Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Locascio, Antonella (2008) Vernalization downregulates Flowering Locus C in Cichorium intybus. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
4Mb
[img]
Anteprima
Documento PDF
2097Kb

Abstract (inglese)

Since proper timing of flowering is critical for the survival of plant species, plants have evolved a complex genetic network to regulate their transition to flowering in response to
endogenous signals and environmental cues. In winter annuals ecotypes of Arabidopsis, a flowering repressor, FLOWERING LOCUS C (FLC), a MADS box transcription factor, is expressed at such level as to inhibit flowering in the first growing season. FLC expression is enhanced by FRIGIDA (FRI) to levels that inhibit the transition to flowering by repressing the expression of the genes often referred to as Floral Pathways Integrators.
The main process promoting flowering by the repression of FLC is the vernalization and the duration of cold has been shown to be proportional to the degree of down-regulation of FLC; such repression is maintained for the rest of the plant life even after cold exposure ends, but is restored after meiosis. The repression involves epigenetically stable modifications in FLC chromatin that include a H3 Lys27 trimethylation (H3K27me3) and a H3 Lys9 trimethylation, (Sung et al, 2006).
Interestingly, for the light-dependent, autonomous and GA integration and meristematic pathways, comparative genetic approaches show that flowering time genes are conserved between Arabidopsis and a large range of crop species, including legumes and cereals. By contrast, the vernalization pathway seems to be only partially conserved, since FLC and FRI were not characterized in dicots other than Brassicaceae, and recently in sugar beet, vitis and tomato.
Wild chicory (Cichorium intybus L.) is a biennial species which requires vernalization to flower. In Italy different types of chicory (the so called Italian red and variegate types) have been selected by farmers as leafy vegetable. These types show quite different classes of precocity in relation to flowering. Given the high heterogeneity, in regard to flowering, manifested by plants belonging to the same variety, the "control" of the switch by agronomical procedures results difficult. The knowledge about the genetic control of flowering time in chicory could be useful to enhance the vegetative phase and then, increase the productivity of the crop.
In our study, we are investigating the molecular basis that regulate the switch to flower in chicory by vernalization, to verify whether such mechanism is the same that controls flowering in Arabidopsis, and, finally, to address the diversity of the classes of precocity to one of the cases known for this model plant. We isolated FLC homologues from chicory and characterized their expression patterns in plant tissues and in response to vernalization. We also studied the pattern of cytosine methylation in chicory genomic DNA in response to vernalization. In addition, the vernalization-mediated decrease of FLC transcript was related with changes in SAM morphology. Biological function of CiFLC has been studied by AtFRIflc3 complementation. Up to now our result indicate that arabidopsis and chicory share homologies in regulating FLC expression in the vernalization response, but the absence of complementation of the mutant suggest a disagree in biological function of CiFLC or a loss of function of the transgene in Arabidopsis genetic background. Further analysis will be conducted to define if the machinery in FLC regulation and its biological function is shared between the two species. For this purpose, chicory mutants will be generated. Other aim of this work has been the identification of FLC genomic sequences in chicory. For this purpose, genome walking technique was used. Knowledge of the genomic sequence of CiFLC will allow comparing the regulative regions with those of AtFLC and performing experiments of chromosome hybridization (i.e. FISH). The goal is identify the number of copies of the gene and characterize its position within the chromosomes. With these results we will be able to formulate hypothesis about the evolution of FLC in Cichorium intybus.


Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Varotto, Serena
Correlatore:Amasino, Richard - Lucchin, Margherita
Dottorato (corsi e scuole):Ciclo 20 > Scuole per il 20simo ciclo > SCIENZE DELLE PRODUZIONI VEGETALI > AGRONOMIA AMBIENTALE
Ciclo 20 > Scuole per il 20simo ciclo > SCIENZE DELLE PRODUZIONI VEGETALI > AGROBIOTECNOLOGIE
Data di deposito della tesi:2008
Anno di Pubblicazione:2008
Parole chiave (italiano / inglese):Fioritura, vernalizzazione, FLC, radicchio
Settori scientifico-disciplinari MIUR:Area 07 - Scienze agrarie e veterinarie > AGR/07 Genetica agraria
Struttura di riferimento:Dipartimenti > Dipartimento di Agronomia Ambientale e Produzioni Vegetali
Codice ID:220
Depositato il:13 Nov 2008
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Abe M et al. 2005. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309, 1052-1056 Cerca con Google

2. Alabadì D. et al 2001. Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian cock. Science 293, 880-883 Cerca con Google

3. Alvarez-Buylla E.R. et al 2000. MADS-box gene evolution beyond flowers: expression in pollen, endosperm, guard cell, roots and trichomes, Plant J. 24, 1-11 Cerca con Google

4. Amasino R. 2004. Vernalization, competence and the epigenetic memory of winter. Plant Cell 16, 2553-2559 Cerca con Google

5. Amasino R.M.2003. Flowering time: a pathway that begins at the 3' end. Curr. Biology 13,670-672 Cerca con Google

6. Amasino R.M.2004. Take a cold flower. Nature Genetics 36, 111-112 Cerca con Google

7. An H. et al. 2004 CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis. Development 131,3615-3626 Cerca con Google

8. Ausin I. et al. 2004. Regulation of flowering time by FVE, a retinoblastomaassociated protein. Nature Genet 36, 162-166 Cerca con Google

9. Badila, P., Lauzac, M., Paulet, P., 1985. The characteristics of light in floral induction in vitro of Cichorium intybus. The possible role of phytochrome. Physiol. Plant. 65, 305-309. Cerca con Google

10. Balasubramanian S. et al. 2006. Potent induction of Arabidopsis thaliana flowering by elevated growth temperature. PLoS Genetics vol.2, Issue 7,980-989 Cerca con Google

11. Bastow R. et al. 2004. Vernalization requires epigenetic silencing of FLC by histone methylation. Nature 427, 164-167 Cerca con Google

12. Bastow R., Dean C. 2003. Plant sciences. Deciding when to flower. Science 302, 1695-1696 Cerca con Google

13. Bird A.2001. DNA methylation patterns and epigenetic memory. Genes Dev. 16, 6-21 Cerca con Google

14. Blazquez et al 1997. LEAFY expression and flower initiation in Arabidopsis. Development 124, 3835-3844 107 Cerca con Google

15. Blazquez et al. 1998. Gibberellins promote flowering in Arabidopsis by activating the LFY promoter. Plant Cell 10,791-800 Cerca con Google

16. Blazquez et al. 1998.Gibberellin promote flowering in Arabidopsis by activating the LEAFY promoter. Plant Cell 10,791-800 Cerca con Google

17. Blazquez M., Weigel 1997. LEAFY expression and flower initiation in Arabidopsis Cerca con Google

18. Blazquez M.A., Ahn J.H., Weigel D. 2003. A thermosensory pathway controlling flowering time in Arabidopsis thaliana. Nature genetics 33,168-171 Cerca con Google

19. Blazquez M.A., Green R., Nilsson O., Sussman M.R., Weigel D.1998. Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter. The Plant Cell 10, 791-800 Cerca con Google

20. Blazquez M.A., Soowal L.N., Lee I., Weigel D. 1997. LEAFY expression and flower initiation in Arabidopsis. Development 124, 3835-3844 Cerca con Google

21. Borner R. et al 2000. A MADS domain gene involved in the transition to flowering in Arabidopsis. Plant J. 24,591-599 Cerca con Google

22. Burn JE et al. 1991. DNA methylation, vernalization, and the transition to flowering. Proc. Natl. Acad. Sci. USA 90, 287-291 Cerca con Google

23. Busch M.A., Bomblies K., Weigel D. 1999. Activation of a floral homeotic gene in Arabidopsis. Science 285, 585-587 Cerca con Google

24. Bush et al 1999. Activation of a floral homeotic gene in Arabidopsis. Science 285, 585-587 Cerca con Google

25. Cai X. et al. 2007. A putative CCAAT-Binding transcription factor is a regulator of flowering timing in Arabidopsis. Plant Physiol.145,98-105 Cerca con Google

26. Carls and Fletcher, 2003. Shoot apical meristem maintenance: the art of a dynamic balance trends in Plant Science 8, 394-401 Cerca con Google

27. Chailakhyan M.K. 1968. Internal factors of plant flowering. Annual Review in Plant Physiology 19, 1-36 Cerca con Google

28. Cheng H. et al. 2004. Gibberellin regulates Arabidopsis floral development via suppression of DELLA protein function. Development 131, 1055-1064 Cerca con Google

29. Choi K. et al. 2007. Arabidopsis homologs of component of the SWR1 complex regulate flowering and plant development. Development 134, 1931-1941 108 Cerca con Google

30. Chouard P. 1960. Vernalization and itsrelations to dormancy. Annu. Rev. Plant physiol 11, 191-237 Cerca con Google

31. Corbesier L. et al. 2007.FT protein Movement contributes to long-distance signalling in floral induction of Arabidopsis. Science 316,1030-1033 Cerca con Google

32. Deal RB et al. 2007. Repression of flowering in Arabidopsis requires activation of FLOWERING LOCUS C expression by the histone variant H2A.Z. Plant Cell 19, 74-83 Cerca con Google

33. Deal RB. Et al. 2005. The nuclear actin-related protein ARP6 is a pleiotropic developmental regulator required for the maintenance of FLOWERING LOCUS C expression and repression of flowering in Arabidopsis. Plant Cell 17, 2633-2646 Cerca con Google

34. Demeulemeester, M.A.C., Voet, A., Vandemierop, A., Deproft, M.P., 1995. Stem elongation and floral initiation on in vitro chicory root explants: influence of photoperiod. Plant Growth Regul. 16, 233-238. Cerca con Google

35. Deng WW. Et al. 2007. Involvement of the histone acetyltransferase AtHAC1 in the regulation of flowering time via repression of FLOWERING LOCUS C in Arabidopsis. Plant Physiol. 143, 1660-1668 Cerca con Google

36. Dennis ES., Peacock WJ. 2007. Epigenetic regulation of flowering. Curr Opin Plant Biol 10, 1-8 Cerca con Google

37. Devlin P.F.2002. Signs of the time environmental input to the circadian clock. J. Exp. Bot. 53, 1535-1550 Cerca con Google

38. Devlin PF.2002 Signs of the time: environmental input to the circadian clock. J.Exp.Bot 53, 1535-1550 Cerca con Google

39. Dill A. et al. 2001. The DELLA motif is essential for gibberellin-induced degradation of RGA. Proc. Natl. Acad. Sci. USA 98, 14162-14167 Cerca con Google

40. Domagalska M.A. et al. 2007. Attenuation of brassinosteroid signalling enhances FLC expression and delays flowering. Development 134, 2841-2850 Cerca con Google

41. Dorota Kwiatkowska, 2006. Flower primordium formation at the Arabidopsis shoot apex: quantitative analysis of surface geometry growth. J. of Experimental Botany 57, 571-580 Cerca con Google

42. Doyle M. et al. 2005. HUA2 is required for the expression of floral repressors in Arabidopsis thaliana. Plant J. 41, 376-385 Cerca con Google

109 Cerca con Google

43. Doyle M.R. et al. 2002. The ELF4 gene controls circadian rhythms and flowering time in Arabidopsis thaliana. Nature 419, 74-77 Cerca con Google

44. Farrè E.M. et al 2005. Overlapping and distinct roles of PRR7 and PRR9 in the Arabidopsis circadian clock. Curr. Biol 15, 47-54 Cerca con Google

45. Finnegan E.J. et al. 2005. The downregulation of FLOWERING LOCUS C (FLC) expression in plants with low levels of DNA methylation and by vernalization occurs by distinct mechanisms. The Plant Journal 44, 420-432 Cerca con Google

46. Finnegan EJ, et al. 1998. DNA methylation and the promotion of flowering by vernalization.Proc. Natl. Acad. Sci. USA 95, 5824-5829 Cerca con Google

47. Finnegan. E.J. et al. 2004. A cluster of Arabidopsis genes with a coordinate response to an environmental stimulus. Curr. Biol 14, 911-916 Cerca con Google

48. Fornara F. oral communication 2007. A clade of related DOF transcription factors acts in the phloem to repress flowering. Workshop Molecular mechanisms controlling flower development. Acquafredda di Maratea 12th-16th June 2007 Cerca con Google

49. Gardner M.J. et al 2006. How plant tell the time. Biochem J. 397, 15-24 Cerca con Google

50. Gazzani S. et al. 2003. Analysis of molecular basis of flowering time variation in Arabidopsis accessions. Plant Physiol. 132, 1107-1114 Cerca con Google

51. Gendall AR et al. 2001. The VERNALIZATION2 gene mediates the epigenetic regulation of vernalization in Arabidopsis. Cell 107, 525-535 Cerca con Google

52. Gianquinto, G., Pimpini, F., 1989. The influence of temperature on growth, bolting and yield of chicory cv. Rosso di Chioggia (Cichorium intybus L.). J. Hortic. Sci. 64, 687-695. Cerca con Google

53. Gianquinto, G., Pimpini, F., 1995. Morphological and physiological aspects of phase transition in radicchio (Cichorium intybus L. var. Silvestre Bischoff): the influence of temperature. Adv. Hortic. Sci. 9, 192-199. Cerca con Google

54. Gianquinto, 1997 Morphological and physiological aspects of phase transition in radicchio (Cichorium intybus L. var. Silvestre Bisch) Cerca con Google

55. Gomez-Mena et al. 2001. Early bolting in short days: an Arabidopsis mutation that causes early flowering and partially suppresses the floral phenotype of leafy. Plant Cell 13, 1011-1024 110 Cerca con Google

56. Gordon G. Simpson and C. Dean. 2002. Arabidopsis, the rosetta stone of flowering time? Science vol 296, 285-289 Cerca con Google

57. Greb T. et al.2006. The PHD finger protein VRN5 functions in the epigenetic silencing of Arabidopsis FLC Curr Biol. 2006 Dec 12 Cerca con Google

58. Harmer S.L.,Panda S., Kay SA.2001 Molecular bases of circadian rhythms. Annu. Rev.Cell. Dev. Biol. 17,215-253 Cerca con Google

59. Hayama R, Coupland G. 2003. Shedding light on the circadian clock and the photoperiodic control of flowering. Curr. Opin, Plant Biol. 6, 13-19 Cerca con Google

60. Hazen S.P. et al 2005. LUX ARRHYTHMO encodes a Myb domain protein essential for circadian rhythms. Proc. Natl. Acad. Sci. USA 102,10387-10392 Cerca con Google

61. He et al.2003. Science 302,1751 Cerca con Google

62. He Y. et al. 2006. PAF1-complex.mediated histone methylation of FLOWERING LOCUS C chromatin is required for the vernalization-responsive, winter-annual habit in Arabidopsis. Genes Devel. 18, 2774-2784 Cerca con Google

63. He Y. et al. 2004. PAF1-complex-mediated histone methylation of FLOWERING LOCUS C chromatin is required for the vernalization-responsive, winter-annual habit in Arabidopsis. Genes Dev. 18, 2774-2784 Cerca con Google

64. Helleboid et al., 1998. Extra cellular beta-1,3-glucanases are induced during early somatic embryogenesis in Cichorium. Planta 205: 56-63 Cerca con Google

65. Henderson I. R. et al. 2003. The need for winter in the switch to flowering. Annual Rev. Genet 37,371-392 Cerca con Google

66. Henderson I.R., et al. 2005. An allelic series reveals essential roles for FY in plant development in addition to flowering-time control. Development 132, 3597-3607 Cerca con Google

67. Hepworth S.R. et al. 2002.Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motif. Embo J. 21,4327-4337 Cerca con Google

68. Imazumi T., Kay SA. 2006. Photoperiodic control of flowering: not only by coincidence. Trends in Plant Science 11, 1360-1385 Cerca con Google

69. Iwasaki T. et al 1995. Identification of a cis- regulatory region of a gene in Arabidopsis thaliana whose induction by dehydration is mediated by abscissic acid and requires protein synthesis. Mol. Gen. Genet. 247, 391-398 111 Cerca con Google

70. Jack T. 2004. Molecular and genetic mechanism of floral control. Plant Cell 16, S1-17 Cerca con Google

71. Jaeger E.K., Wigge P.A. 2007. FT protein act as a long-range signal in Arabidopsis. Current Biology 17, 1050-1054 Cerca con Google

72. Jaeger K, Wigge P. 2007. FT protein acts as a long-range signal in Arabidopsis. Current Biology 17,1050-1054 Cerca con Google

73. Jiang D. et al 2007. Arabidopsis relatives of the human Lysine-Specific Demethylase1 repress the expression of FWA and FLOWERING LOCUS C and thus promotes the floral transition. Plant Cell preview section at the October 30th 2007 Cerca con Google

74. Johanson U. et al. 2000. Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science 290, 344-347 Cerca con Google

75. Juhyun K. oral communication. SUPPRESSOR OF FRIGIDA11 has a novel FLC activation mechanism in Arabidopsis. Workshop Molecular mechanisms controlling flower development. Acquafredda di Maratea 12th-16th June 2007 Cerca con Google

76. Jumg J-H., et al. 2007.The GIGANTEA-Regulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis. The Plant Cell Preview. On-line at the Oct 24th 2007 Cerca con Google

77. Kardailsky I. Shukla VK, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, Chory J, Harrison MJ, Weigel D. 1999. Activation tagging of the floral inducer FT. Science 286, 1962-1965 Cerca con Google

78. Kaufmann K., Angenent G. oral communication. Molecular mechanisms of target gene selection by MADS-box transcription factors. Workshop Molecular mechanisms controlling flower development. Acquafredda di Maratea 12th-16th June 2007 Cerca con Google

79. Kieffer M., Davies B. 2001. Developmental programmes in floral organ formation. Semin. Cell. Devel. Biol 12, 373-380 Cerca con Google

80. Kim SY et al. 2005. Establishment of the vernalization-responsive, winter-annual habit in Arabidopsis requires a putative histone H3 methyl transferase. Plant Cell 17, 3301-3310 Cerca con Google

81. Kim. S. et al 2006. SUPPRESSOR OF FRIGIDA4, encoding a C2H2-Type zinc finger protein, represses flowering by transcriptional activation of Arabidopsis FLOWERING LOCUS C. The Plant Cell 18, 2985-2998 112 Cerca con Google

82. Klose RJ. Et al. 2006. The transcriptional repressor JHDM3A demethylates trimethyl histone H3 lysine 9 and lysine 36. Nature 442, 312-316 Cerca con Google

83. Kobayashi Y., Kaya H., Goto K., Iwabuchi M., Araki T.1999. A pair of related genes with antagonistic roles in mediating flowering signals. Science 286, 1960-1962 Cerca con Google

84. Kobor MS. Et al. 2004. A protein complex containing the conserved .Swi2/Snf2-related ATPase Swr1p deposits histone variant H2A.Z into euchromatin. PLoS Biol 2, E131 Cerca con Google

85. Komeda 2004. Genetic regulation of time to flower in Arabidopsis thaliana. Annual Review of Plant Biology 55, 521-535 Cerca con Google

86. Koorneef M. et al 1991. A genetic and physiological, analysis of late-flowering mutants in Arabidopsis thaliana. Mol. Gen. Genet. 229, 57-66 Cerca con Google

87. Koorneef M. et al. 1991. A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol. Gen. Genet. 229,57-66 Cerca con Google

88. Koornneef M. et at. 1994. The phenotype of some late-flowering mutants is enhanced by a locus on chromosome 5 that is not effective in the Landsberg erecta wildtype. Plant J. 6, 911-919 Cerca con Google

89. Krizek B. A. and. Fletcher J. C, 2005. Molecular mechanism of flower development: an armchair guide. Nature 6, 688-698. Cerca con Google

90. Kuhn JM. Et al. 2007. mRNA metabolism of flowering-time regulators in wildtype Arabidopsis revealed by a nuclear cap binding protein mutant, abh1. Plant J. 50(6):1049-62 Cerca con Google

91. L. Corbesier, et al 2007. FT protein movement contributes to Long-distance signalling in floral induction of Arabidopsis. Science 316, 1030-1033 Cerca con Google

92. Lakin-Thomas P.L.2000. Circadian rhytms:new functions for old clock genes? Trends Genet. 16, 135-142 Cerca con Google

93. Lamb R.S., Hill T.A, Tan Q. K., Irish V.F. 2002. Regulation of APETALA3 floral homeotic gene expression by meristem identity genes. Development 129, 2079-2086 Cerca con Google

94. Lang A. 1965. Physiology of flowering. Annu. Rev. Plant Physiol 3, 265-306 Cerca con Google

95. Langridge J. 1957. Effect of day-length and gibberellic acid on the flowering of Arabidopsis. Nature 180, 36-37 113 Cerca con Google

96. Lee H. et al 2000. The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes Dev. 14, 2366-2376 Cerca con Google

97. Lempe J. et al. 2005. Diversity of flowering responses in wild Arabidopsis thaliana strains. PLoS Genetics 1 (1), 109-118 Cerca con Google

98. Levy Y.Y. et al. 2002. Multiple Roles of Arabidopsis VRN1 in Vernalization and Flowering Time Control Science 297,243-246 Cerca con Google

99. Lin Shu-I, et al. 2005. Differential regulation of FLOWERING LOCUS C expression by vernalization in cabbage and Arabidopsis. Plant Physiol 137, 1037-1048 Cerca con Google

100. Liu C., Zhou J., Bracha-Drori K., Yalovski S. Ito T., Yu H. 2007. Specification of Arabidopsis floral meristem identity by repression of flowering time genes. Development 134, 1901-1910 Cerca con Google

101. Liu J. et al. 2004. siRNA targeting an intronic transposon in the regulation of natural flowering behaviour in Arabidopsis. Genes Devel. 18, 2873-2878 Cerca con Google

102. Locke JCW, Millar A.J., Turner M.S.2005.Modelling genetic networks with noisy and varied experimental data: the circadian clock in Arabidopsis thaliana. J. Theor.Biol 234, 383-393 Cerca con Google

103. Lohmann et al. 2001. A molecular link between stem cell regulation and floral patterning in Arabidopsis. Cell 1054, 793-803 Cerca con Google

104. Lohmann J.U., Weigel D.2002. Building beauty: the genetic control of floral patterning. Dev. Cell 2, 135-142 Cerca con Google

105. Long J., Barton M.K. 2000. Initiation of axillary and floral meristems in Arabidopsis. Dev. Biol 218, 341-353 Cerca con Google

106. Long J., Barton M.K., 2000. Initiation of axillary and floral meristems in Arabidopsis. Development 218, 341-353 Cerca con Google

107. Lucchin M. et al 2008. Vegetables 1, Handbook of Plant Breeding Series, Eds. J. Prohes & F. Nuez, Springer, 3-48. (In Press) Cerca con Google

108. Lyndon RF 1998. The shoot apical meristem. Cambridge: Cambridge University Press Cerca con Google

109. Lyndon RF, Battey NH. 1985 The growth of the shoot apical meristem during flower initiation. Biologia Plantarum 27, 339-349 114 Cerca con Google

110. M. Blazquez, C. Ferrandiz, F.Madueno, F. Parcy. 2006. How floral meristems are built, Plant Molecular Biology 60, 855-870 Cerca con Google

111. Mandel M.A., Gustafson- Brown C, Savige B., Yanosfsky M.F. 1992 Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360, 273-277 Cerca con Google

112. Mandel M.A., Yanofsky M.F. 1995. A gene triggering flower formation in Arabidopsis. Nature 377, 522 Cerca con Google

113. March-Diaz R. et al. 2007. SEF, a new protein required for flowering repression in Arabidopsis, interacts with PIE1 and ARP6. Plant Physiol 143, 893-901 Cerca con Google

114. Margara, J., 1977. Schema du developpement en culture in vitro de Cichorium intybus L., exemple type de plante bisannuelle de jour long a besoin de vernalisation. Bull. Sot. Bot. Fr. 124, 491-501. Cerca con Google

115. Mathieu J., Warthmann N., Kutter F., Schimd M. 2007.Export of FT protein from phloem companion cells is sufficient for floral induction in Arabidopsis. Current Biology 17,1055-1060 Cerca con Google

116. Mathieu J.,Warthmann N., Kuttner F,Schmid M.2007. Export of FT protein from phloem companion cells is sufficient for floral induction in Arabidopsis.Current Biology 17, 1055-1060 Cerca con Google

117. Mayer K.F., Schoof H., Haecker A., Lenhard M., Jurgens G., Laux T. 1998. Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95, 806-815 Cerca con Google

118. McWatters et al. 2000. The ELF3 zeitnehmer regulates light signalling to the circadian clock. Nature 408,716-720 Cerca con Google

119. Meister G. et al. 2004. Mechanisms of gene silencing by double-stranded RNA. Nature 431, 343-349 Cerca con Google

120. Michaels and Amasino.1999. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11,949-956 Cerca con Google

121. Michaels S, Amasino R. 1999. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as repressor of flowering. Plant Cell 11, 949-956 Cerca con Google

122. Michaels S. et al 2003. Attenuation of FLOWERING LOCUS C activity as a mechanism for the evolution of summer-annual flowering behaviour in Arabidopsis. Proc. Natl. Acad. Sci. USA 100, 10102-10107 115 Cerca con Google

123. Michaels SD, Amasino RM. 2001. Memories of winter: vernalization and the competence to flower. Plant Cell Environm. 23, 1145- 1153 Cerca con Google

124. Michaels SD. et al. 2004. FRIGIDA-related genes are required for the winterannual habit in Arabidopsis. Proc. Natl. Acad Sci USA 101, 3281-3285 Cerca con Google

125. Millar A.J. 2004. Input signals to the circadian clock. J. Exp. Bot. 55, 277-283 126. Mizoguchi T.et al 2005. Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in Arabidopsis. Plant Cell 17, 2255-2270 Cerca con Google

127. Mizuno T and Nakamichi N. 2005. Pseudo response regulators (PRRs) or true oscillator components (TOCs).Plant Cell Physiol. 46,677-685 Cerca con Google

128. Moon et al 2003. The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. Plant J. 3, 613—623 Cerca con Google

129. Morgante M. et al. 2007. Transposable elements and the plant pan-genomes. Curr Opin Plant Biology, 10, 149-155 Cerca con Google

130. Mouradov A. Cremer F., Coupland G. 2002. Control of flowering time : interacting pathways as a basis for diversity, Plant Cell 14, S111-30 Cerca con Google

131. Murtas G. et al 2003. A nuclear protease required for flowering time regulation in Arabidopsis reduces the abundance of SMALL UBIQUITIN-RELATED MODIFIER conjugates. Plant Cell 15, 2308-2319 Cerca con Google

132. Mylne JS. Et al. 2006. LHP1, the Arabidopsis homologue of HETEROCHROMATIN PROTEIN1, is required for epigenetic silencing of FLC. PNAS 103, 5012-5017 Cerca con Google

133. Napp-Zinn K. 1987. Vernalization: environmental and genetic regulation. J.G. Atherton (Ed.) Manipulation of flowering, Butterwirths, London, 123-132 Cerca con Google

134. Nillson O. et al 1998. Flowering-time genes modulate the response to LEAFY activity. Genetics 150, 403-410 Cerca con Google

135. Noh Y.S. and Amasino R. 2003. PIE1, an ISWI family gene, is required for FLC activation and floral repression in Arabidopsis. Plant Cell 15, 1671-1682 Cerca con Google

136. Parcy et al., 1998 A genetic framework for floral patterning. Nature 395, 561-566 Cerca con Google

137. Parcy F. 2005 Flowering: a time for integration. Int. J. Devel. Biol. 49, 585-593 Cerca con Google

138. Parcy F. et al 1998. A genetic framework for floral patterning. Nature 395,561- 566 116 Cerca con Google

139. Parcy F. et al. 2002. Interaction of LEAFY, AGAMOUS and TERMINAL FLOWER 1 in maintaining floral meristem identity in Arabidopsis. Development 129, 2519-2527 Cerca con Google

140. Parcy F., Nilsson O, Busch M.A., Lee I.,Weigel D. 1998. A genetic framework for floral patterning. Nature 395, 561-566 Cerca con Google

141. Paulet, P., 1985. Cichorium intybus and C. endiuia. In: Halevy, A.H. (Ed.), Handbook of Flowering, Vol. 2. CRC Press, Boca Raton, FL, pp. 265-271. Cerca con Google

142. Pelaz S. oral communication. The TEMPRANILLO genes of the Arabidopsis RAV family act in the photoperiod pathway to directly repress FT expression. Workshop Molecular Mechanisms controlling flower development. Acquafredda di Maratea, Italy, Cerca con Google

12th-16th June 2007 Cerca con Google

143. Pimpini and Gianquinto, 1988 F. Pimpini and G. Gianquinto, The influence of climatic conditions and age of plant at transplanting on bolting and yield of chicory (Cichorium intybus L.) cv. Rosso di Chioggia grown for early production. Acta Hortic. 229, 379—386. Cerca con Google

144. Pineiro et al 2003. Early bolting in short days is related to chromatin remodelling factors and regulates flowering in Arabidopsis by repressing FT. Plant Cell 15, 1552-1562 Cerca con Google

145. Poduska B. et al 2003. The synergistic activation of FLOWERING LOCUS C by FRIGIDA and a new flowering gene AERIAL ROSETTE1 underlies a novel morphology in Arabidopsis. Genetics 163, 1457-1465 Cerca con Google

146. Prigge et al 2005. Class III homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles in Arabidopsis development. The plant cell 17, 61-76 Cerca con Google

147. Quesada et al 2003.Autoregulation of FCA pre-mRNA processing controls Arabidopsis flowering time. EMBO J.22,3142-3152 Cerca con Google

148. R. Sablowski, 2007. J. of Experimental Botany 58, 899-907 Cerca con Google

149. Ractcliffe O.J. et al. 1998. A common mechanism controls the life cycle and architecture of plant. Development 125, 1609-1615 Cerca con Google

150. Ratcliffe et al. 2003. Analysis of Arabidopsis MADS AFFECTING FLOWERING gene family: MAF2 prevents vernalization by short periods of cold. Plant Cell 15, 1159-1169 117 Cerca con Google

151. Ratcliffe O.J. et al.2003. Analysis of the Arabidopsis MADS AFFECTING FLOWERING gene family: MAF2 prevents vernalization by short periods of cold. Plant Cell 15, 1159-1169 Cerca con Google

152. Reed JW. Et al. 1996 Phytochrome B affects responsiveness to gibberellins in Arabidopsis. Plant Physiol. 112,337-342 Cerca con Google

153. Reeves P. et al. 2002 early in short days 4, a mutation in Arabidopsis that causes early flowering and reduces the mRNA abundance of the floral repressor FLC. Development 129, 5349-5361 Cerca con Google

154. Reeves P.A. et al. 2007. Evolutionary conservation of the FLOWERING LOCUS C-mediated vernalization response: evidence from the sugar beet (Beta vulgaris). Genetics 176, 295-307 Cerca con Google

155. Roenneberg T.,Merrow M. 1998. Molecular circadian oscillators: an alternative hypothesis. J.Biol. Rhytms 13, 167-179 Cerca con Google

156. Ross J.J. et al 1997. Gibberellin mutants. Physiol 100, 550-560 Cerca con Google

157. Rouse et al. 2002. FLC, a repressor of flowering, is regulated by genes in different inductive pathways. Plant J. 29, 183—191 Cerca con Google

158. Ruiz-Garcia, Madueno F., Wilkinson M., Haughn G., Salinas J., Martinez-Zapater J.M. 1997. Different roles of flowering-time genes in the activation of floral initiation genes in Arabidopsis. The Plant Cell 9, 1921-1934 Cerca con Google

159. Sakai H. Medrano L.J., Meyerowitz E.M.1995 Role of SUPERMAN in maintaining Arabidopsis floral whorl boundaries. Nature 378, 199-203 Cerca con Google

160. Salisbury F.B. 1985. Photoperiodism. Horticulture Review (Am.Soc. Hortic. Sci.) 4, 66-105 Cerca con Google

161. Salomè PA, McClung CR. 2005. What makes Arabidopsis tick:light and temperature entrainment of the circadian clock. Plant Cell Envir. 28,21-38 Cerca con Google

162. Samach A. et al 2000. Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288,1613-1616 Cerca con Google

163. Sanda, Amasino 1996. Ecotype-specific expression of flowering mutant phenotype in Arabidopsis thaliana. Plant Physiol. 111,614-644;Koorneef et al 1991. A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol. Cerca con Google

Gen. Genet. 299,57-66 118 Cerca con Google

164. Schmid M. et al 2003. Dissection of floral induction pathways using global expression analysis. Development 130, 6001-6012 Cerca con Google

165. Schmitz RJ. et al.2006. FRIGIDA-ESSENTIAL1 interacts genetically with FRIGIDA and FRIGIDA-LIKE1 to promote the winter-annual Arabidopsis. Development 132, 5471-5478 Cerca con Google

166. Schmitz RJ., et al. 2007. DICER-LIKE1 and DICER-LIKE3 redundantly act to promote flowering via repression of FLOWERING LOCUS C in Arabidopsis thaliana. Genetics 176, 1359-1362 Cerca con Google

167. Scortecci K. et al 2003. Genetic interaction between FLM and other flowering time genes in Arabidopsis thaliana. Plant Mol. Biol 52, 915-922 Cerca con Google

168. Scortecci K.C. et al 2001. Identification of a MADS-box gene, FLOWERING LOCUS M that represses flowering. Plant J. 26, 229-236 Cerca con Google

169. Searle I. et al 2006. The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signalling in Arabidopsis. Genes Devel. 20, 898-912 Cerca con Google

170. Searle I. et al. 2006. The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signalling in Arabidopsis. Genes Dev. 20, 898-912 Cerca con Google

171. Session A. et al 2000. Cell-cell signalling and movement by the floral transcription factors LEAFY and APETALA1.Science 289, 779-782 Cerca con Google

172. Shani E., Yanai O.,Ori N. 2006. The role of hormones in shoot apical meristem function. Current Opinion in Plant Biology 9, 484-489 Cerca con Google

173. Sheldon C.C et al 2002. Different regulatory regions are required for the vernalization-induced repression of FLOWERING LOCUS C and for the epigenetic maintenance of repression. Plant Cell 14, 2527-2537 Cerca con Google

174. Sheldon C.C. et al 1999. The FLF MADS box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation. Plant Cell 11, 445-458 Cerca con Google

175. Sheldon et al. 1999. FLF MADS box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation. Plant Cell 11, 445-458 Cerca con Google

176. Sheldon et al. 2000.The molecular basis of vernalization: the central role of FLOWERING LOCUS C (FLC). Proc. Natl. Acad. Sci USA. 97, 3753-3758 119 Cerca con Google

177. Sheldon et al. 2000b. The molecular basis of vernalization: the central role of FLOWERING LOCUS C (FLC). Proc. Natl.Acad. Sci. USA 97, 3753-3758 Cerca con Google

178. Simpson et al. 2003 FY is an RNA 3' end-processing factor that interact with FCA to control the Arabidopsis floral transition. Cell 113, 777-787 Cerca con Google

179. Simpson G. Gendall A. C. Dean, 1999. Annual Rev Cell Dev Biol, 99, 519-550 Cerca con Google

180. Simpson G.G., Dean C. 2002. Arabidopsis, the Rosetta stone of flowering time? Science 296,285-289 Cerca con Google

181. Smyth D.R., Bowman Jl.,Meyerowitz E.M.,1990. The Plant ell 2:755-767 Cerca con Google

182. Somers D.E., Devlin P., Kay S.A. 1998. Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock. Science 282, 1488-1490 Cerca con Google

183. Strayer C.et al 2000. Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog. Science 289, 768-771 Cerca con Google

184. Suarez-Lopez P. et al. 2001. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410, 1116-1120 Cerca con Google

185. Sung S. et al 2006. Epigenetic maintenance of the vernalized state in Arabidopsis thaliana requires LIKE HETEROCHROMATIN PROTEIN1. Nature Genetics 38, 706-710 Cerca con Google

186. Sung S. et al. 2006. A PHD finger protein involved in both the vernalization and photoperiod pathways in Arabidopsis. Genes Devel 20, 3244-3248 Cerca con Google

187. Sung S., Amasino R. 2004. Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature 427, 159-164 Cerca con Google

188. Sung S., Amasino R. 2004. Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature 47,159-164 Cerca con Google

189. Swiezewski S. et al.2007. Small RNA-mediated chromatin silencing directed to the 3' region of the Arabidopsis gene encoding the developmental regulator, FLC. PNAS 104, 3633-3638 Cerca con Google

190. Tadege M. et al. 2001. Control of flowering time by FLC orthologues in Brassica napus. Plant J. 28, 545- 553 Cerca con Google

191. Tamaki S. et al. 2007.Hd3a protein is a mobile flowering signal in rice. Science 316, 1033-1036 120 Cerca con Google

192. Tanahashi T. Sumikawa N., Kato M., Hasebe M. 2005. Diversification of gene function: homologs of the floral regulator FLO/LFY control the first zygotic cell division in the moss Physconitrella patens. Development 132, 1727-1736 Cerca con Google

193. Terzaghi WB. Et al. 1995. Light regulated transcription. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46, 445-474 Cerca con Google

194. Trevaskis B. et al 2006. HvVRN2 responds to daylength, whereas HvVRN1 is regulated by vernalization and developmental status. Plant Physiol. 140, 1397-1405 Cerca con Google

195. Turner B.M. 2002. Cellular memory and the histone code. Cell 111, 285-291 Cerca con Google

196. Valverde F. et al 2004. Photoreceptor regulation of CONSTANS protein and the mechanism of photoperiodic flowering. Science 303, 1003-1006 Cerca con Google

197. Varotto et al., 1995. The incompatibility system in Italian red chicory (Cichorium intybus L.) Plant Breed. 114: 535—538 Cerca con Google

198. Varotto et al., 1997. Plant regeneration from protoplasts of Italian red chicory (Cichorium intybus L.) J. Genet. Breed. 51: 17-22 Cerca con Google

199. Varotto S. et al. 2003. Expression profile and cellular localization of maize Rpd3-type histone deacetylases during plant development. Plant Physiol 133, 606-617 Cerca con Google

200. Vaughan JG 1955. The morphology and growth of the vegetative and reproductive apices of Arabidopsis thaliana (L.) Heynh., Capsella bursa pastoris (L) Cerca con Google

Medic. And Anagallis arvensis L. Journal of the Linnean Society, London (Botany) 55, 279-301 Cerca con Google

201. Wagner et al. 1999 Transcriptional activation of APETALA1 by LEAFY. Science 285, 582-584 Cerca con Google

202. Wang Z.Y., Tobin E.M. 1998. Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell 93, 1207-1217 Cerca con Google

203. Webb AAR. 1998. Stomatal rhythms. In Biological Rhytms and photoperiodism in Plants,69-79, Bios Scientific Publication Oxford Cerca con Google

204. Weigel D. and Nillson O. 1995. A developmental switch sufficient for flower initiation in diverse plant. Nature 377, 495-500 Cerca con Google

205. Weigel D., Alvarez J., Smyth DR., Yanofsky M.F., Meyerowitz E.M. 1992. Cerca con Google

LEAFY controls floral meristem identity in Arabidopsis. Cell 69, 843 121 Cerca con Google

206. Weigel&Nilsson 1995. A developmental switch sufficient for flower induction in diverse plants. Nature 377, 495-500 Cerca con Google

207. Weiner A.M, et al. 1986. Nonviral retrotrasposons:genes, pseudogenes, and transposable elements generated by the reverse flow of genetic information. Annu Rev Biochem 55, 631-661 Cerca con Google

208. Wellensiek SJ. 1964. Dividing cells as the prerequisite for venalization. Plant Physiol 39, 832-835 Cerca con Google

209. Wilson et al. 1992, Gibberellin is required for flowering in Arabidopsis thaliana under short days. Plant Physiol. 100, 403-408 Cerca con Google

210. Wood C.C. et al.2006. The Arabidopsis thaliana vernalization response requires a Polycomb-like protein complex that also includes VERNALIZATION INSENSITIVE3. Proc. Natl Acad Sci USA 103,14631-14636 Cerca con Google

211. Wu X. et al 2003. Modes of intercellular transcription factor movement in the Arabidopsis apex. Development 130, 3735-3745 Cerca con Google

212. Yan L. et al. 2006. The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc. Natl. Acad. Sci. USA 103, 19581-19586 Cerca con Google

213. Yoo SY. Et al. 2007. Control of flowering time and cold response by a NACDomain Protein in Arabidopsis. PLoS ONE 2(7), 642-651 Cerca con Google

214. Yu H. et al 2004. Repression of AGAMOUS-LIKE 24 is a crucial step in promoting flower development. Nature Genetics 36, 157-161 Cerca con Google

215. Yuehui He, Amasino R. Role of chromatin modification in flowering-time control.2004. Trends in Plant Science 10 (1), 30-35 Cerca con Google

216. Zapater M., Somerville. 1990. Effect of Light Quality and Vernalization on Late-Flowering Mutants of Arabidopsis thaliana . Plant Physiology 92:770-776 Cerca con Google

217. Zhang H. and van Nocker S. 2002. The VERNALIZATION INDIPENDENCE 4 gene encodes a novel regulator of FLOWERING LOCUS C. Plant J. 31, 663-673 Cerca con Google

218. Zhang H. et al. 2003. Genetic analysis of early flowering mutants in Arabidopsis defines a class of pleiotropic developmental regulator required for expression of the flowering time switch FLOWERING LOCUS C. Genetics 164, 347-358 Cerca con Google

219. Zhao Z. et al. 2005. Prevention of early flowering by expression of FLOWERING LOCUS C requires methylation of histone H3K36. Nat Cell Biol 7, 1256-1260 Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record