Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Pozzobon, Michela (2008) Isolation, expansion and differentiation of human bone marrow CD133+ cells: plasticity and cardiac regeneration. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
Documento PDF
9Mb

Abstract (english)

The use of adult stem cells to regenerate damaged tissue circumvents the moral and technical issues associated with the use of those from an embryonic source.
Mesenchymal stem cells (MSC) can be isolated from a variety of tissues, most commonly from the bone marrow (BM), and, although they represent a very small percentage of these cells, are easily expandable. Recently, the use of MSC has provided clinical benefit to patients with osteogenesis imperfecta, graft-versushost disease and myocardial infarction.
Beside these stem cells, it is known that the bone marrow CD133+ cells play an important role in the hematopoietic compartment. The cells indeed can take part to vascular reconstitution when become endothelial cells (EC), to skeletal muscle fiber regeneration when switch in muscle precursors, and to cardiomyocytes phenotypic conversion when differentiate in cardiomyocytes like cells. While the role on hematopoiesis and vasculogenesis of the selected cells is well established, their ability to differentiate along multiple non-EC lineages has not yet been fully elucidated.
The goal of this study is to assert whether human CD133+-BM derived cells, compared with MSCs, are able to differentiate in vitro besides to blood cells, to cell lineages pertinent to the mesoderm germ layers.
To this end CD133+ cells have been isolated using a clinically approved methodology and their differentiation potential compared to that of hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs) obtained from the same BM samples.
In adopted culture conditions, CD133 expression was consistently decreased after passage 2, as well as the expression of the stemnesss markers c-kit and OCT4, whereas expression of Stage Specific Embryonic Antigen 4 (SSEA4) remain consistent on all different conditions. Expanded CD133 were also positive for HLA-ABC, but negative for HLA-DR in accordance to what has been previously reported for MSCs. Moreover they were able to differentiate into adipocytes, myoblasts, endothelial cells, osteocytes, cardiomyocytes and neuronal precursor cells.
The results of this study fully support the notion of a wide range differentiation potential of CD133+-BM derived cells, encompassing not only mesodermal but also ectodermic (neurogenic) cell lineages.
CD133 antigen could be potentially used to select a cell population with similar characteristics to the MSCs ones; the obtained results remark the great potential of CD133+ cells from BM, and support the existence of a broadly multipotent/pluripotent cell that persists in the adult, and justify the upcoming interest for possible therapeutic applications.
In vivo, using a tissue engineering approach, it has been investigated the possibility that a biodegradable and biocompatible collagen polymer, called cardiac patch, applied on the infarction area of nude rat, can give hospitality to stem cells and deliver them to improve cardiac functionality. Cells have been injected into the patch ( model I) and systemically (model II); smooth muscle actina and Von Willebrand antibodies detected many new vases in patch and cryoinjury area (as already found by the research group); about 2% of cells survived and showed good mobility into the collagen patch; improved functionality was detected compared with control animals however no cell engraftment was seen after four week from cell injection either locally or systemically.
Summarizing, the two different in vivo models aimed at define both the patch strength after cell injection in model I and the patch trophic effect in model II.
Therefore to address these points it will be mandatory to analyze bcl-2 expression on cells treated and un-treated animals, with and without patch, to verify whether the tissue engineering approach with this specific polymer, could enhance the paracrine effect of human CD133+, or suggest a change of the polymer to ameliorate cell survival.


Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Gamba, Piergiorgio
Ph.D. course:Ciclo 20 > Scuole per il 20simo ciclo > BIOLOGIA E MEDICINA DELLA RIGENERAZIONE > INGEGNERIA DEI TESSUTI E DEI TRAPIANTI
Data di deposito della tesi:2008
Anno di Pubblicazione:2008
Key Words:CD133, human bone marrow stem cells, cardiac tissue engineering
Settori scientifico-disciplinari MIUR:Area 06 - Scienze mediche > MED/11 Malattie dell'apparato cardiovascolare
Struttura di riferimento:Dipartimenti > pre 2012 - Dipartimento di Scienze Farmaceutiche
Codice ID:223
Depositato il:28 Oct 2008
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. am Esch JS 2nd, Knoefel WT, Klein M, Ghodsizad A, Fuerst G, Poll LW, et al. Portal application of autologous CD133+ bone marrow cells to the liver: a novel concept to support hepatic regeneration. Stem Cells 2005;23:463–470. Cerca con Google

2. Anjos-Afonso F, Bonnet D. Nonhematopoietic/endothelial SSEA-1+ cells define the most primitive progenitors in the adult murine bone marrow mesenchymal compartment.Blood. 2007 Feb 1;109(3):1298-306. Epub 2006 Sep 26. Cerca con Google

3. Anversa P, Kajstura J, Leri A, Bolli R. Life and death of cardiac stem cells: a paradigm shift in cardiac biology. Circulation. 2006 Mar 21;113(11):1451-63. Review. Cerca con Google

4. Back E, Toder R, Voiculescu I, Wildberg A, Schempp W. De novo isochromosome 18p in two patients: cytogenetic diagnosis and confirmation by chromosome painting. Clin Genet. 1994;45(6):301-304. Review. Cerca con Google

5. Badorff C, Brandes RP, Popp R, Rupp S, Urbich C, Aicher A, et al.Transdifferentiation of blood-derived human adult endothelial progenitor cells into functionally active cardiomyocytes. Circulation 2003;107:1024– 32). Cerca con Google

6. Barraud P, Stott S, Møllg°ard K, Parmar M, Bj¨orklund A. In vitro characterization of a human neural progenitor cell coexpressing SSEA4 and CD133. J Neurosci Res 2007;85:250–259. Cerca con Google

7. Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, McIntosh K, Patil S, Hardy W, Devine S, Ucker D, Deans R, Moseley A, Hoffman R. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol. 2002 Jan;30(1):42-8. Cerca con Google

8. Bartunek J, Vanderheyden M, Vandekerckhove B, Mansour S, De Bruyne B, De Bondt P, Van Haute I, Lootens N, Heyndrickx G, Wijns W.Intracoronary injection of CD133- positive enriched bone marrow progenitor cells promotes cardiac recovery after recent myocardial infarction: feasibility and safety.Circulation. 2005 Aug 30;112(9 Suppl):I178- 83. Cerca con Google

9. Bhatia M, Bonnet D, Murdoch B, Gan OI, Dick JE. A newly discovered class of human hematopoietic cells with SCID-repopulating activity. Nat Med. 1998;4(9):1038-1045. Cerca con Google

10. Bittira B, Kuang JQ, Al Khaldi A, Shum-Tim D, Chiu RC. In vitro preprogramming of marrow stromal cells for myocardial regeneration. Ann Thorac Surg 2002; 74: 1154-1159. Cerca con Google

11. Bonanno G, Mariotti A, Procoli A, Corallo M, Rutella S, Pessina G, et al. Human cord blood CD133+ cells immunoselected by a clinical-grade apparatus differentiate in vitro Bussolati B, Bruno S, Grange C, Buttiglieri S, Deregibus MC, Cantino D, et al. Isolation of renal progenitor cells from adult human kidney. Am J Pathol 2005;166:545–555. Cerca con Google

12. Callegari A, Bollini S, Iop L, Chiavegato A, Torregrossa G, Pozzobon M, Gerosa G, De Coppi P, Elvassore N, Sartore S. Neovascularization induced by porous collagen scaffold implanted on intact and cryoinjured rat hearts. Biomaterials. 2007 Dec;28(36):5449-61. Epub 2007 Oct 1 Cerca con Google

13. Cho, S.K., Bourdeau, A., Letarte, M., and Zuniga-Pflucker, J.C.. Expression and function of CD105 during the onset of hematopoiesis from Flk1(+) precursors. Blood.2001 98(13), 3635-3642. Cerca con Google

14. Christman KL, Fang Q, Yee MS, Johnson KR, Sievers RE, Lee RJ. Enhanced neovasculature formation in ischemic myocardium following delivery of pleiotrophin plasmid in a biopolymer. Biomaterials 2005;26:1139–44. Cerca con Google

15. Christman KL, Lee RJ. Biomaterials for the treatment of myocardial infarction. J Am Coll Cardiol. 2006 Sep 5;48(5):907-13. Epub 2006 Aug 17. Review. Cerca con Google

16. Corbeil D, Röper K, Hellwig A, Tavian M, Miraglia S, Watt SM, Simmons PJ, Peault B, Buck DW, Huttner WB The human AC133 hematopoietic stem cell antigen is also expressed in epithelial cells and targeted to plasma membrane protrusions. J Biol Chem 2000, 275:5512–5520 Cerca con Google

17. Corbeil D., Ro K., Fargeas CA., Joester A., Huttner WB. Prominin: A Story of Cholesterol, Plasma Membrane Protrusions and Human Pathology. Traffic 2001.Review Cerca con Google

18. Corti S, Nizzardo M, Nardini M, Donadoni C, Locatelli F, Papadimitriou D, et al. Isolation and characterization of murine neural stem/progenitor cells based on prominin-1 expression. Exp Neurol 2007;205:547–562. Cerca con Google

19. Dai W, Wold LE, Dow JS, Kloner RA. Thickening of the infracted wall by collagen injection improves left ventricular function in rats: a novel approach to preserve cardiac function after myocardial infarction. J Am Coll Cardiol 2005;46:714 –9. Cerca con Google

20. Davis ME, Motion JP, Narmoneva DA, et al. Injectable selfassembling peptide nanofibers create intramyocardial microenvironments for endothelial cells. Circulation 2005;111:442–50. Cerca con Google

21. Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, Grisanti S, Gianni AM. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood. 2002 May 15;99(10):3838-43 Cerca con Google

22. Digirolamo CM, Stokes D, Colter D, Phinney DG, Class R, Prockop DJ. Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. Br J Haematol 1999;107:275 – 281. Cerca con Google

23. Dimmeler S, Zeiher AM, Schneider MD. Unchain my heart: the scientific foundations of cardiac repair J Clin Invest. 2005 Mar;115(3):572-83. Cerca con Google

24. D'Ippolito G, Diabira S, Howard GA, Menei P, Roos BA, Schiller PC. Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J Cell Sci. 2004;117(Pt 14):2971-2981. Cerca con Google

25. Enomoto Y, Gorman JH 3rd, Moainie SL, et al. Early ventricular restraint after myocardial infarction: extent of the wrap determines the outcome of remodeling. Ann Thorac Surg 2005;79:881–7. Cerca con Google

26. Ertl, G.; Frantz, S. Healing after myocardial infarction. Cardiovasc. Res. 66:22-32; 2005. Cerca con Google

27. Faraj KA, van Kuppevelt TH, Daamen WF.Construction of collagen scaffolds that mimic the three-dimensional architecture of specific tissues.Tissue Eng. 2007 Oct;13(10):2387- 94 Cerca con Google

28. Fargeas CA, Corbeil D, Huttner WB AC133 antigen, CD133, prominin-1, prominin-2, etc.: prominin family gene products in need of a rational nomenclature. Stem Cells 2003, 21:506–508 Cerca con Google

29. Fargeas CA, Fonseca AV, Hutter WB and Corbeil D. Prominin-1 (CD133):from progenitor cells to human diseases. Future Lipidol 2006, 1(2), 213-225) Cerca con Google

30. Fibbe, W.E., and Noort, W.A. Mesenchymal stem cells and hematopoietic stem cell transplantation. Ann N Y Acad Sci.2003, 996, 235-244. Cerca con Google

31. Florek M, Haase M, marzesco Am, Freund D., Ehninger G., Huttener WB et al Prominin- 1/CD133, a neural and hematopoietic stem cell marker , is expressed in adul human differentiated cells and certain types of kidney cancer.Cell Tissue Research, 2005;319:15- 26) Cerca con Google

32. Forraz N, Pettengell R, McGuckin CP. Characterization of a lineage-negative stemprogenitor cell population optimized for ex vivo expansion and enriched for LTC-IC. Stem Cells. 2004;22(1):100-108. Cerca con Google

33. Forraz, N., Pettengell, R., and McGuckin, C.P. Characterization of a lineage-negative stem-progenitor cell population optimized for ex vivo expansion and enriched for LTCIC. Stem Cells. 2004. 22(1), 100-108. Cerca con Google

34. Fox JM, Chamberlain G, Ashton BA, Middleton J. Recent advances into the understanding of mesenchymal stem cell trafficking. Br J Haematol. 2007 Jun;137(6):491- 502. Review. Cerca con Google

35. Frangogiannis NG, Smith CW, Entman ML. The inflammatory response in myocardial infarction. Cardiovasc Res 2002; 53: 31- 47. Cerca con Google

36. Friedenstein AJ, Gorskaja JF, Kulagina NN. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol. 1976 Sep;4(5):267-74. Cerca con Google

37. Friedrich EB, Walenta K, Scharlau J, Nickenig G, Werner N. CD34-/CD133+/VEGFR-2+ endothelial progenitor cell subpopulation with potent vasoregenerative capacities. Circ Res. 2006;98(3):e20-25. Cerca con Google

38. Furth ME, Atala A, Van Dyke ME. Smart biomaterials design for tissue engineering and regenerative medicine. Biomaterials. 2007 Dec;28(34):5068-73. Epub 2007 Aug 15. Cerca con Google

39. Gang EJ, Bosnakovski D, Figueiredo CA, Visser JW, Perlingeiro RC. SSEA-4 identifies mesenchymal stem cells from bone marrow. Blood. 2007;109(4):1743-1751 Cerca con Google

40. Hagège AA, Marolleau JP, Vilquin JT, Alhéritière A, Peyrard S, Duboc D, Abergel E, Messas E, Mousseaux E, Schwartz K, Desnos M, Menasché P.Skeletal myoblast transplantation in ischemic heart failure: long-term follow-up of the first phase I cohort of patients.Circulation. 2006 Jul 4;114(1 Suppl):I108-13.) Cerca con Google

41. Handgretinger R, Gordon PR, Leimig T, et al. Biology and plasticity of CD133+ hematopoietic stem cells. Ann N Y Acad Sci. 2003 May;996:141-151. Cerca con Google

42. Hilbe W, Dirnhofer S, Oberwasserlechner F, et al. CD133 positive endothelial progenitor cells contribute to the tumour vasculature in non-small cell lung cancer. J Clin Pathol. 2004;57(9):965-969 Cerca con Google

43. Hiyama E, Hiyama K. Telomere and telomerase in stem cells.Br J Cancer. 2007 Apr 10;96(7):1020-4. Epub 2007 Mar 13. Review. Cerca con Google

44. Hofmann WK, de Vos S, Komor M, Hoelzer D, Wachsman W, Koeffler HP. Characterization of gene expression of CD34+ cells from normal and myelodysplastic bone marrow. Blood. 2002;100(10): 3553-3360. Cerca con Google

45. Horwitz EM, Gordon PL, Koo WK, et al. Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proc Natl Acad Sci U S A. 2002;99(13):8932-8937. Cerca con Google

46. Hou D, Youssef EA, Brinton TJ, Zhang P, Rogers P, Price ET, Yeung AC, Johnstone BH, Yock PG, March KL. Radiolabeled cell distribution after intramyocardial, intracoronary, and interstitial retrograde coronary venous delivery: implications for current clinical trials. Cerca con Google

47. Huss R. Isolation of primary and immortalized CD34-hematopoietic and mesenchymal stem cells from various sources. Stem Cells. 2000;18(1):1-9. Review. Cerca con Google

48. In 't Anker PS, Noort WA, Scherjon SA, et al. Mesenchymal stem cells in human secondtrimester bone marrow, liver, lung, and spleen exhibit a similar immunophenotype but a heterogeneous multilineage differentiation potential. Haematologica. 2003;88(8):845-852. Cerca con Google

49. Iso Y, Spees JL, Serrano C, Bakondi B, Pochampally R, Song YH, Sobel BE, Delafontaine P, Prockop DJ. Multipotent human stromal cells improve cardiac function after myocardial infarction in mice without long-term engraftment. Biochem Biophys Res Commun. 2007 Mar 16;354(3):700-6. Epub 2007 Jan 17. Cerca con Google

50. Iwakura A, Fujita M, Kataoka K, et al. Intramyocardial sustained delivery of basic fibroblast growth factor improves angiogenesis and ventricular function in a rat infarct model. Heart Vessels 2003;18:93–9. Cerca con Google

51. Jackson L, Jones DR, Scotting P, Sottile V.Adult mesenchymal stem cells: differentiation potential and therapeutic applications. J Postgrad Med. 2007 Apr-Jun;53(2):121-7. Review. Cerca con Google

52. Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 2002;418(6893):41-49. Cerca con Google

53. Jones EA, Kinsey SE, English A, et al. Isolation and characterization of bone marrow multipotential mesenchymal progenitor cells. Arthritis Rheum. 2002;46(12): 3349-3360. Cerca con Google

54. Kellar RS, Shepherd BR, Larson DF, Naughton GK, Williams SK. Cardiac patch constructed from human fibroblasts attenuates reduction in cardiac function after acute infarct. Tissue Eng 2005;11:1678–87. Cerca con Google

55. Khurana, R.; Simons, M.; Martin, J.F.; Zachary, I.C. Role of angiogenesis in cardiovascular disease: a critical appraisal. Circulation. 112:1813-1824; 2005. Cerca con Google

56. Koblas T, Zacharovov´a K, Berkov´a Z, Mindlov´a M, Girman P, Dovolilov´a E, et al. Isolation and characterization of human CXCR4-positive pancreatic cells. Folia Biol (Praha) 2007;53:13–22. Cerca con Google

57. Koehl U, Zimmermann S, Esser R, et al. Autologous transplantation of CD133 selected hematopoietic progenitor cells in a pediatric patient with relapsed leukemia. Bone Marrow Transplant. 2002 Jun;29(11):927-930. Cerca con Google

58. Kofidis T, de Bruin JL, Hoyt G, Ho Y, Tanaka M, Yamane T, Lebl DR, Swijnenburg RJ, Chang CP, Quertermous T, Robbins RC. Myocardial restoration with embryonic stem cell bioartificial tissue transplantation. J Heart Lung Transplant. 2005 Jun;24(6):737-44 Cerca con Google

59. Kofidis T, de Bruin JL, Hoyt G, Lebl DR, Tanaka M, Yamane T, Chang CP, Robbins RC. Injectable bioartificial myocardial tissue for large-scale intramural cell transfer and functional recovery of injured heart muscle. J Thorac Cardiovasc Surg. 2004 Oct;128(4):571-8. Cerca con Google

60. Krupnick AS, Kreisel D, Engels FH, et al. A novel small animal model of left ventricular tissue engineering. J Heart Lung Transplant 2002; 21:233– 43. Cerca con Google

61. Kuçi S, Wessels JT, Bühring HJ, Schilbach K, Schumm M, Seitz G, Löffler J, Bader P, Schlegel PG, Niethammer D, Handgretinger R. Identification of a novel class of human adherent CD34- stem cells that give rise to SCID-repopulating cells. Blood. 2003 Feb 1;101(3):869-76. Epub 2002 Sep 19. Cerca con Google

62. Landmesser, U.; Drexler, H. Chronic heart failure: an overview of conventional treatment versus novel approach. Nat. Clin. Pract. Cardiovasc. Med. 2:628-638; 2005. Cerca con Google

63. Lang P, Handgretinger R, Greil J, Bader P, Schumm M, Klingebiel T, Niethammer D. Transplantation of CD34+ enriched allografts in children with nonmalignant diseases: does graft manipulation necessarily result in high incidence of graft failure? Bone Marrow Transplant. 2004 Jan;33(1):125-6 Cerca con Google

64. Langer R and Vacanti JP. Tissue engineering. Science 1993;260:920-6 Cerca con Google

65. Laugwitz KL, Moretti A, Lam J, Gruber P, Chen Y, Woodard S, et al.Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 2005;433:647– 53.; Cerca con Google

66. Lee A, Kessler JD, Read TA, Kaiser C, Corbeil D, Huttner WB, Johnson JE, Wechsler- Reya RJ.Isolation of neural stem cells from the postnatal cerebellum.Nat Neurosci. 2005 Jun;8(6):723-9. Epub 2005 May 22. Cerca con Google

67. Leontiadis E, Manginas A, Cokkinos DV. Cardiac repair--fact or fancy? Heart Fail Rev. 2006;11(2):155-70. Review. Cerca con Google

68. Leor J, Aboulafia-Etzion S, Dar A, Shapiro L, Barbash IM, Battler A, Granot Y, Cohen S. Bioengineered cardiac grafts: A new approach to repair the infarcted myocardium? Circulation. 2000 Nov 7;102(19 Suppl 3):III56-61. Cerca con Google

69. Leor J, Amsalem Y, Cohen S. Cells, scaffolds, and molecules for myocardial tissue engineering. Pharmacol Ther 2005;105:151– 63. Cerca con Google

70. Leri, A.; Kajstura, J.; Anversa, P. Cardiac stem cells and mechanisms of myocardial regeneration. Physiol. Rev. 85:1373-1416; 2005. Cerca con Google

71. Liotta F, Angeli R, Cosmi L, Filì L, Manuelli C, Frosali F, Mazzinghi B, Maggi L, Pasini A, Lisi V, Santarlasci V, Consoloni L, Angelotti ML, Romagnani P, Parronchi P, Krampera M, Maggi E, Romagnani S, Annunziato F. TLR3 and TLR4 are Expressed by Human Bone Marrow-Derived Mesenchymal Stem Cells And Can Inhibit Their T-cell Modulatory Activity by Impairing Notch Signalling. Stem Cells. 2007 Oct 25 Cerca con Google

72. Loges S, Fehse B, Brockmann MA, Lamszus K, Butzal M, Guckenbiehl M, Schuch G, Ergün S, Fischer U, Zander AR, Hossfeld DK, Fiedler W, Gehling UM. Identification of the adult human hemangioblast. Stem Cells Dev. 2004 Jun;13(3):229-42. Cerca con Google

73. Malouf NN, Coleman WB, Grisham JW, Lininger RA, Madden VJ, Sproul M, et al. Adult-derived stem cells from the liver become myocytes in the heart in vivo. Am J Pathol 2001;158:1929 – 35 Cerca con Google

74. Martinez C, Hofmann TJ, Marino R, Dominici M, Horwitz EM. Human bone marrow mesenchymal stromal cells express the neural ganglioside GD2: a novel surface marker for the identification of MSCs. Blood. 2007;109:4245-4248 Cerca con Google

75. Masiero L, Gazzola MV, Destro R, et al. Biology and plasticity of BM- and UC bloodderived human CD133+ stem cell: a promising source for clinical application. ISSN. 2004;1(6), abstract P18. Cerca con Google

76. Maw MA, Corbeil D, Koch J, Hellwig A, Wilson-Wheeler JC, Bridges RJ, Kumaramanickavel G, John S, Nancarrow D, Röper K, Weigmann A, Huttner WB, Denton MJ A frameshift mutation in prominin (mouse)-like 1 causes human retinal degeneration. Hum Mol Genet 2000, 9:27–34 Cerca con Google

77. Mimeault M, Hauke R, Batra SK. Stem cells: a revolution in therapeutics-recent advances in stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies. Clin Pharmacol Ther. 2007 Sep;82(3):252-64. Epub 2007 Aug 1. Review. Cerca con Google

78. Miraglia S, Godfrey W, Yin AH, Atkins K, Warnke R, Holden JT, Bray RA, Waller EK, Buck DW. A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning. Blood 1997;90: 5013–5021. Cerca con Google

79. Miyahara Y, Nagaya N, Kataoka M, Yanagawa B, Tanaka K, Hao H, Ishino K, Ishida H, Shimizu T, Kangawa K, Sano S, Okano T, Kitamura S, Mori H. Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat Med. 2006 Apr;12(4):459-65. Epub 2006 Apr 2 Cerca con Google

80. Miyamoto S, Katz BZ, Lafrenie RM, Yamada KM. Fibronectin and integrins in cell adhesion, signaling, and morphogenesis. Ann N Y Acad Sci. 1998;857:119-129. Review. Cerca con Google

81. Mizrak D, Brittan M and Alisan MR, Journal of pathology 2008, 214:3-9 Cerca con Google

82. Murry CE, Reinecke H, Pabon LM.Regeneration gaps: observations on stem cells and cardiac repair.J Am Coll Cardiol. 2006 May 2;47(9):1777-85. Epub 2006 Apr 17. Review. Cerca con Google

83. Nishida S, NagANIne H, Tanaka Y, Watanabe G. Protective effect of basic fibroblast growth factor against myocyte death and arrhythmias in acute myocardial infarction in rats. Circ J. 2003 Apr;67(4):334-9). Cerca con Google

84. Nör JE, Christensen J, Mooney DJ, Polverini PJ.Vascular endothelial growth factor (VEGF)-mediated angiogenesis is associated with enhanced endothelial cell survival and induction of Bcl-2 expression.Am J Pathol. 1999 Feb;154(2):375-84.; Cerca con Google

85. Nygren JM, Jovinge S, Breitbach M, Sawen P, Roll W, Hescheler J, et al. Bone marrowderived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat Med 2004;10:494– 501; Laflamme MA, Murry CE. Regenerating the heart. Nat Biotechnol 2005;23:845– 56) Cerca con Google

86. Olsson A, Bredin F, Franco-Cereceda A. Echocardiographic findingsusing tissue velocity imaging following passive containment surgery with the Acorn CorCap cardiac support device. Eur J Cardiothorac Surg 2005;28:448 –53. Cerca con Google

87. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, et al. Bone marrow cells regenerate infarcted myocardium. Nature 2001;410:701–5. ; Cerca con Google

88. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine DM, Leri A, Anversa P. Bone marrow cells regenerate infarcted myocardium. Nature. 2001 Apr 5;410(6829):701-5. Cerca con Google

89. Oshima Y, Suzuki A, Kawashimo K, Ishikawa M, Ohkohchi N, Taniguchi H. Isolation of mouse pancreatic ductal progenitor cells expressing CD133 and c-Met by flow cytometric cell sorting. Gastroenterology 2007;132:720–732. Cerca con Google

90. Oswald J, Boxberger S, Jørgensen B, Feldmann S, Ehninger G, Bornhäuser M, Werner C. Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells. 2004;22(3):377-384. Cerca con Google

91. Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M, Oz MC, Hicklin DJ, Witte L, Moore MA, Rafii S. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood. 2000;95(3):952-958. Cerca con Google

92. Petite H, Viateau V, Bensaïd W, Meunier A, de Pollak C, Bourguignon M, Oudina K, Sedel L, Guillemin G.Tissue-engineered bone regeneration.Nat Biotechnol. 2000 Sep;18(9):959-63. Cerca con Google

93. Pierelli L, Scambia G, Bonanno G, Rutella S, Puggioni P, Battaglia A, Mozzetti S, Marone M, Menichella G, Rumi C, Mancuso S, Leone G. CD34+/CD105+ cells are enriched in primitive circulating progenitors residing in the G0 phase of the cell cycle and contain all bone marrow and cord blood CD34+/CD38low/- precursors. Br J Haematol. 2000;108(3):610-620. Cerca con Google

94. Pittenger M, Vanguri P, Simonetti D, Young R. Adult mesenchymal stem cells: potential for muscle and tendon regeneration and use in gene therapy. J Musculoskelet Neuronal Interact. 2002;2(4):309-320. Cerca con Google

95. Pittenger M.F., Martin B.J. . Mesenchymal stem cells and their potential as cardiac therapeutics.Circ. Res.2004 95:9–20. Cerca con Google

96. Pomyje J, Zivny J, Sefc L, Plasilova M, Pytlik R, Necas E. Expression of genes regulating angiogenesis in human circulating hematopoietic cord blood CD34+/CD133+ cells. Eur J Haematol. 2003;70(3):143-150 Cerca con Google

97. Prockop DJ “Stemness does not explain the repair of Many Tissues by Mesenchymal Stem/Multipotent Stromal cells (MSCs), Nature 2007 Cerca con Google

98. Prockop DJ, Gregory CA, Spees JL.One strategy for cell and gene therapy: harnessing the power of adult stem cells to repair tissues.Proc Natl Acad Sci U S A. 2003 Sep 30;100 Suppl 1:11917-23. Epub 2003 Sep 17. Review Cerca con Google

99. Radisic M, Park H, Shing H, Consi T, Schoen FJ, Langer R, Freed LE, Vunjak-Novakovic G. Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc Natl Acad Sci U S A. 2004 Dec 28;101(52):18129- 34. Epub 2004 Dec 16. Cerca con Google

100. Radisic M, Park H, Shing H, Consi T, Schoen FJ, Langer R, Freed LE, Vunjak-Novakovic G. Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc Natl Acad Sci U S A. 2004 Dec 28;101(52):18129- 34. Epub 2004 Dec 16. Cerca con Google

101. Richardson GD, Robson CN, Lang SH, Neal DE, Maitland NJ, Collins AT. CD133, a novel marker for human prostatic epithelial stem cells. J Cell Sci 2004;117:3539–3545. Cerca con Google

102. Salven P, Mustjoki S, Alitalo R, Alitalo K, Rafii S. VEGFR-3 and CD133 identify a population of CD34+ lymphatic/vascular endothelial precursor cells. Blood. 2003 Jan 1;101(1):168-72. Epub 2002 Aug 15. Cerca con Google

103. Serakinci N, Graakjaer J, Kolvraa S Telomere stability and telomerase in mesenchymal stem cells. Biochimie (2008) 33e40) Cerca con Google

104. Sharkis SJ, Collector MI, Barber JP, Vala MS, Jones RJ. Phenotypic and functional characterization of the hematopoietic stem cell. Stem Cells. 1997;15(Suppl 1):41-44. Cerca con Google

105. Shmelkov SV, Meeus S, Moussazadeh N, Kermani P, Rashbaum WK, Rabbany SY, Hanson MA, Lane WJ, St Clair R, Walsh KA, Dias S, Jacobson JT, Hempstead BL, Edelberg JM, Rafii S. Cytokine preconditioning promotes codifferentiation of human fetal liver CD133+ stem cells into angiomyogenic tissue. Circulation. 2005 Mar 8;111(9):1175- 83. Cerca con Google

106. Spaggiari GM, Capobianco A, Becchetti S, Mingari MC, Moretta L. Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood. 2006 Feb 15;107(4):1484-90. Epub 2005 Oct 20. Cerca con Google

107. Stamm C, Kleine HD, Choi YH, Dunkelmann S, Lauffs JA, Lorenzen B, David A, Liebold A, Nienaber C, Zurakowski D, Freund M, Steinhoff G.Intramyocardial delivery of CD133+ bone marrow cells and coronary artery bypass grafting for chronic ischemic heart disease: safety and efficacy studies. J Thorac Cardiovasc Surg. 2007 Mar;133(3):717-25. Epub 2007 Feb 1. Cerca con Google

108. Stamm C, Westphal B, Kleine HD, Petzsch M, Kittner C, Klinge H, Schümichen C, Nienaber CA, Freund M, Steinhoff G.Autologous bone-marrow stem-cell transplantation for myocardial regeneration.Lancet. 2003 Jan 4;361(9351):45-6. Cerca con Google

109. Sun Y, Weber KT. Infarct scar: a dynamic tissue. Cardiovasc Res 2000; 46: 250-256.van den Bos EJ, Mees BM, de Waard MC, de Crom R, Duncker DJ. A Novel Model of Cryoinjury-Induced Myocardial Infarction in the Mouse: A Comparison with Coronary Artery Ligation. Am J Physiol Heart Circ Physiol 2005. Cerca con Google

110. Sussman LK, Upalakalin JN, Roberts MJ, Kocher O, BenjANIn L. Blood markers for vasculogenesis increase with tumor progression in patients with breast carcinoma. Cancer Biol Ther. 2003;2(3):255-256. Cerca con Google

111. Suuronen EJ, Wong S, Kapila V, Waghray G, Whitman SC, Mesana TG, Ruel M.Generation of CD133+ cells from CD133- peripheral blood mononuclear cells and their properties. Cardiovasc Res. 2006 Apr 1;70(1):126-35. Epub 2006 Mar 10. Cerca con Google

112. Takahashi K and Yamanaka S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell Vol 126, 663-676 2006). Cerca con Google

113. Tondreau T, Meuleman N, Delforge A, et al. Mesenchymal stem cells derived from CD133-positive cells in mobilized peripheral blood and cord blood: proliferation, OCT4 expression, and plasticity. Stem Cells. 2005;23(8):1105-1112. Cerca con Google

114. Torrente Y, Belicchi M, Sampaolesi M, Pisati F, Meregalli M, D’Antona G, et al. Human circulating AC133(+) stem cells restore dystrophin expression and ameliorate function in dystrophic skeletal muscle. J Clin Invest 2004;114:182–195. Cerca con Google

115. Uchida N, Buck DW, He D, Reitsma MJ, Masek M, Phan TV, Tsukamoto AS, Gage FH, Weissman IL.Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci U S A. 2000 Dec 19;97(26):14720-5. Cerca con Google

116. Urbich C, Dimmeler S. Endothelial progenitor cells: characterization and role in vascular biology. Circ Res. 2004;95(4):343-353. Cerca con Google

117. Wang R, Clark RA, Mosher DF, Ren XD. Fibronectin's central cell-binding domain supports focal adhesion formation and Rho signal transduction. J Biol Chem. 2000;280(31):28803-28810. Cerca con Google

118. Weigmann A, Corbeil D, Hellwig A, Huttner WB. Prominin, a novel microvilli specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non epithelial cells. Proc Natl Acad Sci USA 1997;94: 12425–12430.) Cerca con Google

119. Xu M, Uemura R, Dai Y, Wang Y, Pasha Z, Ashraf M.In vitro and in vivo effects of bone marrow stem cells on cardiac structure and function.J Mol Cell Cardiol. 2007 Feb;42(2):441-8. Epub 2006 Dec 20 Cerca con Google

120. Yau TM, Fung K, Weisel RD, Fujii T, Mickle DA, Li RK. Enhanced myocardial angiogenesis by gene transfer with transplanted cells. Circulation 2001; 104: I218-I222. Cerca con Google

121. Yin AH, Miraglia S, Zanjani ED, Almeida-Porada G, Ogawa M, Leary AG, et al. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 1997;90:5002– 5012 Cerca con Google

122. Yu Y, Flint A, Dvorin EL, Bischoff J. AC133-2, a novel isoform of human AC133 stem cell antigen. J Biol Chem 2002;277:20711–20716. Cerca con Google

123. Zhang P, Zhang H, Wang H, Wei Y, Hu S. Artificial matrix helps neonatal cardiomyocytes restore injured myocardium in rats. Artif Organs 2006;30:86 –93. Cerca con Google

124. Zimmermann S, Voss M, Kaiser S, Kapp U, Waller CF, Martens UM. Lack of telomerase activity in human mesenchymal stem cells.Leukemia. 2003 Jun;17(6):1146-9. Cerca con Google

125. Zimmermann WH, Didié M, Wasmeier GH, Nixdorff U, Hess A, Melnychenko I, Boy O, Neuhuber WL, Weyand M, Eschenhagen T. Cardiac grafting of engineered heart tissue in syngenic rats. Circulation. 2002 Sep 24;106(12 Suppl 1):I151-7. Cerca con Google

126. Zimmermann WH, Melnychenko I, Wasmeier G, Didié M, Naito H, Nixdorff U, Hess A, Budinsky L, Brune K, Michaelis B, Dhein S, Schwoerer A, Ehmke H, Eschenhagen T.Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts.Nat Med. 2006 Apr;12(4):452-8. Epub 2006 Apr 2. Cerca con Google

127. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001 Apr;7(2):211-28. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record