Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | AccessibilitĂ 

| Crea un account

Gabrieli, Fabio (2009) L'approccio particellare per la modellazione numerica dell'innesco di instabilitĂ  di versante in terreni granulari. [Tesi di dottorato]

Questa è la versione più aggiornata di questo documento.

Full text disponibile come:

[img]Documento PDF
Tesi non accessible per motivi correlati alla proprietĂ  intellettuale.
Visibile a: nessuno

7Mb
[img]
Anteprima
Documento PDF (Tesi corretta ed aggiornata) - Versione aggiornata
8Mb

Abstract (inglese)

This PhD work deal with triggering process and stability analysis of granular soil on slope from a micromechanical point of view. Particularly, it was highlighted the capability of micromechanical modelling in describing these phenomena. The granular approach has been calibrated on the base of some experimental triaxial tests perfomed with two different material. Then granular model has been used in reproducing some loading tests on a physical model of sandy slope with quite satisfactory results. The influence of water on soil skeleton was investigated and two new coupled models have been incorporated regarding saturated flow and partial saturated regime. This two models have been tested with seepage tests on slope and with triggering-evaporation tests. In particular it was highlighted that pendular regime should be very important in forecasting triggering mechanisms.

Abstract (italiano)

In questa tesi sono state affrontate le tematiche relative all'innesco di instabilità nei terreni granulari a partire da una visione micromeccanica. Sono state in particolare evidenziate le caratteristiche e le potenzialità dei modelli micromeccanci per descrivere questi fenomeni. L'approccio particellare è stato calibrato sulla base di alcune prove triassiali di laboratorio condotte su due diversi materiali granulari. Successivamente il modello particellare è stato utilizzato per riprodurre alcune prove di carico su un modello fisico di pendio in sabbia con buoni risultati. E' stata poi indagata l'influenza dell'acqua sulla struttura dello scheletro solido e sono stati incorporati nel modello sia il regime di saturazione che quello di parziale saturazione. Questi due modelli sono stati testati su prove di filtrazione su pendio e prove di innesco per essiccamento. In particolare è stato evidenziato come il regime di parziale saturazione sia fondamentale nella previsione dei meccanismi di innesco.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Simonini, Paolo - Cola, Simonetta
Dottorato (corsi e scuole):Ciclo 21 > Scuole per il 21simo ciclo > SCIENZE DELL'INGEGNERIA CIVILE E AMBIENTALE
Data di deposito della tesi:30 Gennaio 2009
Anno di Pubblicazione:30 Gennaio 2009
Parole chiave (italiano / inglese):granular material, discrete element method, physical model
Settori scientifico-disciplinari MIUR:Area 08 - Ingegneria civile e Architettura > ICAR/07 Geotecnica
Struttura di riferimento:Dipartimenti > pre 2012 - Dipartimento di Ingegneria Idraulica, Marittima, Ambientale e Geotecnica
Codice ID:2254
Depositato il:17 Dic 2009 10:21
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Alder, B.J.,Wainwright, T.E. (1957). Studies in molecular dynamics. J. Chem. Phys 27, 1208. Cerca con Google

Allen, M.P., Tildesley, D.J. (1987).Computer Simulation of Liquids. Oxford University Press. Cerca con Google

Alonso-Marroquin, F., Luding, S., Herrmann H.J., Vardoulakis, I. (2005). Role of the anisotropy in the elastoplastic response of a polygonal packing. Phys. Rev. E, 71, 051304. Cerca con Google

Babic, M., Shen, H.H., Shen H.T. (1990). The stress tensor in granular shear flows of uniform, deformable disks at high solids concentrations. Journal of Fluid Mechanics, 219, 81-118. Cambridge University Press Copyright. Cerca con Google

Bathe, K. J., Wilson, E. L. (1976). Numerical Methods in Finite Element Analysis., Englewood Cliffs:Prentice-Hall, 1976. Cerca con Google

Bathurst, R. J., Rothenburg, L. (1988). Micromechanical aspects of isotropic granular assemblies with linear contact interactions. J. Appl. Mechanics, 55, 17-23. Cerca con Google

Been, K., Jefferies, M. (2004). Stress-dilatancy in very loose sand. Canadian Geotechnical Journal, 41 (5). Cerca con Google

Benz, W. (1990). ”Smooth Particle Hydrodynamics, a review.” The Nume- rical Modeling of Linear Stellar Pulsations, Kluwer Academic Publishers, 269-288. Cerca con Google

Berryman, J. D. (1983). Random close packing of hard spheres and disks. Phys. Rev. A, 27, 1053-1061. Cerca con Google

Beven, K. (2006). A manifesto for the equifinality thesis. Journal of Hydrology, 320 (1-2), p 18-36. Cerca con Google

Biganzoli, F., Fassi, I. , Pagano, C. (2005). Development of a gripping system based on capillary forces. The 6th IEEE International Symposium on Assembly and Task Planning, Montr´eal, Canada. Cerca con Google

Bird, G.A. (1963). Approach to translational equilbrium in a rigid sphere as. Phys. Fluids, 6, 1518. Cerca con Google

Bird, G.A. (1976). Molecular Gas Dynamics. Clarendon, Oxford. Cerca con Google

Bishop, A.W. (1954). Correspondence on shear characteristics of a saturated silt, measured in triaxial compression. G´eotechnique, 4 (1), 43-45. Cerca con Google

Bolton, M.D. (1986). The strength and dilatancy of sands. Geotechnique, 36, 65-78. Cerca con Google

Brakke, K.A. (1992). The Surface Evolver. Experimental Mathematics, 1 (2), 141-165. Cerca con Google

Brakke, K.A. (2008). The Surface Evolver 2.30c, URL: http://www.susqu.edu/brakke/. Vai! Cerca con Google

Buckingham, E. (1915). Model experiments and the form of empirical equations. Trans. ASME, 37, 263. Cerca con Google

Budhu, M., Gobin, R. (1996). Slope Instability from ground-water seepage. Journal of Hydraulic Engineering, 122 (7). Cerca con Google

Calvetti, F., Nova, R. (2004). Micromechanical approach to slope stability analysis. Degradation and Instabilities of Geomaterials, Darve and Vardoulakis editors, CISM Courses and Lectures,Springer, Berlin, 461, 235-254. Cerca con Google

Calvetti, F., Viggiani, G., Tamagnini, C. (2003). A numerical investigation of the incremental behavior of granular soils. Rivista Italiana di Geotecnica, 37(3), 11-29. Cerca con Google

Calvetti, F., Emeriault, F. (1999). Interparticle forces distribution in granular materials: link with the macroscopic behaviour. Mech. Cohes. Frict. Mater., 4, 247-279. Cerca con Google

Calvetti, F. (2008). Discrete modelling of granular materials and geotechnical problems. Revue francaise de gen`ıe civil. Cerca con Google

Caquot, A. (1934). Equilibre des massifs `a frottement interne., Paris. Cerca con Google

Carrillo, A.R.,Horner, D.A., Peters, J.F., West, J.E. (1996). Design of a Large Scale Discrete Element Soil Model for High Performance Computing Systems. Proc. of the 1996 ACM/IEEE Conference on Supercomputing (SC’96) Cerca con Google

Chang, S.C., Liao, C.L., (1990). Constitutive relation for a particulate medium with the effect of particle rotation. Int. J. Solids Struct., 26, 437-453. Cerca con Google

Chang, C.S., Chao, S.J. (1991). Discrete element method for bearing capacity analysis. Computers and Geotechnics, 12 (4), 273-288. Cerca con Google

Chang, T. P., Chen, B. H. (1997). Orthotropic elastic response of granular materials. Computer and Structures, 64 (1-4), 667-675. Cerca con Google

Cheng, Y.P., Bolton, M.D., Nakata, Y. (2004). Crushing and plastic deformation of soils simulated using DEM. Getechnique, 54 (2), 131-141. Cerca con Google

Cho, G.C., Dodds, J., Santamarina, J.C.(2006). Particle Shape Effects on Packing Density, Stiffness and Strength: Natural and Crushed Sands. Journal of Geotechnical and Geoenvironmental Engineering, 133 (11), 1473-1474. Cerca con Google

Cola, S. et al. (2006). Displacement field of a 1g model slope from digital image techniques. Proc. Sixth Int. Conf. on Physical Modelling in Geotechnics, Hong Kong, Taylor & Francis, 1, 177-180. Cerca con Google

Cola, S., Simonini, P. (1999). Some remarks on the behavior of Venetian silts. Prov. of the 2nd Int. Symp. on the pre-failure deformation characteristics of geomaterial, Torino, Balkema, Rotterdam. Cerca con Google

Cosserat, E., Cosserat, F. (1909). Theorie des corps deformables. Hermann, Paris. Cerca con Google

Coulomb, C. A. (1776). Essai sur une application des regles des maximis et minimis a quelquels problemesde statique relatifs, a la architecture. Mem. Acad. Roy. Div. Sav., 7, 343-387. Cerca con Google

Cundall, P. A. (1971). A computer model for simulating progressive large scale movements in blocky rock systems. Proc. Symp. Int. Soc. Rock Mech., Nancy, France, 2, 129-136. Cerca con Google

Cundall, P. A., Strack, O. D. L. (1979). A discrete numerical model for granular assemblies. Geotechnique, 29 (1), 47-65. Cerca con Google

Deresiewicz, H. (1958). Stress-strain relations for a simple model of a granular medium. Journal of Applied Mechanics, 25, 403-406. Cerca con Google

Desrues, J., Chambon, R., Mokni, M., Mazerolle, F. (1996). Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography. textitG´eotechnique, 46, 529-546. Cerca con Google

Di Prisco, C., Matiotti, R., Nova, R. (1995). Theoretical investigation of the undrained stability of shallow submerged slopes. G´eotechnique, 45 (3), 479-496. Cerca con Google

Di Prisco, C., Imposimato, S. (2002). Static liquefaction of satured loose sand stratum. International Journal of Solids and structures, 39, 3523-3541. Cerca con Google

Di Prisco, C. (1996). A mathematical interpretation of the volumetric instability of loose sand. Computer and Geotechnics, 18 (3), 225-244. Cerca con Google

Drescher, A., de Josselin de Jong, G. (1972). Photoelastic verification of a mechanical model for the flow of a granular material. Journal of the Mechanics and Physics of Solids, 20 (5), 337-340. Cerca con Google

Duffy J., Mindlin, R.D. (1957). Stress-strain relation and vibrations of granular medium. J. Appl. Mech. Trans. ASME, 7, 585-593. Cerca con Google

Duffy, J. (1959). A differential stress-strain relation for the exagonal closed packed array. J. Appl. Mech. Trans. ASME, 25, 88-94. Cerca con Google

Einstein, A. (2005). Kinetische Theorie des Warmegleichgewichtes und des zweiten Hauptsatzes der Thermodynamik. (Kinetic theory of thermal equilibrium and the second law of thermodynamics) Annalen der Physik (Leipzig),14 (n SUPPL.), 117-134. Cerca con Google

Einstein, A. (2005). Zur Theorie der Brownschen Bewegung. (On the theory of Brownian motion) Annalen der Physik (Leipzig), 14 (n SUPPL.), 248-258. Cerca con Google

Ergun, S. (1952). ”Fluid Flow through Packed Columns.” Chemical Engineering Progress, 48 (2), 89-94. Cerca con Google

Fredlund, D.G., Rahardio, H. (1993). Soil mechanics for unsaturated soils, John Wiley & Sons Pte. Cerca con Google

Frisch, U., Hasslacher, B., Pomeau, Y. (1986). Lattice gas automata for the Navier-Stokes equations. Phys. Rev. Lett., 56, 1505. Cerca con Google

Gabrieli, F., Calvetti, F., Cola, S., Simonini, P. (2008). Micromechanical modelling of shallow foundation on a slope crest. Proc. BGA Int.Conf.on Foundations,Dundee, Scotland, IHS BRE Press. Cerca con Google

Gajo, A., Muir Wood, D. (1999). Severn-Trent sand: a kinematic-hardening constitutive model: the q-p formulation. G´eotechnique, 49 (5), 595-614. Cerca con Google

Gajo, A., Muir Wood, D. (1999). A kinematic hardening constitutive model for sands: the multiaxial formulation International Journal for Numerical and Analytical Methods in Geomechanics, 23, 925-965. Cerca con Google

Geng, J., Longhi, E., Behringer, R. P., Howell, D.W. (2001). Memory in twodimensional heap experiments. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics), 64 (6), 060301. Cerca con Google

Ghaboussi, J., Barbosa, R. (1990). Three-dimensional discrete element method for granular materials. International Journal for Numerical and Analytical Methods in Geomechanics, 14 (7), 451-472. Cerca con Google

Gibson, J.B., Goland, A.N., Milgram, M., Vineyard, G.H. (1960). Dynamics of Radiation Damage. Phys. Rev., 120, 1229-1253. Cerca con Google

Goldstein H. (1980) Classical Mechanics, 2nd. ed., Addison-Wesley. Cerca con Google

Grasselli, Y., Hermann, H.J., (1999). Shapes of heaps and in silos. The European physical journal B, 10 (4), 673-679. Cerca con Google

Gregoretti, C. (2000). Experimental evidence from the triggering of debris flow along a granular slope Phys. Chem. Earth, 25 (4). Cerca con Google

Hakuno, M., Tarumi, Y. (1988). A granular assembly simulation for the siesmic liquefaction of sand. Proc. of Japan Society of Civil Engineers, 398 (10), 129-138. Cerca con Google

Herrmann, H.J., Astrømb, J.A., Mahmoodi Barama, R. (2004). Rotations in shear bands and polydisperse packings. Physica A: Statistical Mechanics and its Applications, 344 (3-4), 516-522 . Cerca con Google

Hockney, R. W., Eastwood, J. W. (1988). Computer Simulation using Particles. Adam Hilger Publishing. Cerca con Google

Horne, M.R. (1965). The behaviour of an assembly of rotound, rigid, cohesionless particles I and II. Proc. of the Royal Society London A, 286, 62-97. Cerca con Google

Horne, M.R., (1969). The behaviour of an assembly of rotound, rigid, cohesionless particles III. Proc. of the Royal Society London A, 310, 21-34. Cerca con Google

Itasca Consulting Group (2003). PFC3D - Particle Flow Code in three dimensions, Version 3.0, User’s guide, Fish in PFC, Theory and background., Minneapolis. Cerca con Google

Iverson, R.M., Vallance, J.W. (2001). New views of granular mass flows. Geology, 29(2), 115-118. Cerca con Google

Iwashita, K., Oda, M. (1998). Rolling resistance at contacts in simulation of shear band development by DEM. Journal of Engineering. and Mechanics, ASCE, 124 (3), 285-292. Cerca con Google

Kawaguchi, T., Tanata, T., Tsuji, Y. (1992). ”Numerical Simulation of Fluidized Bed Using the Discrete Element Method (the Case of Spouting Bed).” JSME (B), 58 (551), 79-85. Cerca con Google

Kolymbas, D. (2000). The misery of costitutive modelling, Constitutive Modelling for Granular Materials., Springer. Cerca con Google

Kruyt, N.P., Rothenburg, L. (2006). Shear strength, dilatancy, energy and dissipation in quasi-static deformation of granular materials. Journal of Statistical Mechanics: Theory and Experiment, P07021. Cerca con Google

Kruyt, N. P., Rothenburg, L. (2004). Kinematic and static assumptions for homogenization in micromechanics of granular materials. Mech. Mater, 36 ,1157-1173. Cerca con Google

Kruyt, N.P., Rothenburg, L. (2001). Statistics of the elastic behaviour of granular materials. textitInt. J. of Solids and Structures, 38, 4879-4899. Cerca con Google

Lambe,T.W., Withman, R.V. (1969). Soil Mechanics, John Wiley and Sons, Inc., New York. Cerca con Google

Lambert, P., Chau, A., Delchambre, A., R´egnier, S. (2008). Comparison between two capillary forces models. Langmuir: the ACS journal of surfaces and colloids, 24. Cerca con Google

LehonC.N., Cambou, B., Vincens, E. (2003). Influence of particle shape and angularity on the behaviour of granular materials: a numerical analysis. Int. J. for Numer.Anal.Meth.Geomech., 27. Cerca con Google

Liao, C.L., Chang, T.P., Young, D.H., Chang, S.C. (1997). Stress-strain relationship for granular materials based on the hypothesis of best fit. Int. J. Solids Struct., 34, 4087-4100. Cerca con Google

Lin, X., Ng, T.T. (1995). Contact detection algorithms for three dimensional ellipsoids in discrete element modelling. International Journal for Numerical and Analytical Methods in Geomechanics, 19 (9), 653-659. Cerca con Google

Lin, X., Ng, T.T. (1997). Three-dimensional discrete element model using arrays of ellipsoids. G´eotechnique, 47 (2), 319-329. Cerca con Google

Liu, S.H., Sun, A. (2002). Simulating the collapse of unsaturated soil by DEM. Int. J. Numer. Anal. Methods in Geomech., 26, 633-646. Cerca con Google

Lu, N., Anderson, M.T., Likos, W.J., Mustoe, G.W. (2008). A discrete element model for kaolinite aggregate formation during sedimentation. Int. J. Numer. Anal. Meth. Geomech., 32, 965-980. Cerca con Google

Maleki, H., Ebrahimi, F., Oskoee, E. N. (2008). The angle of repose of spherical rains in granular Hele-Shaw cells: a molecular dynamics study Journal of statistical mechanics: Theory and experiment,4. Cerca con Google

Matsushima, T. (2005). Effect of irregular grain shape on quasi-static shear behaviour of granular assembly. Powders and Grains 2005 ed. R Garcia- Rojo, H J Herrmann and S McNamara, London, Taylor and Francis,1319- 1323. Cerca con Google

Matuttis, H.G. (1998). Simulation of the pressure distribution under a twodimensional heap of polygonal particles. Granular Matter, 1(2). Cerca con Google

Miller, R. H. (1992). ”Experimenting with Galaxies.” American Scientist, 152-163. Cerca con Google

Misra, A., Chang, C. S.(1993). Effective elastic moduli of heterogeneous granular solids. International Journal of Solids and Structures, 30 (18), 2547-2566. Cerca con Google

Molenkamp, F., Nazemi, A.H. (2003). Interactions between two rough spheres, water bridge and water vapour. G´eotechnique, 53 (2), 255-264. Cerca con Google

Monagahan, J.J. (1992). ”Smoothed Particle Hydrodynamics.” Annual Review of Astronomy Astrophysics, 30, 543-574. Cerca con Google

Moreau J.J. (1988). Unilateral contact and dry friction in finite freedom dynamics. International Centre for Mechanical Sciences, Courses and Lectures, 302, Springer, Vienna. Cerca con Google

Munjiza, A., Latham, J.P., John, N.W.M. (2003). 3D dynamics of discrete element systems comprising irregular discrete elements-integration solution for finite rotations in 3D. Int. J. Num. Methods in Engineering,56, 35-55. Cerca con Google

Nase S.T.,Watson, L.V., Adetola, A.A., McCarthy, J.J. (2001). Discrete characterization tools for cohesive granular material. textitPowder Technology, 116. Cerca con Google

Nedderman, R.M. (1992). Statics and Kinematics of Granular Materials. Cambridge University Press, Cambridge, United Kingdom. Cerca con Google

Novak, S., Samadani, A., Kudrolli, A. (2005). Maximum angle of stability of a wet granular pile. textitNature Physics, 1, 50-52. Cerca con Google

Oda, M., Kazama, H. (1998). Micro-structure of shear band and its relationto the mechanisms of dilatancy and failure of dense granular soils. G´eotechnique, 48 (4), 465-481. Cerca con Google

Onoda, G. Y., Liniger, E. G. (1190). Random loose packings of uniform spheres and the dilatancy effect. Phys. Rev. Lett., 64, 2727-2730. Cerca con Google

Ortiz, M., Leroy, Y., Needleman, A. (1987). A finite element method for localized failure analysis. Computer Methods in Applied Mechanics and Engineering archive, 61 (2), 189-214. Cerca con Google

O’Sullivan, C., Bray, JD., Riemer, M. (2004). Examination of the response of regularly packed specimens of spherical particles using physical tests and discrete element simulations. J Eng Mech-ASCE, 130, 1140-1150. Cerca con Google

Pena, A.A., Lizcano, A., Alonso-Marroquin, F., Herrman, H.J. (2008). Biaxial test simulations using a packing of polygonal particles. Int. J. for Num. and Anal. Meth. in Geomech., 32, 143-160. Cerca con Google

Philippe, P., Richard, T. (2008). Start and stop of an avalanche in a granular medium subjected to an inner water flow. Physical Review E – Statistical, Nonlinear, and Soft Matter Physics, 77 (4). Cerca con Google

Pitois, O., Moucheront, P., Chateau, X. (2000).Liquid Bridge between Two Moving Spheres: An Experimental Study of Viscosity Effects. Journal of Colloid and Interface Science, 231 (1). Cerca con Google

Rabinovich, Y.I., Esayanur, M.S., Moudgil, B.M. (2005). Capillary Forces between two spheres with fixed volume liquid bridge: theroy and experiment. Langmuir, 21 (24), 10992 -10997. Cerca con Google

Rahman, A. (1964). Correlations in the Motion of Atoms in Liquid Argon. Phys. Rev., 136, A405-A411. Cerca con Google

Reinson, J.R., Fredlund, D.G., Wilson, G.W. (2005). Unsatured flow in coarse porous media. Can. Geotechnical Journal, 42, 252-262. Cerca con Google

Richefeu ,V., El Youssoufi, M.S.; Peyroux, R.; Radjai, F. (2008). A model of capillary cohesion for numerical simulations of 3D polydisperse granular media. International Journal for Numerical and Analytical Methods in Geomechanics, 32 (11). Cerca con Google

Rothman, D.H. (1998). Cellular-automaton fluids: a model for flow in porous media. Geophysics, 53 (4), 509-518. Cerca con Google

Rowe, P.W. (1962). The stress-dilatancy relation for static equilibrium of an assembly of particles in contact. Proc. R. Soc. A, 264, 500-527. Cerca con Google

Rudnicki, J. W., Rice, J. R. (1975). Conditions for the Localization of the Deformation in Pressure-Sensitive Dilatant Materials. J. Mech. Phys. Solids, 23, 371-394. Cerca con Google

Ryhnart, P.R., McLachlan, R., Jones, J.R., McKibbin, R. (2003). Solution of the Young-Laplace equation for three particles. Res. Lett. Inf. Math. Sci., 5, 119-127. Cerca con Google

Salot, C. (2007). Mod´elisation du comportament m´ecanique d’un mat´eriau granulaire composite par la m´ethode des ´el´ements discrets., Universite Grenoble 1 ”Joseph Fourier”, Laboratoire Sols, Solides, Structures, Risques (3S-R), PhD Thesis. Cerca con Google

Samadani, A., Kudrolli, A., (2001). Angle of repose and segregation of cohesive granular matter. Phys. Rev. E, 64, 051301. Cerca con Google

Nowak,S., Samadani, A., Kudrolli, A. (2005). Maximum angle of stability of a wet granular pile. Nature Physics, 1, 50. Cerca con Google

Santamarina, J. C. (2001). Soil behaviour at the microscale particle forces. Proc. Symp. Soil Behaviour and Soft Ground Construction, MIT. Cerca con Google

Santamarina, J.C., Cho,G.C. (2001). Determination of critical state parameters in sandy soil - Simple procedure Geotechnical Testing Journal, 24 (2), 185-192. Cerca con Google

Santamarina, J.C. (2001). Soils and waves, John Wiley and sons, Chichester, England. Cerca con Google

Savage, S. B. (1984). The mechanics of rapid granular flows. Adv. Appl. Mech., 24, 289-366. Cerca con Google

Scott, G. D., Kilgour, D. M. (1969). The density of random close packing of spheres. Journal of Phys. D, 2, 863-866. Cerca con Google

Sholtz, P., Bretz, M., Nori, F. (1997). Sound-producing sand avalanches. Contemporary Physics, 38(5), 329-342. Cerca con Google

Simonini, P. (1996). Analysis of behaviour of sand surrounding pile tips. Journal of Geotech. Engineering, 122, 897-905. Cerca con Google

Skinner, A.E. (1969). A note on the influence of interparticle friction on the shearing strength of a random assembly of spherical particles. Geotechnique, 19, 150-157. Cerca con Google

Smid, J., Novosad, J. (1981). Pressure distribution under heaped bulk solids. ChemE Symp, 63. Cerca con Google

Song, C., Wang, P., Makse H.A. (2008). A phase diagram for jammed matter. Nature, 453, 629-632. Cerca con Google

Song, C., Wang, P., Makse, H. A. (2005). Experimental measurement of an effective temperature for jammed granular materials. Proc. Nat. Acad. Sci., 102, 2299-2304. Cerca con Google

Souli´e, F., Cherblanc, F., El Youssoufi, M. S., Saix, C. (2006). Influence of liquid bridges on the mechanical behavior of polydisperse granular materials. Int. Journ. for Numerical And Analytical method in geomechanics, 30, 213- 228. Cerca con Google

Spaid, M.A.A., Phelan, F.R. (1997). Lattice Boltzmann methods for modeling microscale flow in fibrous porous media. Phys. Fluids, 9, 2468. Cerca con Google

Sperotto, M. (2007). Filtrazione in regime transitorio all’interno di un pendio modello ed effetti sull’instabilit`a. Tesi di Laurea,Dipartimento IMAGE, Universit`a di Padova. Cerca con Google

Staron, L., Radjai, F., Vilotte, J.-P. (2005). Multi-scale analysis of the stress-state in a granular slope in transition to failure. textitThe European Physical Journal E, 18, 311-320. Cerca con Google

Stormont, J.C., Anderson, C.E. (1999). Capillary barrier effect form underlying coarser soil layer. Journal of Geotechnical and Geoenvironmental Enginnering, 158 (8), 641-648. Cerca con Google

Suiker, A.S.J., Fleck, N. A. (2004). Frictional collapse of granular assemblies. J. Appl. Mech. (ASME), 71, 350-358. Cerca con Google

Suiker, A.S.J., Fleck, N.A. (2004). Frictional collapse of granular materials. J. Appl. Mech. (Trans. ASME), 71, 350-358. Cerca con Google

Thornton, C. (1979). The Conditions for Failure of a Face-Centered Cubic Array of Uniform Rigid Spheres. G´eotechnique, 29(4), 441-459. Cerca con Google

Thornton, C., Lanier, J. (1997). Uniaxial compression of granular media: numerical simulations and physical experiment. Powders and Grains 97, Behringer and Jenkins (eds), Balkema, Rotterdam, 223-226. Cerca con Google

Tiso, C., Bertoldi, G., Rigon, R. (2004). The model Geotop-SF to forecast the triggering of slopes and debris flow instability. CAMDHA, Princeton. Cerca con Google

Tsai, T.L., Yang, J.C. (2006). Modeling of rainfall-triggered shallow landslide. textitEnvironmental Geology, 50. Cerca con Google

Tselishchev, Y.G., Val’tsifer, V.A. (2003). Influence of the type of contact between particles joined by a liquid bridge on the capillary cohesive forces. Colloid Journal, 65 (3), 385-389. Cerca con Google

Vardoulakis, I. (1980). Shear Band Inclination and Shear Modulus of Sand in Biaxial Tests. Int. J. Numer. Anal. Meth. in Geomechanics, 4, 103-119. Cerca con Google

Vesga, L.F., Vallejo, L.E., Lobo-Guerrero, S. (2008). DEM analysis of the crack propagation in brittle clays under uniaxial compression tests. Interna- tional Journal for Numerical and Analytical Methods in Geomechanics, 32 (11), 1405 - 1415. Cerca con Google

Vesic, A. S. (1973). Analysis of ultimate loads of shallow foundations. Journal of the Soil Mech. and Foundation Division, 99(1), 45-73. Cerca con Google

Walton, K. (1987). The effective elastic moduli of a random packing of spheres. J. Mech. Phys. Solids, 35, 213-226. Cerca con Google

White, D.J., Take, W.A., Bolton, M.D., Munachen, S.E. (2003). Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry. Geotechnique, 53(7), 619-631. Cerca con Google

White, D.J., Take, W.A., Bolton, M.D., Munachen, S.E. (2001). A deformation measurement system for geotechnical testing based on digital imaging, close-range photogrammetry, and PIV image analysis. 15th Internatio- nal Conference on Soil Mechanics and Geotechnical Engineering, Istanbul, Balkema, Rotterdam, 539-542. Cerca con Google

Willet, C.D., Adams, M.J., Johnson, S.A., Seville, J.P.K. (2000). Capillary bridges between two spherical bodies. Langmuir, 16. Cerca con Google

Wilson, G.W., Fredlund, D.G., Barbour, S.L. (1997). The effect of soil suction on evaporative fluxes from soil surfaces. Canadian Geotechnical Journal, 34. Cerca con Google

Yan, W.M. (in press). Fabric evolution in a numerical direct shear test. Computer and Geotechnics. Cerca con Google

Yang, R.Y., Zou, R.P., Yu, A.B. (2003). Numerical study of the packing of wet coarse unifrom spheres. AIChE Journal, 49 (7), 1656-1666. Cerca con Google

Zhao, D., Nezami, E.G., Hashash, Y.M.A., Ghaboussi, J. (2006). Threedimensional discrete element simulation for granular materials. International Journal for Computer-Aided Engineering and Software, 23 (7), 749-770. Cerca con Google

Zollet, M. (2008). Analisi numerica e sperimentale del moto di filtrazione in regime transitorio in un modello di pendio in sabbia. Tesi di Laurea, Dipartimento IMAGE, Universit`a di Padova. Cerca con Google

Versioni disponibili di questo documento

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record