Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Tubaldi, Federico (2009) OLFACTION IN ACTION. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF - Altro
6Mb

Abstract (inglese)

Recent evidence has contributed to change the view according to which action representation chiefly depends on visual information. In particular, research on hand grasping actions has emphasized that a multimodal interplay across vision, audition, the sense of touch, and proprioception occurs when performing and understanding an action (e.g., Castiello, 1996; Patchay, Castiello, & Haggard, 2003; Gazzola, Aziz-Zadeh, & Keysers, 2006; Zahariev & MacKenzie, 2007).
The experimental work included in the present thesis aimed at extending the multisensory aspects of action representation to the olfactory domain. I first addressed this issue from the perspective of action execution by asking participants to reach and grasp a target-object under different circumstances of visual and olfactory stimulation. The angular excursion at the level of individual digits, digits’ angular distance, and arm movement duration were recorded. Next, I focused on action understanding by asking participants to observe others’ grasping actions under different visual and olfactory conditions. Here, cerebral activity of the neural system responsible for action understanding, i.e., the Action Observation System (AOS) was recorded.
An overview of this experimentation is outlined in the following section.

OVERVIEW OF THE PRESENT RESEARCH
In the first two experiments (Thesis Chapters 3 and 4) participants were requested to reach towards and grasp either a small or a large visual target calling for different types of grasp, precision grip (PG) and whole hand grasp (WHG), respectively. This task was performed in the absence or in the presence of an odour associated with objects that, if grasped, would require a PG or a WHG. The aim of these experiments was twofold. First, to understand whether the central nervous system (CNS) can use olfactory information to select and execute a ‘grasp’ motor plan. Second, to shed light on how detailed the motor commands embedded within the ‘grasp’ plans elicited by an object’s olfactory representation are. The results showed that merely smelling the odour associated with a small and a large object activates the kinematic parameterization of the action appropriate for grasp that object, i.e., PG and WHG, respectively. Therefore, the CNS is able to convert the geometric features of an olfactory-encoded object (e.g., size) into the motor prototype for interacting with that object. In other words, the visuomotor mechanism underlying the control of action (e.g., Castiello, 1996) appears to be sensitive to olfactory information.
From a perceptual perspective, the representation evoked by the odour seems to contain highly detailed information regarding the object (i.e., volumetric features). This is because the effect of odour ‘size’ was played out on the hand posture at the level of individual digits’ motion. If olfaction had provided a blurred and holistic object’s representation (i.e., a low spatial-resolution of the object’s image), then the odour would have not affected would have not affected the hand in its entirety. From a motor perspective, the olfactory representation seems to be mapped into the action vocabulary with a certain degree of reliability. The elicited motor plan is not an incomplete primal sketch which only provides a preliminary descriptive in the terms of motor execution but it embodies specific and selective commands for handling the ‘smelled’ object.
In the experiments described above the odour associated with the object was always delivered before movement initiation and before the target became visually available. For the motor control system this entailed to prioritize the ‘olfactory’ non-target object with respect to the visual target. Specifically, planning and execution of action was first based on the sense of smell. In this respect, previous research on grasping actions revealed that visual nontarget-objects do not activate the corresponding ‘grasp’ plans when prior knowledge regarding the visual target is given to participants (e.g., Castiello, 1996). In order to investigate whether this caveat also applies for nontarget-objects signalled via olfaction, I performed an experiment (Thesis Chapters 5) similar to those reported above, but participants were given sufficient time to code for the visual target before movement initiation. The results showed that in such circumstances the odour ‘size’ did modulate the temporal organization of the arm movement. Therefore, even when olfactory information plays a secondary role with respect to visual information for action guidance, the olfactory-encoded object is represented within the motor system. And, traces of the ‘grasp’ motor plan associated with the olfactory object remain evident at the level of the arm movement.
Having demonstrated the influence that olfactory stimuli might have for the control of action I reasoned that such phenomenon might be relevant for investigating possible gender differences in the use of olfactory information within the action domain (e.g., Ecuyer-Dab & Robert, 2004). Therefore by using an experimental paradigm similar to that reported in Thesis Chapter 4, I investigated whether gender differences were evident when odours of objects had to be mapped into the corresponding ‘grasp’ motor plans (Thesis Chapter 6). The results showed that for men arm-movement duration increased when the ‘size’ of the odour did not match the size of the visual target. Whereas, for women such effect was not revealed. Remember that a lengthening in movement duration was taken as evidence for an odour-induced activation of the ‘grasp’ motor plans associated with the ‘smelled-objects’ (Thesis Chapter 4). Therefore, it appears that male sense of smell is action-oriented, i.e., tailored to elicit specific and selective motor commands for act upon olfactory-encoded objects. Whereas, in line with previous evidences stemming from research on human olfaction, the female sense of smell would be perception-oriented, i.e., optimised to detect, discriminate, identify, recognise, and categorise odours (e.g., Brand & Millot, 2001).
Once documented that the sense of smell provides useful information for planning and execute an action I investigated whether olfactory cues may also contribute to the understanding of others’ actions. The fMRI experiment reported in Thesis Chapter 7 was conceived to specifically address this issue. The results showed that the neural system devoted to action understanding (i.e., the ASO) represented both a hand grasping an ‘olfactory’ object and a mimed hand grasp. Importantly, evidence that the AOS was also able to differentiate between these two type of actions was also found. The discrimination process might solely be ascribed to the olfactory information which signalled the target-object. Therefore, the role played by olfactory information in action understanding was demonstrated.
With this in mind the central advance of the present work is twofold. First, I demonstrated that processes of selection for the control of actions may be based on olfactory information. This was done by linking current advances in the methodology for recording hand kinematics and paradigms considering the presence of nontarget-object. Second, I provided evidence for the contribution of olfactory information to the understanding of other’s actions. This was achieved by combining the fMRI technique with an action observation paradigm.

REFERENCES
Brand, G., & Millot, J. L. (2001). Sex differences in human olfaction: between evidence and enigma. Quarterly Journal of Experimental Psychology, 54, 259-270.
Castiello, U. (1996). Grasping a fruit: selection for action. Journal of Experimental Psychology: Human Perception and Performance, 22, 582-603.
Ecuyer-Dab, I., & Robert, M. (2004). Have sex differences in spatial ability evolved from male competition for mating and female concern for survival? Cognition, 91, 221-257.
Gazzola, V., Aziz-Zadeh, L., & Keysers, C. (2006). Empathy and the somatotopic auditory mirror system in humans. Current Biology, 16, 1824-1829.
Patchay, S., Castiello, U., & Haggard, P. (2003). A crossmodal interference effect in grasping objects. Psychological Bulletin Reviews, 10, 924-931.
Zahariev M. A., & MacKenzie, C. L. (2007) Grasping at thin air: multimodal contact cues for reaching and grasping. Experimental Brain Research, 180, 69-84.

Abstract (italiano)

Evidenze ottenute da studi recenti hanno cambiato la concezione secondo cui la rappresentazione dell’azione si basa principalmente sulle informazioni di natura visiva. In particolare, la ricerca sulle azioni di prensione ha dimostrato che si verifica un’interazione tra la visione, l’udito, il tatto e la propriocezione sia quando una persona esegue un’azione sia quando cerca di capire l’azione di un altro individuo (Castiello, 1996; Patchay, Castiello, & Haggard, 2003; Gazzola, Aziz-Zadeh, & Keysers, 2006; Zahariev & MacKenzie, 2007).
Il lavoro sperimentale riportato nella presente tesi ha lo scopo di estendere gli aspetti multisensoriali della rappresentazione dell’azione al dominio olfattivo. Per prima cosa ho trattato questa questione dalla prospettiva dell’esecuzione dell’azione chiedendo ai partecipanti di raggiungere ed afferrare un oggetto target in diverse condizioni di stimolazione visiva ed olfattiva. Ho registrato l’escursione angolare a livello delle singole giunture delle dita della mano e delle distanze tra le dita. Inoltre ho misurato la durata del movimento del braccio. Poi mi sono concentrato sulla comprensione dell’azione chiedendo ai partecipanti di osservare le azioni di prensione compiute da altri individui in diverse condizioni di stimolazione visiva ed olfattiva. Qui, usando la risonanza magnetica funzionale (fMRI), ho registrato l’attività cerebrale dell’Action Observation System (AOS), la rete di aree responsabile della comprensione dell’azione.
Nella seguente sezione fornisco un riassunto di questa sperimentazione.

RIASSUNTO DELLA RICERCA
Nei primi due esperimenti (Capitoli 3 e 4 della Tesi) i partecipanti raggiungevano ed afferravano degli oggetti target grandi oppure piccoli che richiedevano rispettivamente un precision grip (PG) e un whole hand grasp (WHG). Questo compito era svolto in assenza o in presenza di un odore associato con un oggetto che, se afferrato, avrebbe richiesto un PG o un WHG. L’obiettivo di questi esperimenti era duplice. Innanzitutto volevo capire se il sistema nervoso centrale (SNC) può usare l’informazione olfattiva per selezionare ed eseguire un piano motorio di prensione. Poi volevo valutare quanto sono dettagliati i comandi motori inclusi nel piano di prensione eventualmente attivato dall’odore. I risultati mostrano che semplicemente annusare l’odore associato con un oggetto grande oppure piccolo attiva la parametrizzazione cinematica dell’azione di prensione appropriata per agire su quell’oggetto, i.e., rispettivamente un PG e un WHG. Quindi, il SNC è in grado di convertire le caratteristiche geometriche di un oggetto codificato attraverso l’olfatto nel piano motorio per interagire con quell’oggetto. In altre parole il meccanismo visuomotorio sottostante il controllo dell’azione (Castiello, 1996) è sensibile all’informazione olfattiva.
Da una prospettiva percettiva, la rappresentazione evocata dall’odore contiene informazioni altamente dettagliate circa l’oggetto (i.e., caratteristiche volumetriche). Questo perché l’effetto di ‘dimensione’ dell’odore è evidente a livello del movimento delle singole giunture delle singole dita della mano. Se l’olfatto avesse fornito una rappresentazione olistica e non dettagliata dell’oggetto (i.e., un’immagine dell’oggetto a bassa risoluzione spaziale), l’odore non avrebbe modulato la mano nella sua interezza. Da una prospettiva motoria, la rappresentazione olfattiva è mappata nel vocabolario delle azioni con un buon grado di affidabilità. Il piano motorio attivato dall’odore non è una bozza incompleta e primitiva che fornisce solo una descrizione preliminare in termini di esecuzione motoria ma incorpora comandi specifici e selettivi per manipolare l’oggetto ‘annusato’.
Negli esperimenti appena descritti l’odore associato con l’oggetto era sempre somministrato prima dell’inizio del movimento e prima che l’oggetto target diventasse visibile. Per il sistema di controllo motorio questo implica una priorità dell’oggetto ‘olfattivo’ nontareget rispetto al target visivo. Nello specifico, la pianificazione e l’esecuzione dell’azione è basata sull’informazione olfattiva. A tal proposito, la ricerca sulle azioni di prensione ha mostrato che gli oggetti visivi nontarget non attivano i corrispondenti piani motori di prensione quando i partecipanti conoscono in anticipo il target (Castiello, 1996). Al fine di investigare se ciò vale anche per gli oggetti ‘olfattivi’ nontarget, ho condotto un esperimento simile a quelli riportati sopra, tuttavia, qui i partecipanti avevano tempo di codificare il target visivo prima dell’inizio del movimento (Capitolo 5 della Tesi). I risultati mostrano che la ‘dimensione’ dell’odore modula l’organizzazione temporale del movimento del braccio. Quindi, anche quando l’informazione olfattiva gioca un ruolo secondario rispetto all’informazione visiva per la guida dell’azione, l’oggetto ‘olfattivo’ è rappresentato nel sistema motorio.
Dopo aver dimostrato l’influenza degli stimoli olfattivi sul controllo dell’azione, ho pensato che tale fenomeno poteva essere rilevante per investigare possibili differenze di genere nell’uso dell’informazione olfattiva entro il dominio dell’azione (Ecuyer-Dab & Robert, 2004). Quindi, usando un paradigma sperimentale simile a quello riportato nel Capitolo 4 della Tesi, ho valutato se la capacità di trasformare gli odori degli oggetti nei corrispondenti piani motori varia a seconda del genere (Capitolo 6 della Tesi). I risultati mostrano che per i maschi la durata del movimento del braccio aumenta quando la ‘dimensione’ dell’odore non corrisponde alla dimensione del target visivo. D’altra parte, per le femmine questo effetto non è evidente. Si ricordi che l’aumento della durata del movimento del braccio indica l’attivazione del piano motorio di prensione associato con l’oggetto ‘annusato’ (Capitolo 4 della Tesi). Quindi, sembra che l’olfatto dei maschi sia orientato all’azione, i.e., predisposto ad innescare comandi motori specifici e selettivi per agire sugli oggetti codificati a livello olfattivo. Invece, in linea con precedenti evidenze (Brand & Millot, 2001), l’olfatto femminile sarebbe orientato alla percezione, i.e., ottimizzato per rilevare, discriminare, identificare, riconoscere e categorizzare odori.
Una volta dimostrato che l’olfatto fornisce informazioni utili per la pianificazione e l’esecuzione dell’azione, ho indagato se gli indizi olfattivi possono contribuire anche alla comprensione dell’azione altrui. L’esperimento fMRI riportato nel Capitolo 7 della Tesi è stato disegnato per trattare questa questione. I risultati mostrano che l’AOS rappresenta sia una mano che afferra un oggetto di cui si sente l’odore che una prensione mimata. Inoltre l’AOS è in grado di differenziare tra questi due tipi di azione. Questo processo di discriminazione è imputabile solamente all’informazione olfattiva che segnala l’oggetto afferrato da un altro individuo. Quindi il ruolo giocato dall’informazione olfattiva nella comprensione dell’azione risulta dimostrato.
In conclusione le evidenze riportate nella mia tesi forniscono due contributi fondamentali all’idea di rappresentazione dell’azione multimodale. Primo, il processo di selezione dei piani motori per il controllo delle azioni può basarsi sull’informazione olfattiva. Questa nozione poggia sui dati ottenuti combinando le recenti tecniche di registrazione delle cinematiche della mano con i paradigmi che considerano la presenza di oggetti nontarget. Secondo, l’olfatto contribuisce alla comprensione dell’azione degli altri. Ciò è stato dimostrato usando il paradigma di osservazione dell’azione e l’fMRI.

RIFERIMENTI BIBLIOGRAFICI
Brand, G., & Millot, J. L. (2001). Sex differences in human olfaction: between evidence and enigma. Quarterly Journal of Experimental Psychology, 54, 259-270.
Castiello, U. (1996). Grasping a fruit: selection for action. Journal of Experimental Psychology: Human Perception and Performance, 22, 582-603.
Ecuyer-Dab, I., & Robert, M. (2004). Have sex differences in spatial ability evolved from male competition for mating and female concern for survival? Cognition, 91, 221-257.
Gazzola, V., Aziz-Zadeh, L., & Keysers, C. (2006). Empathy and the somatotopic auditory mirror system in humans. Current Biology, 16, 1824-1829.
Patchay, S., Castiello, U., & Haggard, P. (2003). A crossmodal interference effect in grasping objects. Psychological Bulletin Reviews, 10, 924-931.
Zahariev M. A., & MacKenzie, C. L. (2007) Grasping at thin air: multimodal contact cues for reaching and grasping. Experimental Brain Research, 180, 69-84.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Castiello, Umberto
Dottorato (corsi e scuole):Ciclo 22 > Scuole per il 22simo ciclo > SCIENZE PSICOLOGICHE > PERCEZIONE E PSICOFISICA
Data di deposito della tesi:NON SPECIFICATO
Anno di Pubblicazione:20 Novembre 2009
Parole chiave (italiano / inglese):olfaction; action understanding; multisensory integration; fmri
Settori scientifico-disciplinari MIUR:Area 11 - Scienze storiche, filosofiche, pedagogiche e psicologiche > M-PSI/02 Psicobiologia e psicologia fisiologica
Struttura di riferimento:Dipartimenti > Dipartimento di Psicologia Generale
Codice ID:2195
Depositato il:12 Nov 2010 12:14
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Alink, A., Singer, W., & Muckli, L. J. (2008). Capture of auditory motion by vision is represented by an activation shift from auditory to visual motion cortex. The Journal of Neuroscience, 28, 2690-2697. Cerca con Google

Ansuini, C., Santello, M., Tubaldi, F., Massaccesi, S., & Castiello, U. (2007). Control of hand shaping in response to object shape perturbation. Experimental Brain Research, 180, 85-96. Cerca con Google

Ansuini, C., Tognin, V., Turella, L., & Castiello, U. (2007). Distractor objects affect fingers’ angular distances but not fingers’ shaping during grasping. Experimental Brain Research, 178, 194-205 Cerca con Google

Avikainen, S., Forss, N., & Hari, R. (2002). Modulated activation of the human SI and SII cortices during observation of hand actions. NeuroImage, 15, 640-646. Cerca con Google

Aziz-Zadeh, L., Iacoboni, M., Zaidel, E., Wilson, S., & Mazziotta, J. (2004). Left hemisphere motor facilitation in response to manual action sounds. European Journal of Neuroscience, 19, 2609-2612. Cerca con Google

Barker, S., Grayhem, P., Koon, J., Perkins, J., Whalen, A., & Raudenbush, B. (2003). Improved performance on clerical tasks associated with administration of peppermint odor. Perceptual Motor Skills, 97, 1007-1010. Cerca con Google

Bartels, A., Logothetis, N. K., & Moutoussis, K. (2008). fMRI and its interpretations: an illustration on directional selectivity in area V5/MT. Trends in Neuroscience, 31, 444-453. Cerca con Google

Beauchamp, M. S. (2005a). Statistical criteria in fMRI studies of multisensory integration. Neuroinformatics, 3, 93-113. Cerca con Google

Beauchamp, M. S. (2005b). See me, hear me, touch me: multisensory integration in lateral occipital-temporal cortex. Current Opinion in Neurobiology, 15, 145-153. Cerca con Google

Bock, O., & Jungling, S. (1999). Reprogramming of grip aperture in a double-step virtual grasping paradigm. Experimental Brain Research, 125, 61-66. Cerca con Google

Bonaiuto, J., Rosta, E., & Arbib, M. (2007). Extending the mirror neuron system model, I. Audible actions and invisible grasps. Biological Cybernetics, 96, 9-38. Cerca con Google

Born, R. T., & Bradley, D. C. (2005). Structure and function of visual area MT. Annual Review of Neuroscience, 28, 157-189. Cerca con Google

Brand, G., & Millot, J. L. (2001). Sex differences in human olfaction: between evidence and enigma. Quarterly Journal of Experimental Psychology, 54, 259-270. Cerca con Google

Brett, M., Anton, J. K., Valabregue, R., & Poline, J. B. (2002). Region of interest analysis using an SPM toolbox. NeuroImage, 16, abstract 497. Cerca con Google

Buccino, G., Lui, F., Canessa, N., Patteri, I., Lagravinese, G., Benuzzi, F., et al. (2004). Neural circuits involved in the recognition of actions performed by nonconspecifics: an FMRI study. Journal of Cognitive Neuroscience, 16, 114-126. Cerca con Google

Buccino, G., Binkofski, F., Fink, G. R., Fadiga, L., Fogassi, L., Gallese, V., et al. (2001). Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study. European Journal of Neuroscience, 13, 400-404. Cerca con Google

Calvert, G. A. (2001). Crossmodal processing in the human brain: insights from functional neuroimaging studies. Cerebral Cortex, 11, 1110-1123. Cerca con Google

Castiello, U. (1996). Grasping a fruit: selection for action. Journal of Experimental Psychology: Human Perception and Performance, 22, 582-603. Cerca con Google

Castiello, U. (1998). Attentional coding for three-dimensional objects and two-dimensional shapes. Differential interference effects. Experimental Brain Research, 123, 289–297. Cerca con Google

Castiello, U. (1999). Mechanisms of selection for the control of hand action. Trends in Cognitive Sciences, 3, 264-271. Cerca con Google

Castiello, U., Bennett, K. M., & Stelmach, G. E. (1993). Reach to grasp: the natural response to perturbation of object size. Experimental Brain Research, 94, 163-178. Cerca con Google

Castiello, U., Badcock, D. R., & Bennett, K. M. (1999). Sudden and gradual presentation of distractor objects: differential interference effects. Experimental Brain Research, 128, 550-556. Cerca con Google

Castiello, U., Zucco, G. M., Parma, V., Ansuini, C., Tirindelli, R. (2006). Cross-modal interactions between olfaction and vision when grasping. Chemical Senses,31, 665-671. Cerca con Google

Castiello, U., Tubaldi, F., Ansuini, C., Giordano, B., & Grassi, M. (2007). Multisensory integration during grasping movements. Società Italiana di Psicofisiologia, Abstract. Cerca con Google

Chieffi, S., Gentilucci, M., Allport, A., Sasso, E., & Rizzolatti, G. (1993). Study of selective reaching and grasping in a patient with unilateral parietal lesion. Dissociated effects of residual spatial neglect. Brain, 116, 1119-1137. Cerca con Google

Colebatch, J. G., & Gandevia, S. C. (1989). The distribution of muscular weakness in upper motor neuron lesions affecting the arm. Brain, 112, 749-763. Cerca con Google

Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis. I. Segmentation and surface reconstruction. NeuroImage, 9, 179-194. Cerca con Google

Decety, J., Grezes, J., Costes, N., Perani, D., Jeannerod, M., Procyk, E., et al. (1997). Brain activity during observation of actions. Influence of action content and subject’s strategy. Brain, 120, 1763-1777. Cerca con Google

Dember, W. N., Warm, J. S., & Parasuraman, R. (1995). Olfactory stimulation and sustained attention. In: A. N. Gilbert (Ed). Compendium of olfactory research (pp. 39-46). Dubuque (IA): Kendall/Hunt. Cerca con Google

Di Pellegrino, G., Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G, (1992). Understanding motor events: a neurophysiological study. Experimental Brain Research, 91, 176-180. Cerca con Google

Driver, J., & Noesselt, T. (2008). Multisensory interplay reveals crossmodal influences on ‘sensory-specific’ brain regions, neural responses, and judgments. Neuron, 57, 11-23. Cerca con Google

Duvernoi, H. M., & Bourgouin, P. (1999). The human brain: surface, blood supply, and three-dimensional sectional anatomy and MRI. 2nd ed. New York: Springer. Cerca con Google

Ecuyer-Dab, I., & Robert, M. (2004). Have sex differences in spatial ability evolved from male competition for mating and female concern for survival? Cognition, 91, 221-257. Cerca con Google

Eickhoff, S. B., Stephan, K. E., Mohlberg, H., Grefkes, C., Fink G. R., Amunts, K., et al. (2005). A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. NeuroImage, 25, 1325-1335. Cerca con Google

Etzel, J. A., Gazzola, V., & Keysers, C. (2008). Testing simulation theory with cross-modal multivariate classification of fMRI data. PLoS ONE, 3, e3690. doi:10.1371/journal.pone.0003690. Cerca con Google

Evangeliou, M. N., Raos, V., Galletti, C., & Savaki, H. E. (2009). Functional imaging of the parietal cortex during action execution and observation. Cerebral Cortex, 19, 624-639. Cerca con Google

Fadiga, L., Craighero, L., & Olivier, E. (2005). Human motor cortex excitability during the perception of others’ action. Current Opinion in Neurobiology, 15, 213-218. Cerca con Google

Fischl, B., Sereno, M. I., & Dale, A. M. (1999). Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. NeuroImage, 9, 195-207. Cerca con Google

Fogassi, L., & Gallese, V. (2004). Action as binding key to multisensory integration. In G. Calvert, C. Spence, & B. E. Stein (Eds.), The handbook of multisensory processes (pp. 425-441). MIT Press. Cerca con Google

Fogassi, L., Gallese, V., Fadiga, L., Luppino, G., Matelli, M., & Rizzolatti, G. (1996). Coding of peripersonal space in inferior premotor cortex (area F4). Journal of Neurophysiology, 76, 141-157. Cerca con Google

Fogassi, L., Ferrari, P. F., Gesierich, B., Rozzi, S., Chersi, F., & Rizzolatti, G. (2005). Parietal lobe: from action organization to intention understanding. Science, 29, 662-667. Cerca con Google

Frak, V., Paulignan, Y., & Jeannerod, M. (2001). Orientation of the opposition axis in mentally simulated grasping. Experimental Brain Research, 136, 120-127. Cerca con Google

Friston, K. J., Holmes, A. P., Worsley, K. J., Poline, J. B., Frith, C. D., & Frackowiak, R. S. J. (1995). Statistical parametric maps in functional imaging: a general linear approach. Human Brain Mapping, 2, 189-210. Cerca con Google

Friston, K. J., & Henson, R. N. (2006). Commentary on: divide and conquer; a defense of functional localisers. NeuroImage, 30, 1097-1110. Cerca con Google

Friston, K. J., Rotshein, P. Geng, J. J., Sterzer, P., & Henson, R. N. (2006). A critique of functional localisers. NeuroImage, 30, 1077-1087. Cerca con Google

Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain, 119, 593-609. Cerca con Google

Garcia-Falgueas, A., Junque, C., Gimenex, M., Caldu, X., Segovia, S., & Guillamon, A. (2006). Sex differences in the human olfactory system. Brain Research, 1116, 103-111. Cerca con Google

Gazzola, V., Aziz-Zadeh, L., & Keysers, C. (2006). Empathy and the somatotopic auditory mirror system in humans. Current Biology, 16, 1824-1829. Cerca con Google

Gazzola, V., Rizzolatti, G., Wicker, B., & Keysers, C. (2007). The anthropomorphic brain: the mirror neuron system responds to human and robotic actions. NeuroImage, 35, 1674-1684. Cerca con Google

Gazzola, V., & Keysers, C. (2009). The observation and execution of actions share motor and somatosensory voxels in all tested subjects: single-subject analyses of unsmoothed MRI data. Cerebral Cortex, 19, 1239-12355. Cerca con Google

Gazzola, V., & Keysers, C. (2009). The observation and execution of actions share motor and somatosensory voxels in all tested subjects: single-subject analyses of unsmoothed MRI data. Cerebral Cortex, 19, 1239-12355. Cerca con Google

Gentilucci, M., Castiello, U., Corradini, M. L., Scarpa, M., Umiltà, C., & Rizzolati, G. (1991). Influence of different types of grasping on the transport component of prehension movements. Neuropsychologia, 29, 361-378. Cerca con Google

Gentilucci, M., Daprati, E., & Gangitano, M. (1998). Haptic information differentially interferes with visual analysis in reaching-grasping control and in perceptual processes. Neuroreport, 9, 887-891. Cerca con Google

Giard, M. H., & Peronnet, F. (1999) Auditory-visual integration during multimodal object recognition in humans: a behavioral and electrophysiological study. Journal of Cognitive Neuroscience, 11, 473-490. Cerca con Google

Goodale, M. A., & Milner, A. D. (1991). A neurological dissociation between perceiving objects and grasping them. Nature, 349, 154-156. Cerca con Google

Goodwin, A. W., Jenmalm, P., & Johansson, R. S. (1998). Control of grip force when tilting objects: effect of curvature of grasped surfaces and applied tangential torque. The Journal of Neuroscience, 18, 10724-10734. Cerca con Google

Grafton, S. T., Arbib, M. A., Fadiga, L., & Rizzolatti, G. (1996). Localization of grasp representations in humans by positron emission tomography. 2. Observation compared with imagination. Experimental Brain Research, 112, 103-111. Cerca con Google

Graziano, M. S., Yap, G. S., & Gross, C. G. (1994). Coding of visual space by premotor neurons. Science, 266, 1054-1057. Cerca con Google

Graziano, M. S., Hu, X. T., & Gross, C. G. (1997). Visuospatial properties of ventral premotor cortex. Journal of Neurophysiology, 77, 2268-2292. Cerca con Google

Graziano, M. S., Reiss, L. A., & Gross, C. G. (1999). A neuronal representation of the location of nearby sounds. Nature, 397, 428-430. Cerca con Google

Grèzes, J., Armony, J. L., Rowe, J., & Passingham, R. E. (2003). Activations related to “mirror” and “canonical” neurones in the human brain: an fMRI study. NeuroImage, 18, 928-933. Cerca con Google

Gottfried, J. A., & Dolan, R. J. (2003). The nose smells what the eye sees: crossmodal visual facilitation of human olfactory perception. Neuron, 39, 375-386. Cerca con Google

Grosbras, M. H., & Paus, T. (2006). Brain networks involved in viewing angry hands or faces. Cerebral Cortex, 16, 1087-1096. Cerca con Google

Hagen, M. C., Franzén, O., McGlone, F., Essick, G., Dancer, C., & Pardo, J. V. (2002). Tactile motion activates the human middle temporal/V5 (MT/V5) complex. European Journal of Neuroscience, 16, 957-964. Cerca con Google

Hamilton, A. F., & Grafton, S. T. (2006). Goal representation in human anterior intraparietal sulcus. The Journal of Neuroscience, 26, 1133-1137. Cerca con Google

Hamilton, A. F., & Grafton, S. T. (2008). Action outcomes are represented in human inferior frontoparietal cortex. Cerebral Cortex, 18, 1160-1168. Cerca con Google

Hari, R., Forss, N., Avikainen, S., Kirveskari, E., Salenius, S., & Rizzolatti, G. (1998). Activation of human primary motor cortex during action observation: a neuromagnetic study. Proceedings of the National Academy of Sciences of United States of America, 95, 15061-15065. Cerca con Google

Hick, W. E. (1952). On the rate of gain of information. Quarterly Journal of Experimental Psychology, 4, 11-26. Cerca con Google

Hummel, T., Knecht, M., & Kobal, G. (1996). Peripherally obtained electrophysiological responses to olfactory stimulation in man: electro-olfactograms exhibit a smaller degree of desensitization compared with subjective intensity estimates. Brain Research, 717, 160-164. Cerca con Google

Jakobson, L. S., & Goodale, M. A. (1991). Factors affecting higher-order movement planning: a kinematic analysis of human prehension. Experimental Brain Research, 86, 199-208. Cerca con Google

Jackson, S. R., Jackson, G. M., & Rosicky, J. (1995). Are non-relevant objects represented in working memory? The effect of non-target objects on reach and grasp kinematics. Experimental Brain Research, 102, 519-530. Cerca con Google

Jeannerod, M. (1981). Specialized channels for cognitive responses. Cognition, 10, 135-137. Cerca con Google

Jenmalm, P., Dahlstedt, S., & Johansson, R. S. (2000). Visual and tactile information about object-curvature control fingertip forces and grasp kinematics in human dexterous manipulation. Journal of Neurophysiology, 84, 2984-2997. Cerca con Google

Johansson, R. S., & Westling, G. (1984). Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Experimental Brain Research, 56, 550-564. Cerca con Google

Jordan, M. I., & Wolpert, D. M. (1999). Computational motor control. In M. Gazzaniga (Ed.). The Cognitive Neurosciences (pp. 121-137). Cambridge (MA): MIT Press. Cerca con Google

Kawato, M. (1999). Internal models for motor control and trajectory planning. Current Opinion in Neurobiology, 9, 718-727. Cerca con Google

Keysers, C., & Perrett, D. I. (2004). Demystifying social cognition: a Hebbian perspective. Trends in Cognitive Sciences, 8, 501-507. Cerca con Google

Keysers, C., Kohler, E., Umiltà, M. A., Nanetti, L., Fogassi, L., Gallese, V. (2003). Audiovisual mirror neurons and action recognition. Experimental Brain Research, 153, 628-636. Cerca con Google

Kilner, J. M., Neal, A., Weiskopf, N., Friston, K. J., Frith, C. D. (2009). Evidence of mirror neurons in human inferior frontal gyrus. The Journal of Neuroscience, 29, 10153-10159. Cerca con Google

Kohler, E., Keysers, C., Umiltà, M. A., Fogassi, L., Gallese, V., & Rizzolatti, G. (2002). Hearing sounds, understanding actions: action representation in mirror neurons. Science, 297, 846-848. Cerca con Google

Klatzky, R. L., & Lederman, S. J. (1987). The intelligent hand. In: G. H. Bower (Ed.), The psychology of learning and motivation (pp. 121-151). San Diego: Academic Press. Cerca con Google

Klatzky, R. L., Lederman, S. J., & Reed, C. (1987) There’s more to touch than meets the eye: the salience of object attributes for haptics with and without vision. Journal of Experimental Psychology: General, 116, 356-369. Cerca con Google

Klatzky, R. L., Pai, D. K., & Krotkov, E. P. (2000) Perception of material from contact sounds. Presence: Teleoperators & Virtual Environments, 9, 399-410. Cerca con Google

Kriegeskorte, N., Simmons, W. K., Bellgowan, P. S., & Baker, C. I. (2009). Circular analysis in systems neuroscience: the dangers of double dipping. Nature Neuroscience, 12, 535-540. Cerca con Google

Kritikos, A., Bennett, K. M., Dunai, J., & Castiello, U. (2000). Interference from distractors in reach-to-grasp movements. Quarterly Journal of Experimental Psychology, 53, 131-151. Cerca con Google

Kritikos, A., Dunai, J., & Castiello, U. (2001). Modulation of reach-to-grasp parameters: semantic category, volumetric properties and distractor interference?. Experimental Brain Research, 138, 54-61. Cerca con Google

Laurienti, P., Perrault, T. J., Stanford, T. R., Wallace, M. T., & Stein, B. E. (2005). On the use of superadditivity as a metric for characterizing multisensory integration in functional neuroimaging studies. Experimental Brain Research, 166, 289-297. Cerca con Google

Lui, F., Buccino, G., Duzzi, D., Benuzzi, F., Crisi, G., Baraldi, P., et al. (2008). Neural substrates for observing and imagining non-object-directed actions. Social Neuroscience, 3, 261-275. Cerca con Google

Lundstrom, J. N., & Hummel, T. (2006). Sex-specific hemispheric differences in cortical activation to bimodal odor. Behavioural Brain Research, 166, 197-203. Cerca con Google

Mai, J.K., Assheuer, J., & Paxinos, G. (2004). Atlas of the human brain (2nd ed.). San Diego, CA: Elsevier Academic Press. Cerca con Google

Majdandžić, J., Bekkering, H., van Schie, H. T., & Toni, I. (2009). Movement-specific repetition suppression in ventral and dorsal premotor cortex during action observation. Cerebral Cortex, doi:10.1093/cercor/bhp049. Cerca con Google

Marteniuk, R. G., MacKenzie, C. L., Jeannerod, M., Athenes, S., & Dugas, C. (1987). Constraints on human arm movement trajectories. Canadian Journal of Psychology, 41, 365-378. Cerca con Google

Mayka, M. A., Corcos, D. M., Leurgans, S. E., & Vaillancourt, D. E. (2006). Three-dimensional locations and boundaries of motor and premotor cortices as defined by functional brain imaging: a meta-analysis. NeuroImage, 31, 1453-1474. Cerca con Google

Meegan, D. V., & Tipper, S. P. (1998). Reaching into cluttered visual environments: Spatial and temporal influences of distracting objects. Quarterly Journal of Experimental Psychology, 51, 225-249. Cerca con Google

Millot, J. L., Brand, G., & Morand, N. (2002). Effects of ambient odors on reaction time in humans. Neuroscience Letters, 322, 79-82. Cerca con Google

Newell, F. N. (2004). Cross-modal object recognition. In G. Calvert, C. Spence, & B. E. Stein (Eds.), The handbook of multisensory processes (pp. 425-441). MIT Press. Cerca con Google

Nelissen, K., Luppino, G., Vanduffel, W., Rizzolatti, G., & Orban, G. A. (2005). Observing others: multiple action representation in the frontal lobe. Science, 310, 332-336. Cerca con Google

Österbauer, R. A., Matthews, P. M., Jenkinson, M., Beckmann, C. F., Hansen, P. C., et al. (2005). Color of scents: chromatic stimuli modulate odor responses in the human brain. Journal of Neurophysiology, 93, 3434-3441. Cerca con Google

Oztop, E., & Arbib, M. A. (2002). Schema design and implementation of the grasp-related mirror neuron system. Biological Cybernetics, 87, 116-140. Cerca con Google

Patchay, S., Castiello, U., & Haggard, P. (2003). A crossmodal interference effect in grasping objects. Psychological Bulletin Reviews, 10, 924-931. Cerca con Google

Patchay, S., Haggard, P., & Castiello, U. (2006). Cross-modal links in action: evidence for an object-centred reference frame for control of grasping. Experimental Brain Research, 23, 1-11. Cerca con Google

Peeters, R., Simone, L., Nelissen, K., Fabbri-Destro, M., Vanduffel, W., Rizzolatti G., et al. (2009). The representation of tool use in humans and monkeys: common and uniquely human features. The Journal of Neuroscience, 29, 11523-11539. Cerca con Google

Perani, D., Fazio, F., Borghese, N. A., Tettamanti, M., Ferrari, S., Decety, J., et al. (2001). Different brain correlates for watching real and virtual hand actions. NeuroImage, 14, 749-758. Cerca con Google

Porter, J., Anand, T., Johnson, B., Khan, R. M., & Sobel, N. (2005). Brain mechanisms for extracting spatial information from smell. Neuron, 47, 581-592. Cerca con Google

Pratt, J., & Abrams, R. A. (1994). Action-oriented inhibition: effects of distractors on movement planning and execution. Human Movement Science, 13, 245-254. Cerca con Google

Puce, A., & Perret, D. (2003). Electrophysiology and brain imaging of biological motion. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 358, 435-445. Cerca con Google

Raos, V., Evangeliou, M. N., & Savaki, H. E. (2007). Mental simulation of action in the service of action perception. The Journal of Neuroscience, 27, 12675-12683. Cerca con Google

Raos, V., Evangeliou, M. N., & Savaki, H. E. (2004). Observation of action: grasping with the mind’s hand. NeuroImage, 23, 193-201. Cerca con Google

Rizzolatti, G., & Luppino, G. (2001). Neuron, 31, 889-901. Cerca con Google

Rizzolatti, G., Fogassi, L., & Gallese, V. (2001). Neurophysiological mechanisms underlying the understanding and imitation of action. Nature Reviews Neuroscience, 2, 661-670. Cerca con Google

Rolls, E. T., & Baylis, L. (1994). Gustatory, olfactory, and visual convergence within the primate orbitofrontal cortex. The Journal of Neuroscience, 14, 5437-5452. Cerca con Google

Rossi, S., De Capua, A., Pasqualetti, P., Ulivelli, M., Fadiga, L., Falzarano, V., et al. (2008). Distinct olfactory cross-modal effects on the human motor system. PLoS ONE, 3, e1702. doi:10.1371/journal.pone.0001702. Cerca con Google

Sakreida, K., Schubotz, R. I., Wolfensteller, U., & von Cramon, D. Y. (2005). Motion class dependency in observers’ motor areas revealed by functional magnetic resonance imaging. The Journal of Neuroscience, 25, 1335-1342. Cerca con Google

Santello, M., Flanders, M., & Soechting, J. F. (2002). Patterns of hand motion during grasping and the influence of sensory guidance. The Journal of Neuroscience, 22, 1426-1435. Cerca con Google

Savic, I., Gulyas, B., Larsson, M., & Roland, P. (2000). Olfactory functions are mediated by parallel and hierarchical processing. Neuron, 26, 735-745. Cerca con Google

Saxe, R., Brett, M., & Kanwisher, N. (2006). Divide and conquer: A defense of functional localizers. NeuroImage, 30, 1088-1096. Cerca con Google

Scheef, L., Boecker, H., Daamen, M., Fehse, U., Landsberg, M.W., Granath, D.O, et al. (2009). Multimodal motion processing in area V5/MT: evidence from an artificial class of audio-visual events. Brain Research, 1252, 94-104. Cerca con Google

Stein, B. E., & Stanford, T. R. (2008). Multisensory integration: current issues from the perspective of the single neuron. Nature Reviews Neuroscience, 9, 255-266. Cerca con Google

Stein, B. E., & Meredith, M. A. (1990). Multisensory integration-neural and behavioural solutions for dealing with stimuli from different sensory modalities. Annals of the New York Academy of Sciences, 608, 51-70. Cerca con Google

Stein, B. E., Wallace, M. T., & Meredith, M. A. (1995). Neural mechanisms mediating attention and orientation to multisensory cues. In: M. S. Gazzaniga (Ed), The Cognitive Neurosciences (pp. 683-701). London: MIT Press. Cerca con Google

Stevenson, R. J., & Wilson, D. A. (2007). Odour perception: an object-recognition approach. Perception, 36, 1821-1833. Cerca con Google

Stockhorst, U., & Pietrowsky, R. (2004). Olfactory perception, communication, and the nose-to-brain pathway. Physiology & Behavior, 83, 3-11. Cerca con Google

Tabert, M. H., Steffener, J., Albers, M. W., Kern, D. W., Michael, M., Tang, H., et al. (2007). Validation and optimization of statistical approaches for modelling odorant-induced fMRI signal changes in olfactory-related brain areas. NeuroImage, 34, 1375-1390. Cerca con Google

Tai, Y. F., Scherfler, C., Brooks, D. J., Sawamoto, N., & Castiello, U. (2004). The human premotor cortex is ‘mirror’ only for biological actions. Current Biology, 14, 117-120. Cerca con Google

Thioux, M., Gazzola, V., & Keysers, C. (2008). Action understanding: how, what and why. Current Biology, 18, 431-434. Cerca con Google

Tipper, S. P., Howard, L. A., Jackson, S. R. (1997). Selective reaching to grasp: evidence for distractor interference effects. Visual Cognition, 4, 1-38. Cerca con Google

Tipper, S. P., Howard, L. A., & Houghton, G. (1998). Action-based mechanisms of attention. Philosophical Transactions of the Royal Society B, 353, 1385–1393. Cerca con Google

Tipper, S. P., Lortie, C., & Baylis, G. C. (1992). Selective reaching: evidence for action-centered attention. Journal of Experimental Psychology: Human Perception and Performance, 18, 891-905. Cerca con Google

Toulouse, E., & Vaschide, N. (1899). Mesure de l'odorant chez l'homme et chez la femme. Comptes Rendus de la Société de Biologie, 51, 381-383. Cerca con Google

Tubaldi, F., Ansuini, C., Tirindelli, R., & Castiello, U. (2008a). The grasping side of odours. PLoS ONE, 3, e1795. doi:10.1371/journal.pone.0001795. Cerca con Google

Tubaldi, F., Ansuini, C., Demattè, M. L., Tirindelli, R., & Castiello, U. (2008b). Effects of olfactory stimuli on arm reaching duration. Chemical Senses, 33, 433-440. Cerca con Google

Tubaldi, F., Ansuini, C., Tirindelli, R., & Castiello, U. (2009). The effects of task-irrelevant olfactory information on the planning and the execution of reach-to-grasp movements. Chemosensory Perception, 2, 25-31 Cerca con Google

Turella, L., Erb, M., Grodd, W., & Castiello, U. (2009). Visual features of an observed agent do not modulate human brain activity during action observation. NeuroImage, 46, 844-853. Cerca con Google

Umiltà, M. A., Kohler, E., Gallese, V., Fogassi, L., Fadiga, L., Keysers, C., et al. (2001). I know what you are doing. A neurophysiological study. Neuron, 31, 155-165. Cerca con Google

Van Beers, R. J., Baraduc, P., & Wolpert, D. M. (2002). Role of uncertainty in sensorimotor control. Philosophical Transactions of the Royal Society B, 357, 1137-1145. Cerca con Google

Velle, W. (1987). Sex differences in sensory functions. Perspective in Biology and Medicine, 30, 490-523. Cerca con Google

Villarreal, M., Fridman, E. A., Amengual, A., Falasco, G., Gerscovich, E. R., Ulloa, E. R., et al. (2008). The neural substrate of gesture recognition. Neuropsychologia, 46, 2371-2382. Cerca con Google

Warm, J. S., Dember, W. N., & Parasuraman, R. (1991). Effects of olfactory stimulation on performance and stress in a visual sustained attention task. Journal of the Society of Cosmetic Chemists, 42, 199-210. Cerca con Google

Wheaton, K. J., Thompson, J. C., Syngeniotis, A., Abbott, D. F., & Puce, A. (2004). Viewing the motion of human body parts activates different regions of premotor, temporal, and parietal cortex. NeuroImage, 22, 277-288. Cerca con Google

Winges, S. A., Weber, D. J., & Santello, M. (2003). The role of vision on hand preshaping during reach to grasp. Experimental Brain Research, 152, 489-498. Cerca con Google

Wolpert, D. M., & Ghahramani, Z. (2000). Computational principles of movement neuroscience. Nature Neuroscience, 3, 1212-1217. Cerca con Google

Wysocki, C. J., & Gilbert, A. N. (1989). National Geographic smell survey: Effects of age are heterogeneous. Annals of the New York Academy of Science, 56, 112-128. Cerca con Google

Yousem, D. M., Maldjian, J. A., Siddiqui, F., Hummel, T., Alsop, D. C., Geckle, R. J., et al. (1999). Gender effects on odor-stimulated functional magnatic resonance imaging. Brain Research, 818, 480-487. Cerca con Google

Zahariev M. A., & MacKenzie, C. L. (2007). Grasping at thin air: multimodal contact cues for reaching and grasping. Experimental Brain Research, 180, 69-84. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record