Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

CONVERTINO, MATTEO (2009) PATTERNS IN ECOLOGY AND GEOMORPHOLOGY OF RIVER BASIN ECOSYSTEMS. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF (TESI DI DOTTORATO DI RICERCA) - Versione pubblicata
22Mb

Abstract (inglese)

Some possible interactions between the hydrological, geomorphological, and ecological features and processes have been studied here at different spatial scales and resolutions in ecosystems. The ecohydrological framework is to perform an interdisciplinary research to detect with essential models the broad and complex patterns in biological, ecology, geomorphology and hydrology of river basins, in which water plays a key role.
Starting from the evidence of the invariance and universality of some geomorpho- logical patterns in river basins, such as the drainage area and the Hack's lengths, the distribution of the distances between tributaries along the mainstream has been stud- ied using digital terrain maps of real basins, that is directly related to the availability of water and of the channel and riparian area. Specifically it has been found that the probability of exceedence of of the alongstream distances of tributaries larger than a given threshold, has an exponential form in function of the boundary conditions and the Hurst exponent of the basin. Also theoretical constructs have been used such as optimal channel networks, Peano and Scheidegger networks at different growth stages, deriving exact analytical expressions for the probability of the distances between subbasins on a rectilinear mainstrem. The concepts of scale as extension, resolution and coarse-graining level have been introduced in order to study the properties of patterns resulting from ecological and geomorphological processes when varying these quantities.
Biodiversity patterns have been extensively simulated using two principal dispersal mechanisms with a neutral metacommunity model. The mechanism with exponential kernel dispersal and the mechanism with exponential plus a power-law kernel dispersal that ensures a long-distance dispersal to the species. Because the neutrality hypothesis all the individuals compete equivalently in the speciation and dispersal dynamics. The dependence on the scale, resolution and coarse-graining at which the ecosystem is sim- ulated has been investigated for different biodiversity indicators, such as the local and regional species richness, the similarity in species richness between local communities, the species-area relationship and the probability distribution of cluster-size of conspe- cific individuals. Also empirical patterns of fishes and trees (with two classes of diameter resembling two distinct life-stages) of the Mississippi-Missouri River System have been analysed. The model is able to describe the probability distribution of the cluster-size further other patterns as already evidenced by previous studies. The influence of the topology of the ecosystem (2-D landscape and river network), of the shape, and of the en- vironmental heterogeneities, have been analysed in detail. In general all the biodiversity patterns result dependent on the scale and on the resolution. Therefore the species-area relationship results invariant across coarse-graining levels.
The macroecological description of the spatial distribution of the species results re- produced by the neutral model optimally. An interesting relationship has been found between the exponent of the species-area relationship and the exponent of the power-law of the cluster-size for different topologies and dispersal cases. The exogenous (immigra- tion and environmental variables) and endogenous factors (speciation and topology) have been disentangled in order to determine their contribution in the spatial patterns of fish and vegetation. The speciation-death and dispersal phenomena are the determinants in the clustering process without any need to include positive feedbacks between species in order to reproduce the spatial patterns. The environmental heterogeneities, for example dictated by the climate influence the structure of the power-law of the cluster-size of species only in conditions of dispersal limitation and saturation of the local communi- ties. It has been put emphasis also on the species-individual relationship as a tool to better forecast the effect of climate change than the species-area curve, and to possible allometric relationships between the dispersal parameter and some species traits such has mass and lifespan. The relationship between the exponent of the species-area and the lifespan of species is in agreement with what found in literature.
The interactions between the geomorphic structure of ecosystems and the processes acting on them at different scale are of fundamental importance in the management of ecological and water resources. This is the reason why it is extremely important to understand the scale at which the relevant processes take place. It has been evidenced clearly the striking features of the geomorphic supports and external drivers on ecological and biological processes than on the hydrologic dynamics.
Keywords: biodiversity patterns, ecohydrology, scales, river basins, dispersal, neu- trality, metacommunity, landscape ecology, geomorphology.

Abstract (italiano)

Questa tesi tratta dello studio dei controlli idrologici e geomorfologici sulle caratteristiche e processi ecologici in ecosistemi fluviali. L'inquadramento ecoidrologico qui perseguito definisce un approcio interdisciplinare con lo scopo di modellare vasti e complessi patterns biotici and abiotici nei quali l'acqua gioca un formante ruolo chiave.
Partendo dall'evidenza dell'invarianza di alcune proprietà di patterns geomorfologici dei bacini fluviali, la tesi prima tratta della distribuzione delle distanze tra sottobacini lungo il corso d'acqua principale. Questa ́e una caratteristica importante per i processi ecologici perché controlla lo sviluppo spaziale della capacità dell'habitat locale di ospitare individui delle specie, ed è stata studiata usando mappe digitali del terreno di bacini fluviali. La relativa disponibilità di acqua e l'area di canale e ripariale sono allo stesso modo investigate. Specificatamente ́e stato trovato che la probabilità di eccedenza delle distanze lungo il canale principale tra affluenti (maggiori di una data soglia) ha una forma esponenziale legata al vincolo geomorfico. Costrutti teorici sono stati usati allo stesso scopo, come le reti ottime di canali, le reti di Peano e Scheidegger, derivando espressioni analitiche esatte per caratteristiche geomorfiche rilevanti.
Patterns di biodiversità sono stati estensivamente studiati con simulazioni numeriche, con diverse textures ambientali definite dall'ambiente fluviale, e usando due principali meccanismi di dispersione in un modello neutrale a metcommunità. L’ ipotesi di neutralità postula che tutti gli individui competono equivalentemente nelle dinamiche di speciazione e dispersione. Un meccanismo ́e con un kernel esponenziale che descrive certe caratteristiche ecologiche di interesse caratterizzate da una scala spaziale, mentre un altro meccanismo è impiegando un kernel con dispersione a legge di potenza il quale assicura dispersioni a lunga distanza alle specie. E' stata analizzata la dipendenza dalla scala, risoluzione e raffinamento del modello a cui l'ecosistema è simulato, di svariati indicatori di biodiversità, come la ricchezza locale e regionale di specie, la similarità in specie tra comunità locali nell'ecosistema, la relazione specie-area e la distribuzione di probabilità della dimensione dei cluster di individui conspecifici.
Patterns empirici di pesci e alberi del sistema fluviale del Mississippi-Missouri sono stati analizzati. Proprie simulazioni provano essere capaci di descrivere parecchi patterns biotici osservati, includendo la distribuzione di probabilità della dimensione dei clusters delle specie. Le influenze della topologia dell'ecosistema (paesaggio 2-D e rete fluviale 1-D), della forma, e delle disomogeneità ambientali, sono state analizzate in dettaglio. E' stato trovato che in generale i patterns di biodiversità sono dipendenti dalla scale e risoluzione.
La tesi anche tratta della descrizione macroecologica della distribuzione spaziale delle specie prodotta dal modello neutrale. E' suggerito come l'esponente della rilevante relazione specie-area e l'esponente della legge a potenza della dimensione dei clusters sono relazionati per diverse topologie e scenari di dispersione. I fattori esogeni (immigrazione e variabili ambientali) ed endogeni (speciazione e topologia) sono stati studiati separatamente per determinare il loro contributo mutuo e individuale nella generazione dei patterns spaziali di pesci e vegetazione. I fenomeni di speciazione-morte e dispersione sono suggeriti essere i determinanti nel processo di clusterizzazione senza nessun bisogno di includere feedback positivi tra le specie. Le eterogeneità ambientali, ad esempio dettate dal clima influenzano sulla struttura a legge di potenza dei cluster delle specie solo in condizioni di dispersione limitata o di saturazione delle comunità locali. Relazioni specie-individui sono studiate come strumento per meglio predire l’ effetto del cambiamento climatico, e possibilmente per inferire relazioni allometriche tra il parametro di dispersione e i tratti fisiologici delle specie come la massa e la durata di vita.
In conclusione le interazioni tra la struttura geomorfica degli ecosistemi e i processi che avvengono in essi a diverse scale sono di fondamentale importanza nel organizzazione e tutela delle risorse ecologiche e idrologiche. La tesi evidenzia il ruolo cruciale dei supporti geomorfologici e dei drivers esterni sui processi ecologici e biologici che sono controllati da dinamiche idrologiche.
Parole chiave: patterns di biodiversità, ecoidrologia, scale, bacini fluviali, dispersione, neutralità, metacomunità, ecologia del paesaggio, geomorfologia.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Rinaldo, Andrea
Correlatore:Rodriguez-Iturbe, Ignacio
Dottorato (corsi e scuole):Ciclo 22 > Scuole per il 22simo ciclo > SCIENZE DELL'INGEGNERIA CIVILE E AMBIENTALE
Data di deposito della tesi:NON SPECIFICATO
Anno di Pubblicazione:31 Dicembre 2009
Informazioni aggiuntive:Tesi di dottorato di ricerca
Parole chiave (italiano / inglese):patterns di biodiversità, ecoidrologia, scale, bacini fluviali, dispersione, neutralità, metacomunità, ecologia del paesaggio, geomorfologia.
Settori scientifico-disciplinari MIUR:Area 08 - Ingegneria civile e Architettura > ICAR/02 Costruzioni idrauliche e marittime e idrologia
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria Idraulica, Marittima, Ambientale e Geotecnica
Codice ID:2272
Depositato il:11 Ott 2010 10:25
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Alerstam, T., A. Hedenstrom, and S. Akesson (2003), Long-distance migration: evolution and determinants, Oikos, 103. Cerca con Google

Alexander, R. B., R. A. Smith, and G. E. Schwarz (2000), Effect of stream channel size on the delivery of nitrogen to the Gulf of Mexico, Nature, 403, 758–761, doi: 10.1038/35001562. Cerca con Google

Ammerman, A., and L. Cavalli-Sforza (1984a), Neolithic Transition and the Genetic of Population in Europe, Princeton University Press, USA. Cerca con Google

Ammerman, A., and L. Cavalli-Sforza (1984b), Neolithic Transition and the Genetic of Population in Europe, Princeton University Press, USA. Cerca con Google

Angermeier, P. L., and M. R. Winston (1998), Local vs. regional influences on local diversity in stream fish communities of Virginia, Ecology, 79(3), 911–927. Cerca con Google

Arrhenius, O. (1921), Species and area, Journal of Ecology, 9, 95–99. Azaele, S. (2006), Stochastic equations for the evolution of ecosystems, Ph.D. thesis, Cerca con Google

Universita` di Padova, Advisor: Prof. A. Maritan. Azaele, S., S. Pigolotti, J. R. Banavar, and A. Maritan (2006), Dynamical evolution of Cerca con Google

ecosystems, Nature, 444, 926–928, doi:10.1038/nature05320. Cerca con Google

Azaele, S., R. Muneepeerakul, A. Maritan, A. Rinaldo, and I. Rodriguez-Iturbe (2009), Predicting spatial similarity of freshwater fish biodiversity, Proceedings of the National Academy of Science, 106, 7058–7062, doi:10.1073/pnas.0805845106. Cerca con Google

Bak, P., K. Chen, and C. Tang (1990), A forest-fire model and some thoughts on turbu- lence, Physics Letters A, 147, 297–300, doi:10.1016/0375-9601(90)90451-S. Cerca con Google

Ball, P. (1999), The Self-Made Tapestry: Pattern Formation in Nature, Oxford Univer- sity Press. Cerca con Google

Banavar, J. R., J. L. Green, J. Harte, and A. Maritan (1999), Finite size scaling in ecology, Phys. Rev. Lett., 83(20), 4212–4214. Cerca con Google

Banavar, J. R., F. Colaiori, A. Flammini, A. Maritan, and A. Rinaldo (2000), Topology of the Fittest Transportation Network, Physical Review Letters, 84, 4745–4748, doi: 10.1103/PhysRevLett.84.4745. Cerca con Google

Bibliography Banavar, J. R., F. Colaiori, A. Flammini, A. Maritan, and A. Rinaldo (2001), Scaling, Cerca con Google

optimality and landscape evolution, J. Stat.Phys., 104, 1–33. Cerca con Google

Banavar, J. R., J. Damuth, A. Maritan, and A. Rinaldo (2007), Scaling in Ecosystems and the Linkage of Macroecological Laws, Physical Review Letters, 98 (6), doi:10.1103/ PhysRevLett.98.068104. Cerca con Google

Bangert, R. K., E. V. Lonsdorf, S. M. Shuster, D. Fisher, J. A. Schweitzer, J. K. Bai- ley, and T. G. Whitman (2008), Genetic structure of a foundation species: scaling community phenotypes from the individual to the region, Heredity, 100, 121–131, doi: 10.1038/sj.hdy.6800914. Cerca con Google

Bartumeus, F., and S. A. Levin (2008), Movement Ecology Special Feature: Fractal reori- entation clocks: Linking animal behavior to statistical patterns of search, Proceedings of the National Academy of Science, 105, 19,072–19,077, doi:10.1073/pnas.0801926105. Cerca con Google

Battin, T. J., L. A. Kaplan, J. Denis Newbold, and C. M. E. Hansen (2003), Contribu- tions of microbial biofilms to ecosystem processes in stream mesocosms, Nature, 426, 439–442. Cerca con Google

Battin, T. J., L. A. Kaplan, S. Findlay, C. Hopkinson, E. Marti, A. Packman, J. New- bold, and F. Sabater (2008), Biophysical controls on organic carbon fluxes in fluvial networks, Nat. Geosci., 1, 95–100. Cerca con Google

Bechtold, W. (2003), FIA-sampling and plot design fact sheet, http://fia.fs.fed.us/library/fact-sheets/p3-factsheets/tree-growth.pdf. Vai! Cerca con Google

Bell, G. (2001), Neutral Macroecology, Science, 293, 2413–2418. Cerca con Google

Benda, L., L. Poff, D. Miller, T. Dunne, G. Reeves, G. Pess, and M. Pollock (2004), The Network Dynamics Hypothesis: How Channel Networks Structure Riverine Habitats, BioScience, 54, 413–427. Cerca con Google

Bertuzzo, E., A. Maritan, M. Gatto, I. Rodriguez-Iturbe, and A. Rinaldo (2007), River networks and ecological corridors: reactive transport on fractals, migration fronts, hydrochory, Water Resources Research, 41(W04419), doi:10.1029/2006WR005533. Cerca con Google

Bertuzzo, E., S. Azaele, A. Maritan, M. Gatto, I. Rodriguez-Iturbe, and A. Rinaldo (2008), On the space-time evolution of a cholera epidemic, Water Resources Research, 44(W01424), doi:10.1029/2007WR006211. Cerca con Google

Bertuzzo, E., R. Muneepeerakul, H. Lynch, I. Rodriguez-Iturbe, and A. Rinaldo (2009), On the geographic range of freshwater fish in river basins, Water Resources Research, doi:10.1029/2009WR007997, in press. Cerca con Google

Bissonette, J. (1997), Wildlife and Landscape Ecology: Effects of Pattern and Scale, Springer. Cerca con Google

Blake, S., S. L. L. Deem, E. Mossimbo, F. Maisels, and P. Walsh (2009), Forest elephants: Tree planters of the congo, Biotropica, 41(4), 459–468, doi:10.1111/j.1744-7429.2009. 00512.x. Cerca con Google

Boer, M., R. Sadler, R. Bradstock, A. Gill, and P. Grierson (2008), Spatial scale in- variance of southern australian forest fires mirrors the scaling behavior of fire-driving weather events, Landscape Ecology, 23. Cerca con Google

Bohrer, G., R. Nathan, and S. Volis (2005), Effects of long-distance dispersal for metapopulation survival and genetic structure at ecological time and spatial scales, Journal of Ecology, 93, 1029–1040, doi:10.1111/j.1365-2745.2005.01048.x. Cerca con Google

Borgono, F., P. D’Odorico, F. Laio, and L. Ridolfi (2009), Mathematical models of vegetation pattern formation in ecohydrology, Rev. Geophys., in press. Cerca con Google

Botter, G., E. Bertuzzo, A. Bellin, and A. Rinaldo (2005), On the lagrangian formu- lations of reactive solute transport in the hydrologic response, Water Resour. Res., 41(W04008), doi:10.1029/2004WR003544. Cerca con Google

Bowman, J., A. Jaeger, and L. Fahrig (2002), Dispersal distance of mammals is propor- tional to home range size, Ecology, (83(7)), 2049–2055. Cerca con Google

Boyer, D., G. Ramos-Ferna ́ndez, O. Miramontes, J. L. Mateos, G. Cocho, H. Larralde, H. Ramos, and F. Rojas (2006), Scale-free foraging by primates emerges from their interaction with a complex environment., Proceedings. Biological sciences / The Royal Society, 273(1595), 1743–1750, doi:10.1098/rspb.2005.3462. Cerca con Google

Broquet, T., and E. J. Petit (2009), Molecular estimation of dispersal for ecology and population genetics, Annual Review of Ecology, Evolution, and Systematics, 40(1), doi:10.1146/annurev.ecolsys.110308.120324. Cerca con Google

Brown, K. A., and J. Gurevitch (2004), Long-term impacts of logging on forest diversity in Madagascar, Proceedings of the National Academy of Science, 101, 6045–6049. Cerca con Google

Bullock, J., R. Kenward, and R. Hails (2002), Dispersal Ecology: 42nd Symposium of the British Ecological Society, Cambridge University Press. Cerca con Google

Burkman, B. (2005), FIA-sampling and plot design fact sheet, http://fia.fs.fed.us/library/fact-sheets/data-col lections/SamplingandPlotDesign.pdf. Vai! Cerca con Google

Burness, G. P., J. Diamond, and T. Flannery (2001), Dinosaurs, dragons, and dwarfs: The evolution of maximal body size, Proceedings of the National Academy of Science, 98, 14,518–14,523. Cerca con Google

Burns, J., and J. Thomson (2006), A test of spatial memory and movement patterns of bumblebees at multiple spatial and temporal scales, Behavioral Ecology, 17, 48–55, doi:10.1093/beheco/arj002. Cerca con Google

Burt, W. (1943), Territoriality and home range concepts as applied to mammal, Journal of Mammology, (24), 346–352. Cerca con Google

Cain, M., B. Milligan, and A. Strand (2000), Long-distance seed dispersal in plant populations, American Journal of Botany, 87, 1217–1227. Cerca con Google

Camporeale, C., and L. Ridolfi (2006), Riparian vegetation distribution induced by river flow variability: a stochastic approach, Water Resources Research, 42(W10415), doi: 10.1029/2006WR004933. Cerca con Google

Campos, D., J. Fort, and V. Mendez (2006), Transport on fractal river networks: Application to migration fronts, Theoretical Population Biology, 69, 88–93, doi: 10.1016/j.tpb.2005.09.001. Cerca con Google

Caylor, K. K., and H. H. Shugart (2006), Pattern and process in savanna ecosystems, in Dryland Ecohydrology, edited by P. D’Odorico and A. Porporato, pp. 259–282, Springer-Verlag. Cerca con Google

Caylor, K. K., T. M. Scanlon, and I. Rodriguez-Iturbe (2004), Feasible optimality of vegetation patterns in river basins, Geophysical Research Letter, 31, 13,502–+, doi: 10.1029/2004GL020260. Cerca con Google

Caylor, K. K., S. Manfreda, and I. Rodriguez-Iturbe (2005), On the coupled geomorpho- logical and ecohydrological organization of river basins, Advances in Water Resources, 28, 69–86, doi:10.1016/j.advwatres.2004.08.013. Cerca con Google

Chave, J., H. C. Muller-Landau, and S. A. Levin (2002), Comparing classical community models: Theoretical consequences for patterns of diversity, American Naturalist, 159, 1–23. Cerca con Google

Clark, J. S., M. Silman, R. Kern, E. Macklin, and J. Hillerislambers (1999), Seed dispersal near and far: Patterns across temperate and tropical forests, Ecology, 80(5), 1475– 1494, doi:10.2307/176541. Cerca con Google

Clauset, A., C. Rohilla Shalizi, and M. E. J. Newman (2007), Power-law distributions in empirical data, ArXiv e-prints. Cerca con Google

Colaiori, F., A. Flammini, A. Maritan, and J. R. Banavar (1997), Analytical and nu- merical study of optimal channel networks, Phys. Rev. E, 55(2), 1298–1310, doi: 10.1103/PhysRevE.55.1298. Cerca con Google

Colwell, R. K. (2000), A barrier runs through it ... or maybe just a river, Proceedings of the National Academy of Science, 97, 13,470–13,472, doi:10.1073/pnas.250497697. Cerca con Google

Condit, R., S. P. Hubbell, J. V. Lafrankie, R. Sukumar, N. Manokaran, R. B. Foster, and P. S. Ashton (1996), Species-Area and Species-Individual Relationships for Tropical Trees: A Comparison of Three 50-ha Plots, Journal of Ecology, 84, 549–562. Cerca con Google

Condit, R., P. S. Ashton, P. Baker, S. Bunyavejchewin, S. Gunatilleke, N. Gunatilleke, S. P. Hubbell, R. B. Foster, A. Itoh, J. V. Lafrankie, H. S. Lee, E. Losos, N. Manokaran, R. Sukumar, and T. Yamakura (2000), Spatial patterns in the distribution of tropical tree species, Science, 288(5470), 1414–1418. Cerca con Google

Connell, J. (1971), On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees, in Dynamic of Population, edited Cerca con Google

by P. den Boer and G. Gradwell, Proc. Advanced Study Institute on Dymamics of Numbers in Populations, Oosterbeek. Centre for Agricultural Publishing, and Docu- mentation. Cerca con Google

Connor, E., A. Courtney, and J. Yoder (2000), Individuals-area relationships: the rela- tionship between animal population density and area, Ecology, 81(3), 734–748. Cerca con Google

Convertino, M., R. Rigon, A. Maritan, I. Rodriguez-Iturbe, and A. Rinaldo (2007), Prob- abilistic structure of the distance between tributaries of given size in river networks, Water Resour. Res., 43, W11,418, doi:10.1029/2007WR006176. Cerca con Google

Convertino, M., R. Muneepeerakul, S. Azaele, E. Bertuzzo, A. Rinaldo, and I. Rodriguez- Iturbe (2009), On neutral metacommunity patterns of river basins at different scales of aggregation, Water Resour. Res., 45, W08,424, doi:10.1029/2009WR007799. Cerca con Google

Crawley, M. J., and J. E. Harral (2001), Scale dependence in plant biodiversity, Science, 291(5505), 864–868, doi:10.1126/science.291.5505.864. Cerca con Google

Crocker, W. (1938), Life-span of seeds, The Botanical Review, 4, 235–274. Cerca con Google

Damschen, E. I., L. A. Brudvig, N. M. Haddad, D. J. Levey, J. L. Orrock, and J. J. Tewksbury (2008), Movement Ecology Special Feature: The movement ecology and dynamics of plant communities in fragmented landscapes, Proceedings of the National Academy of Science, 105, 19,078–19,083, doi:10.1073/pnas.0802037105. Cerca con Google

Davies, S., A. White, and A. Lowe (2004), Long-distance dispersal of plants, Heredity, 93, 566–576, doi:doi:10.1038/sj.hdy.6800555. Cerca con Google

Dieckmann, U., B. O’Hara, and W. Weisser (1998), The evolutionary ecology of dispersal, Tech. rep., Adaptive Dynamics Netwok Project. Cerca con Google

Dornelas, M., S. R. Connolly, and T. P. Hughes (2006), Coral reef diversity refutes the neutral theory of biodiversity, Nature, 440, 80–82, doi:10.1038/nature04534. Cerca con Google

Duncan, R. (1993), Testing for life historical changes in spatial patterns of four tropical trees species in Westland, New Zealand, Journal of Ecology, 81, 403–416. Cerca con Google

Economo, E., and K. T.H. (2007), Species diversity in neutral metacommunities: a network approach, Ecology Letters, 11, 52–62, doi:10.1111/j.1461-0248.2007.01126.x. Cerca con Google

Edmunds, P., and J. Bruno (1996), The importance of sampling scale in ecology: kilometer-wide variation in coral reef communities, Marine Ecology Progress Series, 143, 165–171. Cerca con Google

Edwards, C., and P. Bohlen (1977), Biology and Ecology of Earthworms, Chapman and Hall, London. Cerca con Google

Etienne, R. S., and D. Alonso (2007), Neutral Community Theory: How Stochastic- ity and Dispersal-Limitation Can Explain Species Coexistence, Journal of Statistical Physics, 128, 485–510, doi:10.1007/s10955-006-9163-2. Cerca con Google

Fagan, W. (2002), Connectivity, fragmentation, and extinction risk in dendritic metapop- Cerca con Google

ulations, Ecology, 83. Cerca con Google

Fargione, J., C. S. Brown, and D. Tilman (2003), Community assembly and invasion: An experimental test of neutral versus niche processes, Proceedings of the National Academy of Science, 100, 8916–8920. Cerca con Google

Fernandes, C. C., J. Podos, and J. G. Lundberg (2004), Amazonian Ecology: Tributaries Enhance the Diversity of Electric Fishes, Science, 305, 1960–1962, doi:10.1126/science. 1101240. Cerca con Google

Fisher, S. G., J. B. Heffernan, R. A. Sponseller, and J. R. Welter (2007), Functional ecomorphology: Feedbacks between form and function in fluvial landscape ecosystems, Geomorphology, 89, 84–96, doi:10.1016/j.geomorph.2006.07.013. Cerca con Google

Fort, J., and V. M ́endez (1999), Time-Delayed Theory of the Neolithic Transition in Europe, Physical Review Letters, 82, 867–870, doi:10.1103/PhysRevLett.82.867. Cerca con Google

Garber, P. (1989), Role of spatial memory in primate foraging patterns: Saguinus mystax and Saguinus fuscicollis, American Journal of Primatology, 19, 203–216, doi:10.1002/ ajp.1350190403. Cerca con Google

Garcia-Martin, H., and N. Goldenfeld (2006), On the origin and robustness of power- law species-area relationships in ecology, PNAS, 103(27), 10,310–10,315, doi:10.1073/ pnas.0510605103. Cerca con Google

Gascon, C., J. R. Malcolm, J. L. Patton, M. N. F. da Silva, J. P. Bogart, S. C. Lougheed, C. A. Peres, S. Neckel, and P. T. Boag (2000), Riverine barriers and the geographic distribution of Amazonian species, Proceedings of the National Academy of Science, 97, 13,672–13,677. Cerca con Google

Gastner, M., B. Oborny, D. Zimmermann, and G. Pruessner (2009), Transition from connected to fragmented vegetation across an environmental gradient: scaling laws in ecotone geometry, The American Naturalist, 174. Cerca con Google

Gaston, K. J. (2000), Global patterns in biodiversity, Nature, 405, 220–227, doi:10.1038/ 35012228. Cerca con Google

Gebert, W., A. Graczyk, and D. Krug (1987), Runoff in the United States, 195180, http://aa179.cr.usgs.gov/metadata/wrdmeta/runoff.htm. Vai! Cerca con Google

Getz, W. M., and D. Saltz (2008), Movement Ecology Special Feature: A framework for generating and analyzing movement paths on ecological landscapes, Proceedings of the National Academy of Science, 105, 19,066–19,071, doi:10.1073/pnas.0801732105. Cerca con Google

Gewin, V. (2006), Beyond Neutrality–Ecology Finds Its Niche, PLoS Biology, 4, 1306– 1310. Cerca con Google

Gilbert, E., and M. Singer (1975), Butterfly ecology, Annual Review Ecological System, 6, 365–395. Cerca con Google

Gillooly, J. F., and A. Allen (2007), Linking global patterns in biodiversity to evolution- Cerca con Google

ary dynamics using metabolic theory, Ecology, 88, 1890–1894. Giplin, M., and I. Hanski (1991), Metapopulation Dynamics: Empirical and Theoretical Cerca con Google

Investigations, Academic Press, London. Cerca con Google

Girdler, E. B., and B. Barrie (2008), The scale-dependent importance of habitat factors and dispersal limitation in structuring great lakes shoreline plant communities, Plant Ecology, 198(2), 211–223, doi:10.1007/s11258-008-9396-z. Cerca con Google

Gotelli, N. (2006), Null versus neutral models: what‘s the difference?, Ecography, 29. Cerca con Google

Gotelli, N. J. (2002), Ecology: Biodiversity in the scales, Nature, 419, 575–576. Cerca con Google

Grant, E., W. Lowe, and W. Fagan (2007), Living in the branches: population dynamics and ecological processes in dendritic networks, Ecology Letters, 10. Cerca con Google

Graves, G. R., and C. Rahbek (2005), Source pool geometry and the assembly of conti- nental avifaunas, Proceedings of the National Academy of Science, 102, 7871–7876. Cerca con Google

Green, J. L., and B. J. M. Bohannan (2006), Spatial scaling of microbial biodiversity, Microbial Ecology, 21(9), doi:10.1016/j.tree.2006.06.012. Cerca con Google

Green, J. L., A. J. Holmes, M. Westoby, I. Oliver, D. Briscoe, M. Dangerfield, M. Gillings, and A. J. Beattie (2004), Spatial scaling of microbial eukaryote diversity, Nature, 432, 747–750, doi:10.1038/nature03034. Cerca con Google

Gregory, S., F. Swanson, W. McKee, and K. Cummins (1991), An ecosystem perspective of riparian zones, Bioscience, 41(8), 540–551. Cerca con Google

Gu ́egan, J.-F., S. Lek, and T. Oberdorff (1998), Energy availability and habitat hetero- geneity predict global riverine fish diversity, Nature, 39, 382–384. Cerca con Google

Guilhaumon, F., O. Gimenez, K. J. Gaston, and D. Mouillot (2008), Taxonomic and regional uncertainty in species-area relationships and the identification of richness hotspots, Proceedings of the National Academy of Science, 105, 15,458–15,463, doi: 10.1073/pnas.0803610105. Cerca con Google

Hanski, I. (1999), Metapopulation Ecology, Oxford University Press, Oxford. Hanski, I., and M. Giplin (1997), Metapopulation biology : ecology, genetics and evolu- Cerca con Google

tion, Academic Press, San Diego. Cerca con Google

Harms, K. E., S. J. Wright, O. Calder ́on, A. Hern ́andez, and E. A. Herre (2000), Pervasive density-dependent recruitment enhances seedling diversity in a tropical forest, Nature, 404, 493–495. Cerca con Google

Harper, J. L., and D. L. Hawksworth (1994), Biodiversity: measurement and estimation, Royal Society of London Philosophical Transactions Series B, 345, 5–12. Cerca con Google

Harte, J., A. Kinzig, and J. Green (1999), Self-Similarity in the Distribution and Abun- Cerca con Google

dance of Species, Science, 284, 334–+, doi:10.1126/science.284.5412.334. Cerca con Google

Harte, J., E. Conlisk, A. Ostling, J. L. Green, and A. B. Smith (2005), A theory of spatial structure in ecological communities at multiple spatial scales, Ecology Monographs, 75(2), 179–197, doi:10.1890/04-1388. Cerca con Google

Hausdorf, B., and C. Henning (2007), Null model tests of clustering of species, negative co-occurrence patterns and nestedness in meta-communities, Oikos, 116, 818–828. Cerca con Google

He, F., and K. Gaston (2007), Estimating abundance from occurrence: an undetermined problem, The American Naturalist, 170, 655–659. Cerca con Google

He, F., and S. P. Hubbell (2003), Percolation theory for the distribution and abundance of species, Phys. Rev. Lett., 91(19), 198,103. Cerca con Google

He, F., P. Legendre, C. Bellehumeur, and J. LaFrankie (1994), Diversity pattern and spatial scale: a study of a tropical forest of malaysia, Environmental and Ecological Statistics, 1, 265–286. Cerca con Google

Hein, S., B. Pfenning, T. Hovestadt, and H. Poethke (2004), Patch density, movements patterns, and realised dispersal distances in a patch-matrix landscape – a simulation study, Ecological Modelling, 174, 411–420. Cerca con Google

Holmes, E. (1993), Are diffusion model too simple? A comparison with telegraph models of invasion, Am. Nat., 142, 779–795. Cerca con Google

Honnay, O., W. Verhaeghe, and M. Hermy (2001), Plant community assembly along dendritic networks of small forest streams, Ecology, 82(6), 1691–1702. Cerca con Google

Horner-Devine, M. C., M. Lage, J. B. Hughes, and B. J. M. Bohannan (2004), A taxa- area relationship for bacteria, Nature, 432, 750–753, doi:10.1038/nature03073. Cerca con Google

Houchmandzadeh, B. (2002), Clustering of diffusing organisms, Phys. Rev. E, 66(5), doi:10.1103/PhysRevE.66.052902. Cerca con Google

Houchmandzadeh, B. (2008), Neutral clustering in a simple experimental ecological com- munity, Physical Review Letters, 101(7), 078103. Cerca con Google

Houchmandzadeh, B., and M. Vallade (2003), Clustering in neutral ecology, Phys. Rev. E, 68(6), 061,912, doi:10.1103/PhysRevE.68.061912. Cerca con Google

Hubbell, S. (2006), Neutral theory and the evolution of ecological equivalence, Ecology, 87. Cerca con Google

Hubbell, S. P. (2001), The Unified Neutral Theory of Biodiversity and Biogeography, Princeton University Press. Cerca con Google

Huber, G. (1991), Scheidegger’s rivers, Takayasu’s aggregates and continued frac- tions, Physica A Statistical Mechanics and its Applications, 170, 463–470, doi: 10.1016/0378-4371(91)90001-S. Cerca con Google

Hughes, B. (1995), Random Walks and Random Environments, Oxford University Press, Oxford. Cerca con Google

Hyatt, L. A., M. S. Rosenberg, T. G. Howard, G. Bole, W. Fang, J. Anastasia, K. Brown, R. Grella, K. Hinman, J. P. Kurdziel, and J. Gurevitch (2003), The distance depen- dence prediction of the janzen-connell hypothesis: a meta-analysis, Oikos, 103(3), 590–602, doi:10.1034/j.1600-0706.2003.12235.x. Cerca con Google

ICZN (1999), International code of zoological nomenclature-glossary, http://www.iczn.org/. Vai! Cerca con Google

Ims, R., and H. Andreassen (2005), Density-dependent dispersal and spatial population dynamics, Proceedings of the Royal Society B, 272, 913–918, doi:10.1098/rspb.2004. 3025. Cerca con Google

Janzen, D. H. (1970), Herbivores and the number of tree species in tropical forests, The American Naturalist, 104(940), 501–528, doi:10.2307/2459010. Cerca con Google

K ́efi, S., M. Rietkerk, C. L. Alados, Y. Pueyo, V. P. Papanastasis, A. Elaich, and P. C. de Ruiter (2007), Spatial vegetation patterns and imminent desertification in Mediter- ranean arid ecosystems, Nature, 449, 213–217, doi:10.1038/nature06111. Cerca con Google

Kimura, M., and J. Crow (1964), The number of alleles that can be maintained in a finite population, Genetics, (49), 725–738. Cerca con Google

Kirley, M. (2005), Competition, cooperation and collective behaviour: re- source utilization in non-stationary environments, Intel ligent Agent Tech- nology, IEEE / WIC / ACM International Conference, 0, 572–578, doi: \ h r e f { h t t p : / / d o i . i e e e c o m p u t e r s o c i e t y. o r g / 1 0 . 1 1 0 9 / I AT . 2 0 0 5 . 5 5 } { h t t p : / / d o i . Cerca con Google

i e e e c o m p u t e r s o c i e t y. o r g / 1 0 . 1 1 0 9 / I AT . 2 0 0 5 . 5 5 } . Cerca con Google

Konar, M., R. Muneepeerakul, S. Azaele, E. Bertuzzo, A. Rinaldo, and I. Rodriguez- Iturbe (2009), Climate change will impact large scale patterns of tree diversity in the mississippi-missouri river system, in press. Cerca con Google

Leibold, M. e. a. (2004), The metacommunity concept: a framework for multi-scale community ecology, Ecology Letters, 7, 601–613, doi:10.1111/j.1461-0248.2004.00608. x. Cerca con Google

Lensink, R., and M. Neubert (2003), Demography And Dispersal: Life Table Response Experiments For Invasion Speed, Ecology, 84, 1968–1978. Cerca con Google

Leopold, L., M. Wolman, and J. Miller (1964), Fluvial Processes in Geomorphology, W.H. Freeman, San Francisco, California. Cerca con Google

Levin, S. A. (1992), The Problem of Pattern and Scale in Ecology: The Robert H. MacArthur Award Lecture, Ecology, 73(6), 1943–1967, doi:10.1029/2007WR006100. Cerca con Google

Levine, J. M. (2000a), Complex interaction in a streamside plant community, Ecology, 81(12), 3431–3444. Cerca con Google

Levine, J. M. (2000b), Species diversity and biological invasions: Relating local process Cerca con Google

to community pattern, Science, 288, 852–854. Levine, J. M. (2003), A patch modeling approach to the community-level consequences Cerca con Google

of directional dispersal, Ecology, 84(5), 1215–1224. Lewis, T. (2006), Climate change, species-area curves and the extinction crisis, Philo- Cerca con Google

sophical Transactions of the Royal Society B, 361(1), 163–171. Cerca con Google

Li, L., S. Wei, Z. Huang, W. Ye, and H. Cao (2008), Spatial patterns and interspecific association of threes canopy species at different life stages in a subtropical forest, china, Journal of Integrative Plant Biology, 50, 1140–1150. Cerca con Google

Li, L., Z. Huang, W. Ye, H. Cao, S. Wei, Z. Wang, J. Lian, I. Sun, K. Ma, and F. He (2009), Spatial distribution of tree species in a subtropical forest of china, Oikos, 118, 495–502, doi:10.1111/j.1600-0706.2009.16753.x. Cerca con Google

Lo ̈bel, S. (2009), Metapopulations and metacommunity processes, dispersal strategies and life-history trade-offs in epiphytes, Ph.D. thesis, Uppsala University. Cerca con Google

Lo ̈bel, S., and H. Rydin (2009), Dispersal and life history strategies in epiphyte metacom- munities: alternative solutions to survival in patchy, dynamic landscapes, Oecologia, 161(3), 569–579. Cerca con Google

Lowe, W. (2008), Linking movement behavior to dispersal and divergence in plethodontid salamanders, Molecular Ecology, 17. Cerca con Google

Lowe, W., G. Likens, and B. Cosentino (2006), Self-organization in streams: the rela- tionship between movement behaviour and body condition in a headwater salamander, Freshwater Biology, 51. Cerca con Google

Lowrance, R., R. Todd, J. Fail Jr., O. Hendrickson Jr., R. Leonard, and L. Asmussen (1984), Riparian forest as nutrient filters in agricultural watershed, BioScience, 34, 374–377. Cerca con Google

MacArthur, R., and E. Wilson (1963), An equilibrium theory of island biogeography, Evolution, 17, 373–387. Cerca con Google

MacArthur, R. H., and E. O. Wilson (2001), The Theory of Island Biogeography, Prince- ton University Press. Cerca con Google

Malanson, G. (1993), Riparian Landscapes, Cambridge University Press. Mandelbrot, B. (1983), The Fractal Geomtery of Nature, W.H. Freeman, San Francisco, Cerca con Google

California. Marani, A., R. Rigon, and A. Rinaldo (1991), A Note on Fractal Channel Networks, Cerca con Google

Water Resources Research, 27, 3041–3049, doi:10.1029/91WR02077. Marani, M., S. Lanzoni, D. Zandolin, G. Seminara, and A. Rinaldo (2002), Tidal mean- Cerca con Google

ders, Water Resources Research, 38(11), 110,000–1, doi:10.1029/2001WR000404. 184 Cerca con Google

Marani, M., E. Belluco, A. D’Alpaos, A. Defina, S. Lanzoni, and A. Rinaldo (2003), On the drainage density of tidal networks, Water Resources Research, 39(2), 020,000–1, doi:10.1029/2001WR001051. Cerca con Google

Marani, M., S. Lanzoni, S. Silvestri, and A. Rinaldo (2004), Tidal landforms, patterns of halophytic vegetation and the fate of the lagoon of Venice, Journal of Marine Systems, 51, 191–210. Cerca con Google

Marba, N., C. M. Duarte, and S. Agusti (2007), From the Cover: Allometric scaling of plant life history, Proceedings of the National Academy of Science, 104, 15,777–15,780, doi:10.1073/pnas.0703476104. Cerca con Google

Marco, D., S. Cannas, M. Montemurro, B. Hu, and S. Cheng (2009), Comparable eco- logical dynamics underlie earlyu cancer invasion and species dispersal, involving self- organizing processes, Journal of Theoretical Biology, (256), 65–75. Cerca con Google

Maritan, A., A. Rinaldo, R. Rigon, A. Giacometti, and I. Rodr ́ıguez-Iturbe (1996), Scal- ing laws for river networks, Phys. Rev. E, 53(2), 1510–1515, doi:10.1103/PhysRevE. 53.1510. Cerca con Google

Matthews, W. (1998), Patterns in Freshwater Fish Ecology, Kluver Academic, Norwell, MA. Cerca con Google

McClain, M. e. a. (2003), Biogeochemical Hot Spots and Hot Moments at the Inter- face of Terrestrial and Aquatic Ecosystems, Ecosystems, 6, 301–312, doi:10.1007/ s10021-003-0161-9. Cerca con Google

M ́endez, V., D. Campos, and S. Fedotov (2004), Analysis of fronts in reaction-dispersal processes, Pysical Review E, 70(6), 066,129–+, doi:10.1103/PhysRevE.70.066129. Cerca con Google

M ́endez, V. m. c., D. Campos, and S. Fedotov (2004), Front propagation in reaction- dispersal models with finite jump speed, Phys. Rev. E, 70(3), 036,121, doi:10.1103/ PhysRevE.70.036121. Cerca con Google

Mennell, K., and R. Scholes (Eds.) (2008), Assessment of South African Elephant Man- agement, Witwatersrand University Press, Johannesburg. Cerca con Google

Morrissey, M., and D. Kerckhove (2009), The maintenance of genetic variation due to asymmetric gene flow in dendritic metapopulations, The American Naturalist, 174. Cerca con Google

Mouillot, D., and K. J. Gaston (2007), Geographical range size heritability: what do neutral models with different modes of speciation predict?, Global Ecology and Bio- geography, 16, 367–380, doi:10.1111/j.1466-8238.2007.00292.x. Cerca con Google

Muneepeerakul, R. (2007), Biodiversity in river networks: Theoretical and empirical perspectives, Ph.D. thesis, Princeton University, Advisor: Prof. I. Rodriguez-Iturbe. Cerca con Google

Muneepeerakul, R., S. A. Levin, A. Rinaldo, and I. Rodriguez-Iturbe (2007a), On biodi- versity in river networks: a trade-off metapopulation model and comparative analysis, Water Resources Research, 43(W07426), doi:10.1029/2006WR005857. Cerca con Google

Muneepeerakul, R., J. S. Weitz, S. A. Levin, A. Rinaldo, and I. Rodriguez-Iturbe (2007b), A neutral metapopulation model of biodiversity in river networks, Journal of Theo- retical Biology, 245(2), 351–363, doi:10.1016/j.jtbi.2006.10.005. Cerca con Google

Muneepeerakul, R., E. Bertuzzo, H. J. Lynch, W. F. Fagan, A. Rinaldo, and I. Rodriguez- Iturbe (2008), Neutral metacommunity models predict fish diversity patterns in Mississippi-Missouri basin, Nature, 453, 220–222, doi:10.1038/nature06813. Cerca con Google

Muneepeerakul, R., A. Rinaldo, and I. Rodriguez-Iturbe (2008b), Patterns of vegetation biodiversity: The roles of dispersal directionality and network structure, Journal of Theoretical Biology, 252(2), 221–229, doi:10.1016/j.jtbi.2008.02.001. Cerca con Google

Naiman, R. J., and H. D ́ecamps (1997), The ecology of interfaces: Riparian zones, Annual Review of Ecology and Systematics, 28(1), 621–658, doi:10.1146/annurev.ecolsys.28.1. 621. Cerca con Google

Nathan, R. (2005), Long-distance dispersal reserach: building a network of yellow brick roads, Diversity and Distribution, 11, 125–130. Cerca con Google

Nathan, R. (2006), Long-distance dispersal of plants, Science, 313(5788), 786–788, doi: 10.1126/science.1124975. Cerca con Google

Nathan, R., U. Safriel, and I. Noy-Meir (2001), Field Validation and Sensitivity Analysis of a Mechanistic Model for Tree Seed Dispersal by Wind, Ecology, 82(2), 374–388. Cerca con Google

Nathan, R., G. G. Katul, H. S. Horn, S. M. Thomas, R. Oren, R. Avissar, S. W. Pacala, and S. A. Levin (2002a), Mechanisms of long-distance dispersal of seeds by wind, Nature, 418, 409–413. Cerca con Google

Nathan, R., G. G. Katul, H. S. Horn, S. M. Thomas, R. Oren, R. Avissar, S. W. Pacala, and S. A. Levin (2002b), Mechanisms of long-distance dispersal of seeds by wind, Nature, 418, 409–413. Cerca con Google

Nathan, R., W. M. Getz, E. Revilla, M. Holyoak, R. Kadmon, D. Saltz, and P. E. Smouse (2008a), Movement Ecology Special Feature: A movement ecology paradigm for unifying organismal movement research, Proceedings of the National Academy of Science, 105, 19,052–19,059, doi:10.1073/pnas.0800375105. Cerca con Google

Nathan, R., F. M. Shurr, O. Spiegel, O. Steinitz, A. Trakhtenbrot, and A. Tsoar (2008b), Mechanisms of long-distance seed dispersal, Trends in Ecology and Evolution, 23, 638– 647. Cerca con Google

NatureServe (2004), Distribution of native U.S. fishes by watershed, http://www.natureserve.org/getData/dataSets/watershedHucs/index.jsp. Vai! Cerca con Google

Nee, S., A. Read, J. Greenwood, and P. Harvey (1991), The relationship between abun- dance and body size in British birds, Nature, 351, 312–313, doi:10.1038/351312a0. Cerca con Google

Newman, M. E. J. (2003), The structure and function of complex networks, SIAM Re- view, 45, 167–256. Cerca con Google

Nilsson, C., G. Grelsson, M. Johansson, and U. Sperens (1989), Patterns of plant species Cerca con Google

richness along riverbanks, Ecology, 70(1), 77–84. Cerca con Google

Nilsson, C., A. Ekblad, M. Dynesius, S. Backe, M. Gardfjell, B. Carlberg, S. Hellqvist, and R. Jansson (1994), A comparison of species richness and traits of riparian plants between a main river channel and its tributaries, Journal of Ecology, 82(2), 281–295. Cerca con Google

Nogu ́es-Bravo, D., M. B. Arau ́jo, T. Romdal, and C. Rahbek (2008), Scale effects and human impact on the elevational species richness gradient, Nature, 453, 216–219, doi: 10.1038/nature06812. Cerca con Google

Oberdorff, T., J.-F. Gu ́egan, and B. Hugueny (1995), Global scale patterns of fish species richness in rivers, Ecography, 18, 345–352. Cerca con Google

Ostling, A. (2005), Ecology: Neutral theory tested by birds, Nature, 436, 635–636, doi: 10.1038/436635a. Cerca con Google

Pascual, M., R. Manojit, F. Guichard, and G. Flierl (2002), Cluster-size distributions: signatures of self-organization in spatial ecologies, Phil. Trans. R. Soc. Lond. B (2002) 357, 657666, 357, 657–666, doi:10.1098/rstb.2001.0983. Cerca con Google

Pearson, R., and T. Dawson (2004), Long-distance plant dispersal and habitat fragmen- tation: identifying conservation targets for spatial landscape planning under climate change, Biological Conservation, 123, 389–401, doi:10.1016/j.biocon.2004.12.006. Cerca con Google

Perona, P., C. Camporeale, E. Perucca, M. Savina, P. Molnar, P. Burlando, and L. Ridolfi (2009), Modelling river and riparian vegetation interactions and related importance for sustainable ecosystem management, Aquatic Sciences, 71, 266–278. Cerca con Google

Peterjohn, W., and D. Correll (1984), Nutrient Dynamics in an Agricultural Watershed: Observations on the Role of A Riparian Forest, Ecology, 65, 1466–1475. Cerca con Google

Pigolotti, S., and M. Cencini (2009), Speciation-rate dependence in species-area rela- tionships, Journal of Theoretical Biology, 260(1), 83–89. Cerca con Google

Plotkin, J., and H. Muller-Landau (2002), Sampling the species composition of a land- scape, Ecology, 83. Cerca con Google

Plotkin, J. B., M. D. Potts, N. Leslie, Manokaran, J. LaFrankie, and P. S. Ashton (2000), Species-area curves, spatial aggregation, and habitat specialization in tropical forests, J. Theor. Biol., 207, 81–99, doi:10.1006/jtbi.2000.2158. Cerca con Google

Plotkin, J. B., J. Chave, and P. S. Ashton (2002), Cluster analysis of spatial patterns in malaysian tree species, The American Naturalist, 160, 629–644, doi:\href{http: //dx.doi.org/10.1086/342823} {http://dx.doi.org/10.1086/342823} . Vai! Cerca con Google

Poole, G. C. (2002), Fluvial landscape ecology: addressing uniqueness within the river discontinuum, Freshwater Biology, 47(4), 641–660, doi:10.1046/j.1365-2427.2002. 00922.x. Cerca con Google

Porporato, A., and I. Rodriguez-Iturbe (2002), Ecohydrology: a challenging multidisci- Cerca con Google

plinary research perspective, Journal des Sciences Hydrologiques, 47. Potts, M., J. Plotkin, S. Lee, N. Manokaran, P. Ashton, and W. Bossert (2001), Sampling Cerca con Google

biodiversity: effect of plot shape, The Malaysian Forester, 64. Cerca con Google

Preston, F. (1948), The commonness, and rarity, of species, Ecology, 29. Cerca con Google

Purves, D. W., and S. W. Pacala (2005), Ecological drift in niche-structured commu- nities: Neutral pattern does not imply neutral process, in Biotic Interactions in the Tropics, edited by D. Burslem, M. Pinard, and S. Hartley, pp. 107–138, Cambridge University Press. Cerca con Google

Rahbek, C. (2005), The role of spatial scale and the perception of large-scale scpecies- richness patterns, Ecology Letters, 8, 224–239, doi:10.1111/j.1461-0248.2004.00701.x. Cerca con Google

Real, L. (1994), Behavioral Mechanisms in Evolutionary Ecology, University Of Chicago Press, USA. Cerca con Google

Revilla, E., and T. Wiegand (2008), Movement Ecology Special Feature: Individual movement behavior, matrix heterogeneity, and the dynamics of spatially structured populations, Proceedings of the National Academy of Science, 105, 19,120–19,125, doi: 10.1073/pnas.0801725105. Cerca con Google

Rigon, R., I. Rodriguez-Iturbe, A. Maritan, A. Giacometti, D. G. Tarboton, and A. Rinaldo (1996), On Hack’s law, Water Resources Research, 32, 3367–3374, doi: 10.1029/96WR02397. Cerca con Google

Rigon, R., I. Rodriguez-Iturbe, and A. Rinaldo (1998), Feasible optimality implies Hack’s law, Water Resources Research, 34, 3181–3190, doi:10.1029/98WR02287. Cerca con Google

Rinaldo, A., A. Marani, and R. Rigon (1991), Geomorphological dispersion, Water Re- sources Research, 27, 513–525, doi:10.1029/90WR02501. Cerca con Google

Rinaldo, A., I. Rodriguez-Iturbe, R. Rigon, R. Bras, E. Ijjasz-Vasquez, and A. Marani (1992), Minimum Energy and Fractal Structures of Drainage Networks, Water Re- sources Research, 28(9), 2183–2195. Cerca con Google

Rinaldo, A., I. Rodriguez-Iturbe, R. Rigon, E. Ijjasz-Vasquez, and R. L. Bras (1993), Self-organized fractal river networks, Phys. Rev. Lett., 70(6), 822–825, doi:10.1103/ PhysRevLett.70.822. Cerca con Google

Rinaldo, A., I. Rodriguez-Iturbe, and R. Rigon (1998), Channel networks, Ann. Rev. Earth Planet. Sci., 26, 289–306, doi:10.1029/98WR02287. Cerca con Google

Rinaldo, A., J. R. Banavar, and A. Maritan (2006), Trees, networks, and hydrology, Water Resources Research, 42, 6–+, doi:10.1029/2005WR004108. Cerca con Google

Ritchie, M. E., and H. Olff (1999), Spatial scaling laws yield a synthetic thoery of biodiversity, Nature, 400, 557–560, doi:10.1038/23010. Cerca con Google

188 Cerca con Google

Bibliography Rodr ́ıguez-Iturbe, I., and A. Porporato (2005), Ecohydrology of Water-controlled Ecosys- Cerca con Google

tems, Cambridge University Press. Rodriguez-Iturbe, I., and A. Rinaldo (1997), Fractal River Basins: Chance and Self- Cerca con Google

Organization, Cambridge University Press. Cerca con Google

Rodriguez-Iturbe, I., , E. Ijjasz-Vasquez, , R. Bras, and D. Tarboton (1992), Power- law distribution of mass and energy in river basins, Water Resources Research, 28, 988–993. Cerca con Google

Rodr ́ıguez-Iturbe, I., A. Rinaldo, R. Rigon, R. L. Bras, A. Marani, and E. Ijj ́asz-V ́asquez (1992), Energy Dissipation, Runoff Production, and the Three-Dimensional Structure of River Basins, Water Resources Research, 28, 1095–1103, doi:10.1029/91WR03034. Cerca con Google

Rodriguez-Iturbe, I., R. Muneepeerakul, E. Bertuzzo, S. A. Levin, and A. Rinaldo (2009), River networks as ecological corridors: a complex systems perspective for integrating hydrologic, geomorphologic and ecologic dynamics, Water Resour. Res., 45, W01,413, doi:10.1029/2008WR007124. Cerca con Google

Rosindell, J., and S. Cornell (2009), Species-area curves, neutral models, and long- distance dispersal, Ecology, 7(90), 1743–1750. Cerca con Google

Russo, S., M. Potts, S. Davies, and S. Tan (2007), Determinants of tree species distribu- tions: Comparing the roles of dispersal, seed size, and soil specialization in a bornean rain forest, in Seed Dispersal: Theory and its Application in a Changing World, CAB International. Cerca con Google

Savage, V. M., E. J. Deeds, and W. Fontana (2008), Sizing up allometric scaling theory, PLoS Comput Biol, 4(9), e1000,171+, doi:10.1371/journal.pcbi.1000171. Cerca con Google

Scanlon, T. M., K. K. Caylor, S. A. Levin, and I. Rodriguez-Iturbe (2007a), Positive feedbacks promote power-law clustering of Kalahari vegetation, Nature, 449, 209–212, doi:10.1038/nature06060. Cerca con Google

Scanlon, T. M., K. K. Caylor, S. A. Levin, and I. Rodriguez-Iturbe (2007b), Positive feedbacks promote power-law clustering of Kalahari vegetation, Nature, 449, 209–212, doi:10.1038/nature06060. Cerca con Google

Scheidegger, A. (1967), A stochastic model for drainage patterns inro an intramontane trench, Bull. Assoc. Hydrol., 12, 15–20. Cerca con Google

Schmid, P. E., M. Tokeshi, and J. M. Schmid-Araya (2000), Relation Between Population Density and Body Size in Stream Communities, Science, 289, 1557–1560. Cerca con Google

Schurr, F., O. Spiegel, O. Steinitz, A. Trakhtenbrot, A. Tsoar, and R. Nathan (2009), Long-Distance Seed Dispersal, Annual Plant Reviews, 38(7), 204–237. Cerca con Google

Seidler, T., and J. Plotkin (2006), Seed dispersal and spatial pattern in tropical trees, PLoS Biology, 4. Cerca con Google

SFPRTD-EU (2009), SCALES: Securing the conservation of biodiversity across administrative levels and spatial, temporal, and ecological scales, http://www.scales-project.net/. Vai! Cerca con Google

Sol ́e, R., and B. Goodwin (2002), Signs of Life: How Complexity Pervades Biology, Basic Book. Cerca con Google

Soons, M., and W. Ozinga (2005), How important is long-distance seed dispersal for the regional survival of plant species?, Journal of Biogeography, 11, 165–172, doi: 10.1111/j.1366-9516.2005.00148.x. Cerca con Google

Stenzel, L., G. Page, W. J.C., J. Warriner, D. George, C. Eyster, B. Ramer, and K. Neu- man (2007), Survival and natal dispersal of juvenile snowy plovers (charadrius alexan- drinus) in central coastal california, The Auk, 124(3), 1023–1036. Cerca con Google

Stoeckel, J., D. W. Schneider, L. Soeken, K. Blodgett, and R. Sparks (1997), Larval Dynamics of a Riverine Metapopulation: Implication for Zebra Mussel Recruitment, Dispersal, and Control in a Large-River System, Journal of the North America Ben- thiological Society, 16, 586–601. Cerca con Google

Storch, D., P. Marquet, and J. Brown (2007), Scaling Biodiversity, Scaling Biodiver- sity, Edited by David Storch, Pablo Marquet, and James Brown. Series: Ecological Reviews. Cambridge: Cambridge University Press, 2007. Cerca con Google

Storch, D., D. Sizling, L. Arnost, J. Reif, J. Polechova, E. Sizlingova, and K. Gaston (2008), The quest for a null model for macroecological patterns: geometry of species distributions at multiple spatial scales, Ecology Letters, 11. Cerca con Google

Sutherland, G., A. Harestad, P. K., and K. Lertzman (2000), Scaling of natal dispersal distances in terrestrial birds and mammals, Conservation Ecology, 1(4). Cerca con Google

Takayasu, H., M. Takayasu, A. Provata, and G. Huber (1991), Statistical models of river networks, J. Stat. Phys., 65, 725–740. Cerca con Google

Thomas, C. D., E. J. Bodsworth, R. J. Wilson, A. D. Simmons, Z. G. Davies, M. Musche, and L. Conradt (2001), Ecological and evolutionary processes at expanding range margins, Nature, 411, 577–581. Cerca con Google

Thomas, C. D., A. Cameron, R. E. Green, M. Bakkenes, L. J. Beaumont, Y. C. Colling- ham, B. F. N. Erasmus, M. F. de Siqueira, A. Grainger, L. Hannah, L. Hughes, B. Huntley, A. S. van Jaarsveld, G. F. Midgley, L. Miles, M. A. Ortega-Huerta, A. Townsend Peterson, O. L. Phillips, and S. E. Williams (2004), Extinction risk from climate change, Nature, 427, 145–148. Cerca con Google

Tilman, D., and J. A. Downing (1994), Biodiversity and stability in grasslands, Nature, 367, 363–365, doi:10.1038/367363a0. Cerca con Google

Tilman, D., and P. Kareiva (1997), Neolithic Transition and the Genetic of Population in Europe, Princeton University Press, USA. Cerca con Google

190 Cerca con Google

Troutman, B., and M. Karlinger (1993), A note on subtrees rooted along the primary Cerca con Google

path of a binary trees, Discuss. Appl. Math., 42, 87–93. Cerca con Google

USDA (2009), United States Average Annual Precipitation, 19611990, http://rnp782.er.usgs.gov/atlas2/mld/prism0p.html, NRCS-USDA Natural Re- sources Conservation Service. Vai! Cerca con Google

USEPA-USGS (2006), National hydrography dataset plus, http://www.horizon-systems.com/, Herndon, Va. Vai! Cerca con Google

USFS (2009), Forest cover types, http://www.nationalatlas.gov/mld/foresti.html. USFS-FIDO (2009), Forest inventory data online, Vai! Cerca con Google

http://fiatools.fs.fed.us/fido/index.html. Vandermeer, J., I. Perfecto, and S. Philpott (2008), Clusters of ant colonies and robust Vai! Cerca con Google

criticality in a tropical agroecosystem, Nature, 451, 457–460. Cerca con Google

Vandewoestijne, S., T. Martin, S. Liegeois, and M. Baguette (2004), Dispersal, landscape occupancy and population structure in the butterfy Melanargia galathea, Basic and Applied Ecology, 5(1574), 581–591. Cerca con Google

Volkov, I., J. R. Banavar, S. P. Hubbell, and A. Maritan (2007), Patterns of relative species abundance in rainforests and coral reefs, Nature, 450, 45–49, doi:10.1038/ nature06197. Cerca con Google

Wang, R., L. Shi, and Q. Zheng (2008), Trade-off between reciprocal mutualists: local resource availability-oriented interaction in fig/fig wasp mutualism, Journal of Animal Ecology, 77. Cerca con Google

Ward, J. V., K. Tockner, C. Arscott, and C. Claret (2002), Riverine landscape diversity, Freshwater Biology, 47, 517–539, doi:10.1046/j.1365-2427.2002.00893. Cerca con Google

Warton, D., I. Wright, D. Falster, and M. Westboy (2006), Bivarite line-fitting method for allometry, Biol. Rev., 81, 259–291. Cerca con Google

West, G. B., J. H. Brown, and B. J. Enquist (1999), The Fourth Dimension of Life: Fractal Geometry and Allometric Scaling of Organisms, Science, 284, 1677–+, doi: 10.1126/science.284.5420.1677. Cerca con Google

White, E., S. Ernest, A. Kerkhoff, and B. Enquist (2007), Relationships between body size and abundance in ecology, Trends in Ecology and Evolution, 22, 312–313. Cerca con Google

Wiens, J. A. (1989), Spatial scaling in ecology, Functional Ecology, 3, 385–397. Wiens, J. A. (2002), Riverine landscapes: taking landscape ecology into the water, Fresh- Cerca con Google

water Biology, 47, 501–515, doi:10.1046/j.1365-2427.2002.00893. Wilson, D. (1992), Complex interactions in metacommunities, with implications for bio- Cerca con Google

diversity and higher levels of selection, Ecology, 73, 1984–2000. Cerca con Google

Wu, J. (2004), Effect of changing scale on landscape pattern analysis: scaling relations, Cerca con Google

Landscape Ecology, 19, 125–138. Xenopoulos, M. A., and D. M. Lodge (2006), Going with the flow: using species-discharge Cerca con Google

relationships to forecast losses in fish biodiversity, Ecology, 87(8), 1907–1914. Young, W. R., A. J. Roberts, and G. Stuhne (2001), Reproductive pair correlations and Cerca con Google

the clustering of organisms, Nature, 412, 328–331, doi:10.1038/35085561. Cerca con Google

Zinck, R., and V. Grimm (2009), Unifying wildfire models from ecology and statistical physics, The American Naturalist, 174. Cerca con Google

192 Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record