 2002, 13, R9–R13. Cerca con Google

[8] http://www.nanotech-now.com/predictions.htm (accessed December 2007). Vai! Cerca con Google

[9] Nanoscience and nanotechnologies: opportunities and uncertainties. Technical report, Royal Society and Royal Academy of Engineering, 2004. URL: http://www.nanotec.org.uk/finalReport.htm (accessed December 2007). Vai! Cerca con Google

[10] J. Y. Cheng, C. A. Ross, H. I. Smith, E. L. Thomas. Templated self-assembly of block copolymers: Top-down helps bottom-up. Adv. Mater., 2006, 18, 2505–2521. Cerca con Google

[11] G. A. Ozin, S. M. Yang. The race for the photonic chip: colloidal crystal assembly in silicon wafers. Adv. Funct. Mater., 2001, 11, 95–104. Cerca con Google

[12] http://en.wikipedia.org/wiki/Self-assembly (contributed by the Author, accessed December 2007). Vai! Cerca con Google

[13] Special issue on self-assembly. Proc. Natl. Acad. Sci U.S.A., 2002, 99(8). Cerca con Google

[14] G. M. Whitesides, B. Grzybowski. Self-assembly at all scales. Science, 2005, 295, 2418–2421. Cerca con Google

[15] G. M. Whitesides, M. Boncheva. Beyond molecules: Self-assembly of mesoscopic and macroscopic components. Proc. Natl. Acad. Sci U.S.A., 2002, 99, 4769–4774. Cerca con Google

[16] H. R. Horton, L. A. Moran, R. S. Ochs, J. D. Rawn, K. G. Scrimgeour. Principles of biochemistry. Prentice-Hall, Englewood Cliffs, NJ, 1993. Cerca con Google

[17] P. A. Kralchevsky, K. Nagayama. Capillary forces between colloidal particles. Langmuir, 1994, 10, 23–36. Cerca con Google

[18] J.-M. Lehn. Toward self-organization and complex matter. Science, 2005, 295, 2400–2403. Cerca con Google

[19] S. Förster, T. Plantenberg. From self-organizing polymers to nanohybrid and biomaterials. Angew. Chem. Int. Ed. Engl., 2002, 41, 688–714. Cerca con Google

[20] S. Mann. Biomineralization. Principles and concepts in bioinorganic materials chemistry. Oxford University Press, Oxford, 2001. Cerca con Google

[21] J. N. Israelachvili. Intermolecular and surface forces. Academic Press Ltd, London, 2nd edition, 1998. Cerca con Google

[22] G. Soler-Illia, C. Sanchez, B. Lebeau, J. Patarin. Chemical strategies to design textured materials: From microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem. Rev., 2002, 102, 4093–4138. Cerca con Google

[23] C. J. Brinker, G. W. Scherer. Sol-gel science: The physics and chemistry of sol-gel processing. Academic Press, San Diego, 1992. Cerca con Google

[24] J. D. Wright, N. A. J. M. Sommerdijk. Sol-gel materials: Chemistry and applications. CRC Press, Boca Raton, 2001. Cerca con Google

[25] W. Stober, A. Fink, E. Bohn. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci., 1968, 26, 62–69. Cerca con Google

[26] E. L. Crepaldi, G. Soler-Illia, D. Grosso, F. Cagnol, F. Ribot, C. Sanchez. Controlled formation of highly organized mesoporous titania thin films: from mesostructured hybrids to mesoporous anatase TiO2. J. Am. Chem. Soc., 2003, 125, 9770–9786. Cerca con Google

[27] A. Vioux. Nonhydrolytic sol-gel routes to oxides. Chem. Mater., 1997, 9, 2292– 2299. Cerca con Google

[28] T. Cassagneau, F. Caruso. Oligosilsesquioxanes as versatile building blocks for the preparation of self-assembled thin films. J. Am. Chem. Soc., 2002, 124, 8172–8180. Cerca con Google

[29] S. Lücke, K. Stoppek-Langner, J. S. Murday, R. E. Palmer, R. B. Jackman, M. Petty. Polyhedral oligosilsesquioxanes (POSS)-building blocks for the development of nano-structured materials. Appl. Surf. Sci., 1999, 144-145, 713–715. Cerca con Google

[30] G. Soler-Illia, E. Scolan, A. Louis, P.-A. Albouy, C. Sanchez. Design of mesostructured titanium oxo based hybrid organic-inorganic networks. New J. Chem., 2001, 25, 156–165. Cerca con Google

[31] L. L. Hench, J. K. West. The sol-gel process. Chem. Rev., 1990, 90, 33–72. Cerca con Google

[32] F. Schüth, K. S. W. Sing, J. Weitkamp, editors. Handbook of porous solids. Wiley- VCH Verlag GmbH, Weinheim, Germany, 2002. Cerca con Google

[33] A. Sayari, P. Liu. Non-silica periodic mesostructured materials: recent progress. Microp. Mater., 1997, 12, 149–177. Cerca con Google

[34] J. Roquerol, D. Avnir, C. W. Fairbridge, D. H. Everett, J. H. Haynes, N. Pernicone, J. D. F. Ramsay, K. S. W. Sing, K. K. Unger. Recommendations for the characterization of porous solids. Pure and Appl. Chem., 1994, 66, 1739–1758. Cerca con Google

[35] P. Behrens, G. D. Stucky. Ordered molecular arrays as templates: A new approach to the synthesis of mesoporous materials. Angew. Chem. Int. Ed. Engl., 1993, 32, 696–699. Cerca con Google

[36] S. Beck, J, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T.-W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins, J. L. Schlenker. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc., 1992, 114, 10834–10843. Cerca con Google

[37] C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, S. Beck, J. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 1992, 359, 710–711. Cerca con Google

[38] J. C. Vartuli, K. D. Schmitt, C. T. Kresge, W. J. Roth, M. E. Leonowicz, S. B. McCullen, S. D. Hellring, S. Beck, J, J. L. Schlenker. Effect of surfactant/silica molar ratios on the formation of mesoporous molecular sieves: Inorganic mimicry of surfactant liquid-crystal phases and mechanistic implications. Chem. Mater., 1994, Cerca con Google

6, 2317–2316. Cerca con Google

[39] J. C. Vartuli, C. T. Kresge, M. E. Leonowicz, A. S. Chu, S. B. McCullen, I. D. Johnson, E. W. Sheppard. Synthesis of mesoporous materials: Liquid-crystal templating versus intercalation of layered silicates. Chem. Mater., 1994, 6, 2070–2077. Cerca con Google

[40] A. Firouzi, D. Kumar, L. M. Bull, T. Besier, R. Sieger, Q. Huo, S. A. Walker, J. A. Zasadzinski, C. Glinka, J. Nicol, D. I. Margolese, G. D. Stucky, B. F. Chmelka. Cooperative organization of inorganic surfactant and biomimetic assemblies. Science, 1995, 267, 1138–1143. Cerca con Google

[41] A. Monnier, F. Schüth, Q. Huo, D. Kumar, D. I. Margolese, R. S. Maxwell, G. D. Stucky, M. Krishnamurti, P. M. Petroff, A. Firouzi, M. Janicke, B. F. Chmelka. Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures. Science, 1993, 261, 1299–1303. Cerca con Google

[42] G. D. Stucky, A. Monnier, F. Schüth, Q. Huo, D. I. Margolese, D. Kumar, M. Krishnamurti, P. M. Petroff, A. Firouzi, M. Janicke, B. F. Chmelka. Molecular and atomic arrays in nano-and mesoporous materials synthesis. Mol. Cryst. Liq. Cryst., 1994, 240, 187–200. Cerca con Google

[43] O. Regev. Nucleation events during the synthesis of mesoporous materials using liquid crystalline templating. Langmuir, 1996, 12, 4940–4944. Cerca con Google

[44] S. Mann, S. L. Burkett, S. A. Davis, C. E. Fowler, N. H. Mendelson, S. D. Sims, D.Walsh, N. T. Whilton. Sol-gel synthesis of organized matter. Chem. Mater., 1997, 9, 2300–2310. Cerca con Google

[45] Q. Huo, D. I. Margolese, U. Ciesla, D. G. Demuth, P. Feng, T. E. Gier, P. Sieger, A. Firouzi, B. F. Chmelka, F. Schüth, G. D. Stucky. Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays. Chem. Mater., 1994, 6, 1176–1191. Cerca con Google

[46] A. Firouzi, F. Atef, A. G. Oertli, G. D. Stucky, B. F. Chmelka. Alkaline lyotropic silicate-surfactant liquid crystals. J. Am. Chem. Soc., 1997, 119, 3596–3610. Cerca con Google

[47] J. N. Israelachvili, D. J. Mitchell, B.W. Ninham. Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J. Chem. Soc. Faraday Trans., 1976, 72, 1525–1568. Cerca con Google

[48] U. Hendriksson, E. S. Blackmore, G. J. T. Tiddy, O. Soderman. Intermediate liquid crystalline phases in the binary system C16TACl-H2O: An NMR and low-angle Xray diffraction study. J. Phys. Chem., 1992, 96, 3894–3902. Cerca con Google

[49] G. J. T. Tiddy. Surfactant-water liquid crystal phases. Phys. Rep., 1980, 57, 1–46. Cerca con Google

[50] Q. Huo, R. Leon, P. M. Petroff, G. D. Stucky. Mesostructure design with gemini surfactants: supercage formation in a three-dimensional hexagonal array. Science, 1995, 268, 1324–1327. Cerca con Google

[51] Q. Huo, D. I. Margolese, G. D. Stucky. Surfactant control of phases in the synthesis of mesoporous silica-based materials. Chem. Mater., 1996, 8, 1147–1160. Cerca con Google

[52] C. C. Landry, S. H. Tolbert, K. W. Gallis, A. Monnier, G. D. Stucky, P. Norby, H. J. C. Phase transformations in mesostructured silica/surfactant composites. Mechanisms for change and applications to materials synthesis. Chem. Mater., 2001, 13, 1600–1608. Cerca con Google

[53] S. H. Tolbert, C. C. Landry, G. D. Stucky, B. F. Chmelka, P. Norby, J. C. Hanson, A. Monnier. Phase transitions in mesostructured silica/surfactant composites: Surfactant packing and the role of charge density matching. Chem. Mater., 2001, 13, 2247–2256. Cerca con Google

[54] J. M. Kim, Y. Sakamoto, Y. K. Hwang, Y.-U. Kwon, O. Terasaki, S.-E. Park, G. D. Stucky. Structural design of mesoporous silica by micelle-packing control using blends of amphiphilic block copolymers. J. Phys. Chem. B, 2002, 106, 2252–2258. Cerca con Google

[55] P. T. Tanev, T. J. Pinnavaia. A neutral templating route to mesoporous molecular sieves. Science, 1995, 267, 865–867. Cerca con Google

[56] S. A. Bagshaw, E. Prouzet, T. J. Pinnavaia. Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants. Science, 1995, 269, 1242–1244. Cerca con Google

[57] G. S. Attard, J. C. Glyde, C. G. Göltner. Liquid-crystalline phases as templates for the synthesis of mesoporous silica. Nature, 1995, 378, 366–368. Cerca con Google

[58] G. Larsen, G. Lotero, M. Marquez. Amine dendrimers as templates for amorphous silica. J. Phys. Chem. B, 2000, 104, 4840–4843. Cerca con Google

[59] V. L. Colvin. From opals to optics: Colloidal photonic crystals. MRS Bulletin, 2001, 637–641. Cerca con Google

[60] A. Imhof, D. J. Pine. Ordered macroporous materials by emulsion templating. Nature, 1997, 389, 948–951. Cerca con Google

[61] J. E. G. J. Wijnhoven, W. L. Vos. Preparation of photonic crystals made of air spheres in titania. Science, 1998, 281, 802–804. Cerca con Google

[62] A. Shimojima, N. Umeda, K. Kuroda. Synthesis of layered inorganicorganic nanocomposite films from mono-, di-, and trimethoxy(alkyl)silanetetramethoxysilane systems. Chem. Mater., 2001, 13, 3610–3616. Cerca con Google

[63] G. S. Attard, C. G. Göltner, J. M. Corker, S. Henke, R. H. Templer. Liquid-crystal templates for nanostructured metals. Angew. Chem. Int. Ed. Engl., 1997, 36, 1315– 1317. Cerca con Google

[64] G. S. Attard, P. N. Bartlett, N. R. B. Coleman, J. M. Elliott, J. R. Owen, J. Wang. Mesoporous platinum films from lyotropic liquid crystalline phases. Science, 1997, 278, 838–840. Cerca con Google

[65] P. V. Braun, P. Osenar, V. Tohver, S. B. Kennedy, S. I. Stupp. Nanostructure templating in inorganic solids with organic lyotropic liquid crystals. J. Am. Chem. Soc., 1999, 121, 7302–7309. Cerca con Google

[66] C. G. Göltner, M. Antonietti. Mesoporous materials by templating of liquid crystalline phases. Adv. Mater., 1997, 9, 431–436. Cerca con Google

[67] A.-V. Ruzette, A. L. Leibler. Block copolymers in tomorrow’s plastics. Nature Materials, 2005, 4, 19–31. Cerca con Google

[68] R. Jerome, J. Tong. Recent developments in anionic polymerization. Curr. Opinion Solid State Mater. Sci, 1998, 3, 573–578. Cerca con Google

[69] G. Soler-Illia, E. L. Crepaldi, D. Grosso, C. Sanchez. Block copolymer-templated mesoporous oxides. Curr. Opinion Colloid Interf. Sci., 2003, 8, 109–126. Cerca con Google

[70] A. Thomas, H. Schlaad, B. Smarsly, M. Antonietti. Replication of lyotropic block copolymer mesophases into porous silica by nanocasting: Learning about finer details of polymer self-assembly. Langmuir, 2003, 19, 4455–4459. Cerca con Google

[71] F. S. Bates, G. H. Fredrickson. Block copolymers-designer soft materials. Physics Today, 1999, 32–38. Cerca con Google

[72] http://www.basf.com/performancechemical/bcperfphysical_chemistry.html (accessed December 2007). Vai! Cerca con Google

[73] P. F. W. Simon, R. Ulrich, H. W. Spiess, U. Wiesner. Block copolymer-ceramic hybrid materials from organically modified ceramic precursors. Chem. Mater., 2001, 13, 3464–3486. Cerca con Google

[74] R. Ivanova, B. Lindman, P. Alexandridis. Modification of the lyotropic liquid crystalline microstructure of amphiphilic block copolymers in the presence of cosolvents. Adv. Colloid Interf. Sci., 2001, 89-90, 351–382. Cerca con Google

[75] P. Alexandridis, U. Olsson, B. Lindman. A record nine different phases (four cubic, two hexagonal, and one lamellar lyotropic liquid crystalline and two micellar solutions) in a ternary isothermal system of an amphiphilic block copolymer and selective solvents (water and oil). Langmuir, 1998, 14, 2627–2638. Cerca con Google

[76] P. Holmqvist, P. Alexandridis, B. Lindman. Modification of the microstructure in poloxamer block copolymer-water-“oil” systems by varying the “oil” type. Macromolecules, 1997, 30, 6788–6797. Cerca con Google

[77] D. Zhao, J. Feng, Q. Huo, N. A. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 1998, 279, 548–552. Cerca con Google

[78] D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, G. D. Stucky. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc., 1998, 120, 6024–6036. Cerca con Google

[79] F. Tiberg, J. Brinck, L. Grant. Adsorption and surface-induced self-assembly of surfactants at the solid-aqueous interface. Curr. Opinion Colloid Interf. Sci., 2000, 4, 411–419. Cerca con Google

[80] N. A. Melosh, P. Lipic, F. S. Bates, F. Wudl, G. D. Stucky, G. H. Fredrickson, B. F. Chmelka. Molecular and mesoscopic structures of transparent block copolymersilica monoliths. Macromolecules, 1999, 32, 4332–4342. Cerca con Google

[81] C. G. Göltner. Non-ionic templating of silica: Formation mechanism and structure. Curr. Opinion Colloid Interf. Sci., 2002, 7, 173–178. Cerca con Google

[82] C. G. Göltner, B. Smarsly, B. Berton, M. Antonietti. On the microporous nature of mesoporous molecular sieves. Chem. Mater., 2001, 13, 1617–1624. Cerca con Google

[83] M. Imperor-Clerc, P. Davidson, A. Davidson. Existence of a corona around of the mesopores of silica-based SBA-15 materials templated by triblock copolymers. J. Am. Chem. Soc., 2000, 122, 11925–11933. Cerca con Google

[84] S. M. De Paul, J. W. Zwanziger, R. Ulrich, U. Wiesner, H. W. Spiess. Structure, mobility, and interface characterization of self-organized organic-inorganic hybrid materials by solid-state NMR. J. Am. Chem. Soc., 1999, 121, 5727–5736. Cerca con Google

[85] C. Boissière, A. Larbot, C. Bourgaux, E. Prouzet, C. A. Bunton. A study of the assembly mechanism of the mesoporous MSU-X silica two-step mechanism. Chem. Mater., 2001, 13(3580-3586). Cerca con Google

[86] B. Smarsly, S. Polarz, M. Antonietti. Preparation of porous silica materials via sol-gel nanocasting of nonionic surfactants: A mechanicistic study on the selfaggregation of amphiphilies for the precise prediction of the mesopore size. J. Phys. Chem. B, 2001, 105, 10473–10483. Cerca con Google

[87] P. C. A. Alberius, K. L. Frindell, R. C. Hayward, E. J. Kramer, G. D. Stucky, B. F. Chmelka. General predictive syntheses of cubic, hexagonal, and lamellar silica and titania mesostructured thin films. Chem. Mater., 2002, 14, 3284–3294. Cerca con Google

[88] A. C. Voegtlin, F. Ruch, J. L. Guth, J. Patarin, L. Huve. F- mediated synthesis of mesoporous silica with ionic- and non-ionic surfactants. A new templating pathway. Microp. Mater., 1997, 9, 95–105. Cerca con Google

[89] J. M. Kim, Y.-J. Han, B. F. Chmelka, G. D. Stucky. One-step synthesis of ordered mesocomposites with non-ionic amphiphilic block copolymers: implications of isoelectric point, hydrolisis rate and fluoride. Chem. Commun., 2000, 2437–2438. Cerca con Google

[90] A. S. Brown, S. A. Holt, T. Dam, M. Trau, J. W. White. Mesoporous silicate film growth at the air-water interface – Direct observation by X-ray reflectivity. Langmuir, 1997, 13, 6363–6365. Cerca con Google

[91] S. H. Tolbert, T. E. Schaffer, J. Feng, P. K. Hansma, G. D. Stucky. A new phase of oriented mesoporous silicate thin films. Chem. Mater., 1997, 9, 1962–1967. Cerca con Google

[92] P. Yang, A. Kuperman, N. Coombs, S. Mamiche-Afara, G. A. Ozin. Synthesis of oriented films of mesoporous silica on mica. Nature, 1996, 379, 703–705. Cerca con Google

[93] M. Ogawa. Formation of novel oriented transparent films of layered silica-surfactant nanocomposites. J. Am. Chem. Soc., 1994, 116, 7941–7942. Cerca con Google

[94] Y. Lu, R. Ganguli, C. A. Drewien, M. T. Anderson, C. J. Brinker, W. Gong, Y. Guo, H. Soyez, B. Dunn, M. H. Huang, J. I. Zink. Continuous formation of supported cubic and hexagonal mesoporous films by sol-gel dip-coating. Nature, 1997, 389, 364–368. Cerca con Google

[95] C. J. Brinker, Y. Lu, A. Sellinger, H. Fan. Evaporation-induced self-assembly: Nanostructures made easy. Adv. Mater., 1999, 11, 579–585. Cerca con Google

[96] F. Schüth. Non-siliceous mesostructured and mesoporous materials. Chem. Mater., 2001, 13, 3184–3195. Cerca con Google

[97] C. J. Brinker, D. R. Dunphy. Morphological control of surfactant-templated metal oxide films. Curr. Opinion Colloid Interf. Sci., 2006, 11, 126–132. Cerca con Google

[98] H. Fan, Y. Lu, A. Stump, S. T. Reed, T. Baer, R. Schunk, V. Perez-Luna, G. P. López, C. J. Brinker. Rapid prototyping of patterned functional nanostructures. Nature, 2000, 405, 56–60. Cerca con Google

[99] E. Ruiz-Hernández, A. López-Noriega, D. Arcos, I. Izquierdo-Barba, O. Terasaki, M. Vallet-Regí. Aerosol-assisted synthesis of magnetic mesoporous silica spheres for drug targeting. Chem. Mater., 2007, ASAP. Cerca con Google

[100] D. Grosso, F. Cagnol, G. Soler-Illia, E. L. Crepaldi, H. Amenitsch, A. Brunet- Bruneau, A. Bourgeois, C. Sanchez. Fundamentals of mesostructuring through evaporation-induced self-assembly. Adv. Funct. Mater., 2004, 14, 309–322. Cerca con Google

[101] N. Baccile, D. Grosso, C. Sanchez. Aerosol generated mesoporous silica particles. J. Mater. Chem., 2003, 13, 3011–3016. Cerca con Google

[102] D. Grosso, G. Soler-Illia, E. L. Crepaldi, B. Charleux, C. Sanchez. Nanocrystalline transition-metal oxide spheres with controlled multi-scale porosity. Adv. Funct. Mater., 2003, 13, 37–42. Cerca con Google

[103] D. Grosso, C. Boissière, L. Nicole, C. Sanchez. Preparation, treatment and characterisation of nanocrystalline mesoporous ordered layers. J. Sol-Gel. Sci. Technol., 2006, 40, 141–154. Cerca con Google

[104] T. Brezesinski, M. Groenewolt, A. Gibaud, N. Pinna, M. Antonietti, B. Smarsly. Evaporation-induced self-assembly (EISA) at its limit: ultrathin, crystalline patterns by templating of micellar monolayers. Adv. Mater., 2006, 18, 2260–2263. Cerca con Google

[105] D. Grosso, C. Boissiäre, B. Smarsly, T. Brezesinski, N. Pinna, P.-A. Albouy, H. Amenitsch, M. Antonietti, C. Sanchez. Periodically ordered nanoscale islands and mesoporous films composed of nanocrystalline multimetallic oxides. Nature Materials, 2004, 3, 787–792. Cerca con Google

[106] G. Cortial, M. Siutkowski, F. Goettmann, A. Moores, C. Boissiäre, D. Grosso, P. Le Floch, C. Sanchez. Metallic nanoparticles hosted in mesoporous oxide thin films for catalytic applications. Small, 2006, 2, 1042–1045. Cerca con Google

[107] S. Besson, T. Gacoin, C. Jacquiod, C. Ricolleau, J.-P. Boilot. 3D periodic arrays of nanoparticles inside mesoporous silica films. Mat. Res. Soc. Symp. Proc., 2002, 707. Cerca con Google

[108] S. Besson, T. Gacoin, C. Ricolleau, C. Jacquiod, J.-P. Boilot. 3D quantum dot lattice inside mesoporous silica films. Nano Lett., 2002, 2, 409–414. Cerca con Google

[109] S. P. Naik, T. Yokoi, W. Fan, Y. Sasaki, T.-C. Wei, H. W. Hillhouse, T. Okubo. Versatile fabrication of distorted cubic mesoporous silica films using CTAB together with a hydrophilic organic additive. J. Phys. Chem. B, 2006, 110, 9751–9754. Cerca con Google

[110] L. Nicole, C. Boissiäre, D. Grosso, A. Quach, C. Sanchez. Mesostructured hybrid organic-inorganic thin films. J. Mater. Chem., 2005, 15, 3598–3627. Cerca con Google

[111] L. G. Hubert-Pfalzgraf. Toward molecular design of oxide precursors for advanced materials. Cerca con Google

[112] J. Livage, M. Henry, C. Sanchez. Sol-gel chemistry of transition metal oxides. Prog. Solid State Chem., 1988, 18, 259–341. Cerca con Google

[113] E. L. Crepaldi, G. Soler-Illia, D. Grosso, C. Sanchez. Nanocrystallised titania and zirconia mesoporous thin films exhibiting enhanced thermal stability. New J. Chem., 2003, 27, 9–13. Cerca con Google

[114] G. Soler-Illia, C. Sanchez. Interactions between poly(ethylene oxide)-based surfactants and transition metal alkoxides: their role in the templated construction of mesostructured hybrid organic-inorganic composites. New J. Chem., 2000, 24, 493–499. Cerca con Google

[115] G. Soler-Illia, E. L. Crepaldi, D. Grosso, D. Durand, C. Sanchez. Structural control in self-standing mesostructured silica oriented membranes and xerogels. Chem. Commun., 2002, 2298–2299. Cerca con Google

[116] S. Y. Choi, B. Lee, D. B. Carew, M. Mamak, F. C. Peiris, S. Speakman, N. Chopra, G. A. Ozin. 3D hexagonal (R-3m) mesostructured nanocrystalline titania thin films: Synthesis and characterization. Adv. Funct. Mater., 2006, 16, 1731–1738. Cerca con Google

[117] M. P. Tate, B. W. Eggiman, J. D. Kowalski, H. W. Hillhouse. Order and orientation control of mesoporous silica films on conducting gold substrates formed by dip-coating and self-assembly: A grazing angle of incidence small-angle X-ray scattering and field emission scanning electron microscopy study. Langmuir, 2005, 21, Cerca con Google

10112–10118. Cerca con Google

[118] P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka, G. D. Stucky. Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework. Chem. Mater., 1999, 11, 2813–2826. Cerca con Google

[119] D. Grosso, F. Babonneau, P.-A. Albouy, H. Amenitsch, A. R. Balkenende, A. Brunet-Bruneau, J. Rivory. An in situ study of mesostructured CTAB-silica film formation during dip coating using time-resolved SAXS and interferometry measurements. Chem. Mater., 2002, 14, 931–939. Cerca con Google

[120] M. Klotz, A. Ayral, C. Guizard, L. Cot. Synthesis conditions for hexagonal mesoporous silica layers. J. Mater. Chem., 2000, 10, 663–669. Cerca con Google

[121] D. Grosso, F. Babonneau, G. Soler-Illia, P.-A. Albouy, H. Amenitsch. Phase transformation during cubic mesostructured silica film formation. Chem. Commun., 2002, 748–749. Cerca con Google

[122] A. Gibaud, D. Grosso, B. Smarsly, A. Baptiste, J. F. Bardeau, F. Babonneau, D. A. Doshi, Z. Chen, C. J. Brinker, C. Sanchez. Evaporation-controlled self-assembly of silica surfactant mesophases. J. Phys. Chem. B, 2003, 107, 6114–6118. Cerca con Google

[123] F. Cagnol, D. Grosso, G. Soler-Illia, E. L. Crepaldi, F. Babonneau, H. Amenitsch, C. Sanchez. Humidity-controlled mesostructuration in CTAB-templated silica thin film processing. The existence of a modulable steady state. J. Mater. Chem., 2003, 13, 61–66. Cerca con Google

[124] D. Grosso, G. Soler-Illia, E. L. Crepaldi, F. Cagnol, C. Sinturel, A. Bourgeois, A. Brunet-Bruneau, H. Amenitsch, P.-A. Albouy, C. Sanchez. Highly porous TiO2 anatase optical thin films with cubic mesostructure stabilized at 700°C. Chem. Mater., 2003, 15, 4562–4570. Cerca con Google

[125] E. L. Crepaldi, G. Soler-Illia, A. Bouchara, D. Grosso, D. Durand, C. Sanchez. Controlled formation of highly ordered cubic and hexagonal mesoporous nanocrystalline yttria-zirconia and ceria-zirconia thin films exhibiting high thermal stability. Angew. Chem. Int. Ed. Engl., 2003, 42, 347–351. Cerca con Google

[126] C. N. Urade, H. W. Hillhouse. Synthesis of thermally stable highly ordered nanoporous tin oxide thin films with a 3D face-centered orthorhombic nanostructure. J. Phys. Chem. B, 2005, 109, 10538–10541. Cerca con Google

[127] L. Nicole, C. Boissière, D. Grosso, P. Hesemann, J. Moreau, C. Sanchez. Advanced selective optical sensors based on periodically organized mesoporous hybrid silica thin films. Chem. Commun., 2004, 2312–2313. Cerca con Google

[128] D. Shamiryan, T. Abell, F. Iacopi, K. Maex. Low-k dielectric materials. Materials Today, 2004, 7, 34–39. Cerca con Google

[129] S. Baskaran, J. Liu, K. Domansky, N. Kohler, X. Li, C. Coyle, G. E. Fryxell, S. Thevuthasan, R. E. Williford. Low dielectric constant mesoporous silica films through molecularly templated synthesis. Adv. Mater., 2000, 12, 291–294. Cerca con Google

[130] K. Maex, M. R. Baklanov, D. Shamiryan, F. Iacopi, S. H. Brongersma, Z. S. Yanovitskaya. Low dielectric constant materials for microelectronics. Appl. Phys. Lett., 2003, 93, 8793–8841. Cerca con Google

[131] S. Yu, T. K. S. Wong, K. Pita. Surface modified silica mesoporous films as a low dielectric constant intermetal dielectric. J. Appl. Phys, 2002, 92, 3338–3344. Cerca con Google

[132] B. D. Hatton, K. Landskron, W. Whitnall, D. D. Perovic, G. A. Ozin. Spin-coated periodic mesoporous organosilica thin films - Towards a new generation of lowdielectric- constant materials. Adv. Funct. Mater., 2005, 15, 823–829. Cerca con Google

[133] W. Cho, R. Saxena, O. Rodriguez, R. Achanta, J. L. Plawski, W. N. Gill. Effects of sintering on dielectric constants of mesoporous silica. J. Non-Cryst. Solids, 2004, 350, 336–344. Cerca con Google

[134] L. Malfatti, P. Falcaro, H. Amenitsch, S. Caramori, R. Argazzi, C. A. Bignozzi, S. Enzo, M. Maggini, P. Innocenzi. Mesostructured self-assembled titania films for photovoltaic applications. Microp. Mesop. Materials, 2006, 88, 304–311. Cerca con Google

[135] E. Lancelle-Beltran, P. Prene, C. Boscher, P. Belleville, P. Buvat, S. Lambert, G. F., C. Boissiäre, D. Grosso, C. Sanchez. Nanostructured hybrid solar cells based on self-assembled mesoporous titania thin films. Chem. Mater., 2006, 18, 6152–6156. Cerca con Google

[136] K. M. Coakley, Y. Liu, M. D. McGehee, K. L. Frindell, G. D. Stucky. Infiltrating semiconducting polymers into self-assembled mesoporous titania films for photovoltaic applications. Adv. Funct. Mater., 2003, 13, 301–306. Cerca con Google

[137] K. M. Coakley, M. D. McGehee. Photovoltaic cells made from conjugated polymers infiltrated into mesoporous titania. Appl. Phys. Lett., 2003, 83, 3380–3382. Cerca con Google

[138] J. Mio Bertolo, A. Bearzotti, P. Falcaro, E. Traversa, P. Innocenzi. Sensoristic applications of self-assembled mesostructured silica films. Sensor Letters, 2003, 1, 64–70. Cerca con Google

[139] A. Bearzotti, J. Mio Bertolo, P. Innocenzi, P. Falcaro, E. Traversa. Humidity sensors based on mesoporous silica thin films synthesized by block copolymers. J. Eur. Ceramic Soc., 2004, 24, 1969–1974. Cerca con Google

[140] C. Kittel. Introduction to solid state physics. JohnWiley & sons, Inc., New York, 7th edition, 1996. Cerca con Google

[141] N. W. Ashcroft, N. D. Mermin. Solid state physics. Harcourt College Publishers, 1976. Cerca con Google

[142] P. Dub?cek. Nanostructure as seen by the SAXS. Vacuum, 2005, 80, 92–97. Cerca con Google

[143] M. Rappolt, H. Amenitsch, J. Strancar, C. V. Teixeira, M. Kriechbaum, G. Pabst, M. Majerowicz, P. Laggner. Phospholipid mesophases at solid interfaces: in situ Xray diffraction and spin-label study. Adv. Colloid Interf. Sci., 2004, 111, 63–77. Cerca con Google

[144] H. Amenitsch, M. Rappolt, M. Kriechbaum, H. Mio, P. Laggner, S. Bernstoff. First performance assessment of the small-angle X-ray scattering beamline at ELETTRA. J. Synchrotron Rad., 1998, 5, 506–508. Cerca con Google

[145] http://www.ibr.oeaw.ac.at/beamline/saxs_group.html (accessed December 2007). Vai! Cerca con Google

[146] T. N. Blanton, T. C. Huang, H. Toraya, C. R. Hubbard, S. B. Robie, D. Louer, H. E. Gobel, G. Will, R. Gilles, T. Raftery. JCPDS-International center for diffraction data round robin study of silver behenate. A possible low-angle X-ray diffraction calibration standard. Powder Diffr., 1995, 10, 91–95. Cerca con Google

[147] http://henke.lbl.gov/optical_constants/filter2.html (accessed December 2007). Vai! Cerca con Google

[148] http://www.ibr.oeaw.ac.at/beamline/software/tiff_doc_6_0.pdf (accessed December 2007). Vai! Cerca con Google

[149] http://www.esrf.eu/computing/scientific/FIT2D/ (accessed December 2007). Vai! Cerca con Google

[150] http://www.ncnr.nist.gov/programs/crystallography/software/cmpr/ (accessed December 2007). Vai! Cerca con Google

[151] http://cobweb.ecn.purdue.edu/_hgroup/Research/Nanocell/NANOCELL.html (accessed December 2007). Vai! Cerca con Google

[152] P. E. J. Flewitt, R. K.Wild. Physical methods for materials characterization. Institute of Physics Publishing, Bristol, 1994. Cerca con Google

[153] http://pros.orange.fr/carine.crystallography/ (accessed December 2007). Vai! Cerca con Google

[154] S. J. Gregg, K. S. W. Sing. Adsorption, surface area and porosity. Academic Press, London, 1982. Cerca con Google

[155] F. Rouquerol, J. Rouquerol, K. Sing. Adsorption by powders and porous solids. Academic Press, San Diego, USA, 1999. Cerca con Google

[156] P. Falcaro. Film mesostrutturati inorganici ed ibridi ottenuti attraverso l’impiego di copolimeri a blocchi come agenti stampanti. Phd thesis, Università degli studi di Bologna, 2006. Cerca con Google

[157] P. Falcaro, D. Grosso, H. Amenitsch, P. Innocenzi. Silica orthorhombic mesostructured films with low refractive index and high thermal stability. J. Phys. Chem. B, 2004, 108, 10942–10948. Cerca con Google

[158] http://www.ncnr.nist.gov/programs/crystallography/software/cmpr/ (accessed December 2007). Vai! Cerca con Google

[159] E. L. Crepaldi, G. Soler-Illia, D. Grosso, F. Cagnol, F. Ribot, C. Sanchez. Controlled formation of highly organized mesoporous titania thin films: from mesostructured hybrids to mesoporous anatase TiO2. J. Am. Chem. Soc., 2003, 125, 9770–9786. Cerca con Google

[160] E. L. Crepaldi, G. Soler-Illia, A. Bouchara, D. Grosso, D. Durand, C. Sanchez. Controlled formation of highly ordered cubic and hexagonal mesoporous nanocrystalline yttria-zirconia and ceria-zirconia thin films exhibiting high thermal stability. Angew. Chem. Int. Ed. Engl., 2003, 42, 347–351. Cerca con Google

[161] http://rsb.info.nih.gov/ij/ (accessed December 2007). Vai! Cerca con Google

[162] M. P. Tate, C. N. Urade, J. D. Kowalski, T.-C. Wei, B. D. Hamilton, B. W. Eggiman, H. W. Hillhouse. Simulation and interpretation of 2D diffraction patterns from self-assembled nanostructured films at arbitrary angles of incidence: From grazing incidence (above the critical angle) to transmission perpendicular to the substrate. J. Phys. Chem. B, 2006, 110, 9882–9892. Cerca con Google

[163] R. N. Ward, D. C. Duffy, P. B. Davies, C. D. Bain. Sum-frequency spectroscopy of surfactants adsorbed at a flat hydrophobic surface. J. Phys. Chem., 1994, 98, 8536–8542. Cerca con Google

[164] J. Gallardo, A. Duran, D. Di Martino, R. Almeida. Structure of inorganic and hybrid SiO2 sol-gel coatings studied by variable incidence infrared spectroscopy. J. Non- Cryst. Solids, 2002, 298, 219–225. Cerca con Google

[165] P. Innocenzi. Infrared spectroscopy of sol-gel derived silica-based films: a spectramicrostructure overview. J. Non-Cryst. Solids, 2003, 316, 309–319. Cerca con Google

[166] P. Innocenzi, P. Falcaro, D. Grosso, F. Babonneau. Order-disorder transitions and evolution of silica structure in self-assembled mesostructured silica films studied through FTIR spectroscopy. J. Phys. Chem. B, 2003, 107, 4711–4717. Cerca con Google

[167] Y. Su, J.Wang, H. Liu. FTIR spectroscopic investigation of effects of temperature and concentration on PEO-PPO-PEO block copolymer properties in aqueous solutions. Macromolecules, 2002, 35, 6426–6431. Cerca con Google

[168] H. Yoshino, K. Kamiya, H. Nasu. IR study on the structural evolution of sol-gel derived SiO2 gels in the early stage of conversion to glasses. J. Non-Cryst. Solids, 1990, 126, 68–78. Cerca con Google

[169] A. Fidalgo, L. M. Ilharco. The defect structure of sol-gel-derived silica/ polytetrahydrofuran hybrid films by FTIR. J. Non-Cryst. Solids, 2001, 283, 144–154. Cerca con Google

[170] K. Kamiya, T. Yoko, K. Tanaka, M. J. Takeuchi. Thermal evolution of gels derived from CH3Si(OC2H5)3 by the sol-gel method. J. Non-Cryst. Solids, 1990, 121, 182– 187. Cerca con Google

[171] K. Davis, M. J. Tomozawa. An infrared spectroscopic study of water-related species in silica glasses. J. Non-Cryst. Solids, 1996, 201, 177–198. Cerca con Google

[172] X. S. Zhao, G. Q. Lu, A. K. Whittaker, G. J. Millar, H. Y. Zhu. Comprehensive study of surface chemistry of MCM-41 using CP/MA NMR, FTIR, pyridine-TPD, and TGA. J. Phys. Chem. B, 1997, 101, 6525–6531. Cerca con Google

[173] J. Chen, Q. Li, R. Xu, F. Xiao. Distinguishing the silanol groups in the mesoporous molecular sieve MCM-41. Angew. Chem. Int. Ed. Engl., 1995, 34, 2694–2696. Cerca con Google

[174] S. Sugahara, T. Kadoya, K.-I. Usami, T. Hattori, M. Matsumura. Preparation and characterization of low-k silica film incorporated with methylene groups. J. Electrochem. Soc., 2001, 148(148), F120. Cerca con Google

[175] F. L. Galeneer. Band limits and the vibrational spectra of tetrahedral glasses. Phys. Rev. B, 1979, 19, 4292–4297. Cerca con Google

[176] D. Shamiryan, T. Abell, F. Iacopi, K. Maex. Low-k dielectric materials. Materials Today, 2004, 7, 34–39. Cerca con Google

[177] D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, G. D. Stucky. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc., 1998, 120, 6024–6036. Cerca con Google

[178] B. W. Eggiman, M. P. Tate, H. W. Hillhouse. Rhombohedral structure of highly ordered and oriented self-assembled nanoporous silica films. Chem. Mater., 2006, 18, 723–730. Cerca con Google

[179] V. V. Guliants, M. A. Carreon, Y. S. Lin. Ordered mesoporous and macroporous inoragnic films and membranes. J. Membr. Sci., 2005, 235, 53–72. Cerca con Google

[180] G. Soler-Illia, E. L. Crepaldi, D. Grosso, D. Durand, C. Sanchez. Structural control in self-standing mesostructured silica oriented membranes and xerogels. Chem. Commun., 2002, 2298–2299. Cerca con Google

[181] K. Vallé, P. Belleville, F. Pereira, C. Sanchez. Hierarchically structured transparent hybrid membranes by in situ growth of mesostructured organosilica in host polymer. Nature Materials, 2006, 5, 107–111. Cerca con Google

[182] S. Besson, T. Gacoin, C. Jacquiod, C. Ricolleau, D. Babonneau, J.-P. Boilot. Structural study of 3D-hexagonal mesoporous spin-coated sol-gel films. J. Mater. Chem., 2000, 10, 1331. Cerca con Google

[183] J. G. Bayly, V. B. Kartha, W. H. Stevens. Absorption spectra of liquid phase H2O, HDO, and D2O from 0.7 to 10 m. Infrared Phys., 1963, 3, 211–222. Cerca con Google

[184] Y. Shen, P. Wu. Two-dimensional ATR-FTIR spectroscopic investigation on water diffusion in polypropylene film: water bending vibration. J. Phys. Chem. B, 2003, 107, 4224–4226. Cerca con Google

[185] A. Bearzotti, J. Mio Bertolo, P. Innocenzi, P. Falcaro, E. Traversa. Humidity sensors based on mesoporous silica thin films synthesized by block copolymers. J. Eur. Ceramic Soc., 2004, 24, 1969–1974. Cerca con Google

[186] J. Mio Bertolo, A. Bearzotti, P. Falcaro, E. Traversa, P. Innocenzi. Sensoristic applications of self-assembled mesostructured silica films. Sensor Letters, 2003, 1, 64–70. Cerca con Google

[187] F. Schüth, K. S. W. Sing, J. Weitkamp, editors. Handbook of porous solids. Wiley- VCH Verlag GmbH, Weinheim, Germany, 2002. Cerca con Google

[188] J. Roquerol, D. Avnir, C. W. Fairbridge, D. H. Everett, J. H. Haynes, N. Pernicone, J. D. F. Ramsay, K. S. W. Sing, K. K. Unger. Recommendations for the characterization of porous solids. Pure and Appl. Chem., 1994, 66, 1739–1758. Cerca con Google

[189] M. Scheffler, P. Colombo, editors. Cellular Ceramics: Structure, Manufacturing, Properties and Applications. Wiley-VCH Verlag GmbH,Weinheim, Germany, 2004. Cerca con Google

[190] A. Zampieri, P. Colombo, G. T. P. Mabande, T. Selvam, W. Schwieger, F. Scheffler. Zeolite coatings on microcellular ceramic foams: a novel route to microreactor and microseparator devices. Adv. Mater., 2004, 16, 819–823. Cerca con Google

[200] H. M. Schmidt, D. Koch, G. Grathwohl, P. Colombo. Micro-macro porous ceramics from preceramic precursors. J. Am. Cer. Soc., 2001, 84, 2252–2255. Cerca con Google

[201] C. Danumah, S. Vaudreuil, L. Bonneviot, M. Bousmina, S. Giasson, S. Kaliaguine. Synthesis of macrostructured MCM-48 molecular sieves. Microp. Mesop. Materials, 2001, 44-45, 241–247. Cerca con Google

[202] T. Sen, G. J. T. Tiddy, J. L. Casci, M. T. Anderson. One-pot synthesis of hierarchically ordered porous-silica materials with three orders of length scale. Angew. Chem. Int. Ed. Engl., 2003, 42, 4649–4653. Cerca con Google

[203] B. T. Holland, C. F. Blanford, T. Do, A. Stein. Synthesis of highly ordered, threedimensional, macroporous structures of amorphous or crystalline inorganic oxides, phosphates, and hybrid composites. Chem. Mater., 1999, 11, 795–805. Cerca con Google

[204] W. M. Carty, P. W. Lednor. Monolithic ceramics and heterogeneous catalysts: honeycombs and foams. Curr. Opinion Solid State Mater. Sci, 1996, 1, 88–95. Cerca con Google

[205] J. T. Richardson, M. Garrait, J.-K. Hung. Carbon dioxide reforming with Rh and Pt-Re catalysts dispersed on ceramic foam supports. Appl. Catal. A: General, 2004, 266, 235–244. Cerca con Google

[206] J. T. Richardson, Y. Peng, D. Remue. Properties of ceramic foam catalyst supports: pressure drop. Appl. Catal. A: General, 2000, 204, 19–32. Cerca con Google

[207] B. Schimmoeller, H. Schulz, S. E. Pratsinis, A. Bareiss, A. Reitzmann, B. Kraushaar- Czarnetzki. Ceramic foams directly-coated with flame-made V2O5/TiO2 for synthesis of phthalic anhydride. J. Catal., 2006, 243, 82–92. Cerca con Google

[208] P. Colombo, E. Bernardo, L. Biasetto. Novel microcellular ceramics from a silicone resin. J. Am. Cer. Soc., 2004, 87, 152–154. Cerca con Google

[209] P. Colombo, E. Bernardo. Macro- and micro-cellular porous ceramics from preceramic polymers. Comp. Sci. Tech., 2003, 63, 2353–2359. Cerca con Google

[210] B. W. Eggiman, M. P. Tate, H. W. Hillhouse. Rhombohedral structure of highly ordered and oriented self-assembled nanoporous silica films. Chem. Mater., 2006, 18, 723–730. Cerca con Google

[211] S. J. Gregg, K. S. W. Sing. Adsorption, surface area and porosity. Academic Press, London, 1982. Cerca con Google

[212] E. P. Barret, L. G. Joyner, P. H. Halenda. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc., 1951, 53, 373–380. Cerca con Google

[213] M. Kruk, M. Jaroniec, A. Sayari. Adsorption study of surface and structural properties of MCM-41 materials of different pore sizes. J. Phys. Chem. B, 1997, 101, 583–589. Cerca con Google

[214] G. Hovarth, K. Kawazoe. Method for the calculation of effective pore size distribution in molecular sieve carbon. J. Chem. Eng. Jpn., 1983, 16, 470–475. Cerca con Google

[215] S. Lowell, J. E. Shields, M. A. Thomas, M. Thommes. Characterization of orous solids and powders: surface area, pore size and density. Kluwer Academic Publishers, 2004. Cerca con Google

[216] G. Soler-Illia, C. Sanchez, B. Lebeau, J. Patarin. Chemical strategies to design textured materials: From microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem. Rev., 2002, 102, 4093–4138. Cerca con Google

[217] L. Nicole, C. Boissiäre, D. Grosso, P. Hesemann, J. Moreau, C. Sanchez. Advanced selective optical sensors based on periodically organized mesoporous hybrid silica thin films. Chem. Commun., 2004, 2312–2313. Cerca con Google

[218] J. Y. Cheng, C. A. Ross, H. I. Smith, E. L. Thomas. Templated self-assembly of block copolymers: Top-down helps bottom-up. Adv. Mater., 2006, 18, 2505–2521. Cerca con Google

[219] G. A. Ozin, S. M. Yang. The race for the photonic chip: colloidal crystal assembly in silicon wafers. Adv. Funct. Mater., 2001, 11, 95–104. Cerca con Google

[220] D. Grosso, F. Cagnol, G. Soler-Illia, E. L. Crepaldi, H. Amenitsch, A. Brunet- Bruneau, A. Bourgeois, C. Sanchez. Fundamentals of mesostructuring through evaporation-induced self-assembly. Adv. Funct. Mater., 2004, 14, 309–322. Cerca con Google

[221] P. Innocenzi, P. Falcaro, S. Schergna, M. Maggini, E. Menna, H. Amenitsch, G. SolerIllia, D. Grosso, C. Sanchez. One-pot self-assembly of mesostructured silica films and membranes functionalised with fullerene derivatives. J. Mater. Chem., 2004, 14, 1838–1842. Cerca con Google

[222] B. J. Scott, G.Wirnsberger, M. D. McGehee, B. F. Chmelka, G. D. Stucky. Dye-doped mesostructured silica as a distributed feedback laser fabricated by soft lithography. Adv. Mater., 2001, 13, 1231–1234. Cerca con Google

[223] H. Fan, Y. Lu, A. Stump, S. T. Reed, T. Baer, R. Schunk, V. Perez-Luna, G. P. López, C. J. Brinker. Rapid prototyping of patterned functional nanostructures. Nature, 2000, 405, 56–60. Cerca con Google

[224] D. A. Doshi, N. Huesing, M. Lu, H. Fan, Y. Lu, K. Simmons-Potter, B. G. Potter Jr., A. J. Hurd, C. J. Brinker. Optically defined multifunctional patterning of photosensitive thin-film silica mesophases. Science, 2000, 290, 107–111. Cerca con Google

[225] Y. Lu, Y. Yang, A. Sellinger, M. Lu, J. Huang, H. Fan, R. Haddad, G. Lopez, A. R. Burns, D. Y. Sasaki, J. Shelnutt, C. J. Brinker. Self-assembly of mesoscopically ordered chromatic polydiacetylene/silica nanocomposites. Nature, 2001, 410, 913– 917. Cerca con Google

[226] Y. Y. Lyu, J. H. Yim, Y. Byun, J. M. Kim, J. K. Jeon. Photo patternable porous siloxane thin films using cyclodextrins as template materials. Thin Solid Films, 2006, 496, 526–532. Cerca con Google

[227] A. M. Dattelbaum, M. L. Amweg, L. E. Ecke, C. K. Yee, A. P. Shreve, A. N. Parikh. Photochemical pattern transfer and enhancement of thin film silica mesophases. Nano Lett., 2003, 3, 719–722. Cerca con Google

[228] F. Cerrina. X-ray imaging: applications to patterning and lithography. J. Phys. D: Appl. Phys., 2000, 33, R103–R116. Cerca con Google

[229] K. Salaita, Y. H. Wang, C. A. Mirkin. Applications of dip-pen nanolithography. Nature Nanotechnology, 2007, 2, 145–155. Cerca con Google

[230] M. Su, X. Liu, S.-Y. Li, V. P. Dravid, C. A. Mirkin. Moving beyond molecules: patterning solid-state features via dip-pen nanolithography with sol-based inks. J. Am. Chem. Soc., 2002, 124, 1560–1561. Cerca con Google

[231] E. W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, D. Münchmeyer. Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA process). Microelectron. Eng., 1986, 4, 35–56. Cerca con Google

[232] F. Pérennäs, F. De Bona, F. J. Pantenburg. Deep X-ray lithography beamline at ELETTRA. Nucl. Instrum. Methods Phys. Res. A, 2001, 467-468, 1274–1278. Cerca con Google

[233] D. Grosso, A. R. Balkenende, P.-A. Albouy, A. Ayral, H. Amenitsch, F. Babonneau. Two-dimensional hexagonal mesoporous silica thin films prepared from block copolymers: detailed characterization and formation mechanism. Chem. Mater., 2001, 13, 1848–1856. Cerca con Google

[234] http://www.brukeroptics.com/applications/microscopy.html (accessed December 2007). Vai! Cerca con Google

[235] J. V. Crivello, J. H. W. Lam. Diaryliodonium salts. A new class of photoinitiators for cationic polymerization. Macromolecules, 1977, 10, 1307–1315. Cerca con Google

[236] J. Murray, E. Garman. Investigation of possible free-radical scavengers and metrics for radiation damage in protein cryocrystallography. J. Synchrotron Rad., 2002, 9, 347–354. Cerca con Google

[237] A. Cheng, M. Caffrey. Free radical mediated X-ray damage of model membranes. Biophys. J., 1996, 70, 2212–2222. Cerca con Google

[238] M. Schena. Microarray analysis. Wiley-Liss, 2003. Cerca con Google

[239] A. M. Saad, A. V. Mazanik, Y. E. Kalinin, J. A. Fedotova, A. K. Fedotov, S. Wrotek, A. V. Sitnikov, I. A. Svito. Structure and electrical properties of CoFeZr-aluminium oxide nanocomposite films. Rev. Adv. Mater. Sci., 2004, 8, 152–157. Cerca con Google

[240] Z. Turgut, J. H. Scott, M. Q. Huang, S. A. Majetich, M. E. McHenry. Magnetic properties and ordering in C-coated FexCo1-x alloy nanocrystals. J. Appl. Phys, 1998, 83, 6468–6470. Cerca con Google

[241] N. O. Nunez, P. Tartaj, M. Puerto Morales, P. Bonville, C. J. Serna. Yttria-coated FeCo magnetic nanoneedles. Chem. Mater., 2004, 16, 3119–3124. Cerca con Google

[242] C. Desvaux, C. Amiens, P. Fejes, P. Renaud, M. Respaud, P. Lecante, E. Snoeck, B. Chaudret. Multimillimetre-large superlattices of air-stable iron-cobalt nanoparticles. Nature Materials, 2005, 4, 750–753. Cerca con Google

[243] M. F. Casula, G. Concas, F. Congiu, A. Corrias, A. Falqui, G. Spano. Near equiatomic FeCo nanocrystalline alloy embedded in an alumina aerogel matrix: microstructural features and related magnetic properties. J. Phys. Chem. B, 2005, 109, 23888–23895. Cerca con Google

[244] M. F. Casula, A. Corrias, G. Paschina. FeCo-SiO2 nanocomposite aerogels by high temperature supercritical drying. J. Mater. Chem., 2002, 12, 1505–1510. Cerca con Google

[245] A. F. Gross, M. R. Diehl, K. C. Beverly, E. K. Richman, S. H. Tolbert. Controlling magnetic coupling between cobalt nanoparticles through nanoscale confinement in hexagonal mesoporous silica. J. Phys. Chem. B, 2003, 107, 5475–5482. Cerca con Google

[246] W. S. Seo, J. H. Lee, X. Sun, Y. Suzuki, D. Mann, Z. Liu, M. Terashima, P. C. Yang, M. V. McConnell, N. D. G., H. Dai. FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents. Nature Materials, 2006, 5, 971–976. Cerca con Google

[247] S. Besson, T. Gacoin, C. Jacquiod, C. Ricolleau, J.-P. Boilot. 3D periodic arrays of nanoparticles inside mesoporous silica films. Mat. Res. Soc. Symp. Proc., 2002, 707. Cerca con Google

[248] S. Besson, T. Gacoin, C. Ricolleau, C. Jacquiod, J.-P. Boilot. 3D quantum dot lattice inside mesoporous silica films. Nano Lett., 2002, 2, 409–414. Cerca con Google

[249] V. Della Savia, M. C. Marchi, E. H. Otal, B. Bozzano, G. Soler-Illia. Tuned photoluminescence emission of CdS dots embedded in mesoporous silica, EMRS Spring Meeting. 2005. Cerca con Google

[250] M. Wark, H. Wellmann, J. Rathousky. Homogeneously distributed CdS and CdSe nanoparticles in thin films of mesoporous silica. Thin Solid Films, 2004, 458, 20–25. Cerca con Google

[251] A. V. Kouzema, M. Fröba. Cd1????xMnxS diluted magnetic semiconductors as nanostructured guest species in mesoporous thin-film silica host media. Adv. Funct. Mater., 2005, 15, 168–172. Cerca con Google

[252] J. P.Waters, D. Smyth-Boyle, K. Govender, A. Green, J. Durrant, P. O’Brien. Simple CVD routes towards infiltration of mesoporous TiO2. Chem. Vap. Deposition, 2005, 11, 254–260. Cerca con Google

[253] D. Buso, P. Falcaro, S. Costacurta, M. Guglielmi, A. Martucci, P. Innocenzi, L. Malfatti, V. Bello, G. Mattei, C. Sada, H. Amenitsch, I. Gerdova, A. Hachè. PbS-doped mesostructured silica films with high optical nonlinearity. Chem. Mater., 2005, 17, 4965–4970. Cerca con Google

[254] G. Soler-Illia, E. L. Crepaldi, D. Grosso, D. Durand, C. Sanchez. Structural control in self-standing mesostructured silica oriented membranes and xerogels. Chem. Commun., 2002, 2298–2299. Cerca con Google

[255] P. Innocenzi, P. Falcaro, D. Grosso, F. Babonneau. Order-disorder transitions and evolution of silica structure in self-assembled mesostructured silica films studied through FTIR spectroscopy. J. Phys. Chem. B, 2003, 107, 4711–4717. Cerca con Google

[256] P. Dub?ek. Nanostructure as seen by the SAXS. Vacuum, 2005, 80, 92–97. Cerca con Google

[257] C. J. Brinker, Y. Lu, A. Sellinger, H. Fan. Evaporation-induced self-assembly: Nanostructures made easy. Adv. Mater., 1999, 11, 579–585. Cerca con Google

[258] G. Soler-Illia, E. L. Crepaldi, D. Grosso, C. Sanchez. Block copolymer-templated mesoporous oxides. Curr. Opinion Colloid Interf. Sci., 2003, 8, 109–126. Cerca con Google

[259] E. L. Crepaldi, G. Soler-Illia, D. Grosso, C. Sanchez. Nanocrystallised titania and zirconia mesoporous thin films exhibiting enhanced thermal stability. New J. Chem., 2003, 27, 9–13. Cerca con Google

[260] G. Soler-Illia, E. Scolan, A. Louis, P.-A. Albouy, C. Sanchez. Design of mesostructured titanium oxo based hybrid organic-inorganic networks. New J. Chem., 2001, 25, 156–165. Cerca con Google

[261] F. Cagnol, D. Grosso, G. Soler-Illia, E. L. Crepaldi, F. Babonneau, H. Amenitsch, C. Sanchez. Humidity-controlled mesostructuration in CTAB-templated silica thin film processing. The existence of a modulable steady state. J. Mater. Chem., 2003, 13, 61–66. Cerca con Google

[262] C. J. Brinker, G. W. Scherer. Sol-gel science: The physics and chemistry of sol-gel processing. Academic Press, San Diego, 1992. Cerca con Google

[263] C. Hammond. Introduzione alla cristallografia. Zanichelli, Bologna, 1994. Cerca con Google

[264] C. N. Urade, H. W. Hillhouse. Synthesis of thermally stable highly ordered nanoporous tin oxide thin films with a 3D face-centered orthorhombic nanostructure. J. Phys. Chem. B, 2005, 109, 10538–10541. Cerca con Google

[265] C. Sanchez, G. Soler-Illia, F. Ribot, D. Grosso. Design of functional nano-structured materials through the use of controlled hybrid organic-inorganic interfaces. C. R. Chimie, 2003, 6, 1131–1151. Cerca con Google

[266] A. G. Yodh, K.-H. Lin, J. C. Crocker, A. D. Dinsmore, R. Verma, P. D. Kaplan. Entropically driven self-assembly and interaction in suspension. Phil. Trans. R. Soc. Lond. A, 2001, 359, 921–937. Cerca con Google

[267] H. N. W. Lekkerkerker, A. Stroobants. Ordering entropy. Nature, 1998, 393, 305– 306. Cerca con Google

[268] Q. Huo, D. I. Margolese, U. Ciesla, D. G. Demuth, P. Feng, T. E. Gier, P. Sieger, A. Firouzi, B. F. Chmelka, F. Schüth, G. D. Stucky. Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays. Chem. Mater., 1994, 6, 1176–1191. Cerca con Google

[269] G. Soler-Illia, C. Sanchez, B. Lebeau, J. Patarin. Chemical strategies to design textured materials: From microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem. Rev., 2002, 102, 4093–4138. Cerca con Google

[270] J. Livage, M. Henry, C. Sanchez. Sol-gel chemistry of transition metal oxides. Prog. Solid State Chem., 1988, 18, 259–341. Cerca con Google

[271] J. D. Wright, N. A. J. M. Sommerdijk. Sol-gel materials: Chemistry and applications. CRC Press, Boca Raton, 2001. Cerca con Google

[272] T. Brezesinski, B. Smarsly, K. Iimura, D. Grosso, C. Boissiäre, H. Amenitsch, M. Antonietti, C. Sanchez. Self-assembly and crystallization behavior of mesoporous, crystalline HfO2 thin films: A model system for the generation of mesostructured transition-metal oxides. Small, 2005, 1, 889–898. Cerca con Google

[273] J. Murray, E. Garman. Investigation of possible free-radical scavengers and metrics for radiation damage in protein cryocrystallography. J. Synchrotron Rad., 2002, 9, 347–354. Cerca con Google

[274] A. Cheng, M. Caffrey. Free radical mediated X-ray damage of model membranes. Biophys. J., 1996, 70, 2212–2222. Cerca con Google

[275] A. G. Richter, J. Wang, R. Guico, K. Shull. X-radiation damage of polymer thin films. Argonne Nat’l Laboratory Report, 1999. Cerca con Google

[276] D. Grosso, F. Babonneau, P.-A. Albouy, H. Amenitsch, A. R. Balkenende, A. Brunet- Bruneau, J. Rivory. An in situ study of mesostructured CTAB-silica film formation during dip coating using time-resolved SAXS and interferometry measurements. Chem. Mater., 2002, 14, 931–939. Cerca con Google

[277] D. A. Doshi, A. Gibaud, V. Goletto, M. Lu, H. Gerung, B. Ocko, S. M. Han, C. J. Brinker. Peering into the self-assembly of surfactant templated thin-film silica mesophases. J. Am. Chem. Soc., 2003, 125, 11646–11655. Cerca con Google

[278] E. L. Crepaldi, G. Soler-Illia, D. Grosso, F. Cagnol, F. Ribot, C. Sanchez. Controlled formation of highly organized mesoporous titania thin films: from mesostructured hybrids to mesoporous anatase TiO2. J. Am. Chem. Soc., 2003, 125, 9770–9786. Cerca con Google

[279] P. Innocenzi, T. Kidchob, J. Mio Bertolo, M. Piccinini, M. Cestelli Guidi, A. Marcelli. Time-resolved infrared spectroscopy as an in situ tool to study the kinetics during self-assembly of mesostructured films. J. Phys. Chem. B, 2006, 110, 10837–10841. Cerca con Google

[280] http://www.brukeroptics.com/ftir/ircube.htm (accessed December 2007). Vai! Cerca con Google

[281] P. Innocenzi, L. Malfatti, S. Costacurta, T. Kidchob, M. Piccinini, A. Marcelli. Evaporation of ethanol and ethanol-water mixtures studied by time-resolved infrared spectroscopy. Submitted to J. Phys. Chem. A. Cerca con Google

[282] F. E. Round, R. M. Crawford. The diatoms. Biology and morphology of the genera. Cambridge University Press, UK, 1990. Cerca con Google

[283] S. Mann. Biomineralization. Principles and concepts in bioinorganic materials chemistry. Oxford University Press, Oxford, 2001. Cerca con Google

[284] A. Navrotsky. Energetic clues to pathways to biomineralization: Precursors, clusters, and nanoparticles. Proc. Natl. Acad. Sci U.S.A., 2004, 101, 12096–12101. Cerca con Google

[285] H. Colfen, S. Mann. Higher-order organization by mesoscale self-assembly and trasformation of hybrid nanostructures. Angew. Chem. Int. Ed. Engl., 2003, 42, 2350– 2365. Cerca con Google

[286] S. Mann, S. L. Burkett, S. A. Davis, C. E. Fowler, N. H. Mendelson, S. D. Sims, D. Walsh, N. T. Whilton. Sol-gel synthesis of organized matter. Chem. Mater., 1997, 9, 2300–2310. Cerca con Google

[287] C. Sanchez, H. Arribart, M. M. Giraud Guille. Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nature Materials, 2005, 4, 277–288. Cerca con Google

[288] E. Dujardin, S. Mann. Bio-inspired materials chemistry. Adv. Mater., 2002, 14, 775– 788. Cerca con Google

[289] P. Harting. Natuurkd. Verh. Koninkl. Acad., 1873, 13, 1. Cerca con Google

[290] D. W. Thompson. On growth and form. Dover Publications, New York, 1992. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record