Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

De Franceschi, Filippo (2008) Identificazione e caratterizzazione di geni coinvolti nel processo di abscissione in frutti di melo (Malus domestica L. Borkh). [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
13Mb

Abstract (inglese)

Many fruit species bear an abundance of flowers producing a surplus of fruits that the tree is unable to support. In anticipation of this, the major fruit species developed an immature fruit (fruitlet) physiological drop as a self-regulatory mechanism. This process is, at least in part, a consequence of the competition among fruits and between fruits and shoots for carbon assimilates. The self-regulatory mechanism responsible for the immature apple fruit shedding may be magnified by chemicals such as naphthaleneacetic acid (NAA) and its amide (NAD), and benzylaminopurine (BA) sprayed within 5-6 weeks after full bloom. The thinning action of bioregulators is quite variable and depends on environmental conditions and genotypes. In apple, there are varieties easy to thin and others difficult even though different chemicals or combinations of them are used. Understanding the molecular mechanisms and processes involved in abscission might help in finding new approaches and new chemical thinners to control abscission in fruit, or new self-thinning varieties.
The described research was aimed to elucidate the molecular events underlying the in planta fruitlet abscission, taking into account the characteristics of this system and the practical importance of thinning in apple.
Fruit drop is due to the activation of specific abscission zones (AZs). It is accepted that abscission is a highly regulated developmental process that is both influenced and activated in response to internal cues and/or environmental conditions. Nevertheless, the identity of the signals responsible for the activation of the AZ is as yet unknown. Among phytohormones, ethylene enhances abscission in several species and systems as well as in apple, while auxins produced by seeds are thought to desensitize AZs to ethylene and prevent abscission. In apple trees, the fruitlet physiological drop is due to the activation of the AZ located at the junction of the peduncle into the twig. In this region four lateral (LF) and one central (CF) fruitlets and the shoot are inserted. The CF comes from the pollinated king flower (KF) that, since it blooms earlier within the cluster, originates a fruitlet larger than the lateral ones. During the physiological drop, the shoot at cluster side, is thought to be a sink in competition with fruitlets for assimilate supply. Considering that seeds and/or fruits are involved in determining the shedding signal while the morphogenetic response occurs always at the AZ level, it is crucial to analyse the whole fruitlet system involved in abscission that should include concurrently seed, cortex, peduncle, and AZ. It is generally believed that the interaction between ethylene and auxin plays a major regulatory role in abscission. Starting from this, a mass gene approach was used in this work to identify genes regulating or involved in abscission. The cDNA-AFLP technique was adopted for transcriptional profiling of differentially expressed genes during apple fruitlet abscission. This allowed the isolation of 278 differential clones by comparing expression profiles of abscising (AF) versus non-abscising (NAF) fruitlet populations. AFs were obtained from lateral fruitlets of trees sprayed with benzylaminopurine (BA) at 200 ppm, 17 days after petal fall (APF) when the fruit cross diameter was about 10-12 mm. NAF originated from central flowers grown in clusters where all the lateral flowers had been removed at bloom.
All ESTs (expressed sequence tags) obtained have been annotated with the Gene Ontology vocabulary and grouped according to cellular components, biological processes and molecular functions. Considering the cellular components, the most affected genes in the cortex were related to mitochondrion, plastid and membranes. Concerning the molecular functions, the mostly affected ones were the binding and the transferase activities in the cortex, the hydrolase and transport activities in the seed, and the binding activity in the peduncle. Considering the biological process, in the cortex the most abundant genes were those controlling transport, protein and carbohydrate metabolism. As a general remark, taking into account all the three ontology criteria, it appeared that a prominent up-regulation occurred in the seed. This might be consistent with the determinant role attributed to the seed in the regulation of fruit abscission.
The expression and functional analyses of the most interesting clones were carried out by semiquantitative RT-PCR on agarose gel on cDNA obtained from seeds, cortex, peduncles and AZs of AFs and NAFs.
Expression analyses confirmed the efficacy of the cDNA-AFLP approach to find a large amount of differentially expressed ESTs and the involvement of the studied genes in regulating the abscission and senescence processes. In particular the differential expression of sugar-metabolism and signalling related genes confirmed the importance of carbohydrates, together with hormones, in controlling the induction of AZs.
Since functional studies through silencing or overexpression approaches cannot be easily performed on trees, additional experiments were carried out in Arabidopsis thaliana to investigate the participation of these and other genes in abscission. To this end, Arabidopsis genes putatively homologous to those differentially expressed in relation to fruitlet abscission in apple were identified. A dual approach was chosen to study their function in abscission. In a first attempt, insertional (T-DNA) homozygous mutants were obtained and scored for the presence of abscission-related phenotypes. Probably due to gene redundancy, no phenotypes were detected. Therefore, expression analyses were carried out on the same genes with real time RT-PCR on abscission zones of known Arabidopsis mutants with delayed (dab4-1, dab5-1) or no petal abscission (ida). The results showed a different pattern of expression in comparison to that found in wild type and confirmed an involvement of these genes in abscission. Current work is devoted to further characterise the putative role played by these genes in regulating the abscission of flower organs in Arabidopsis. In addition, a "systematic" approach for the analysis of the whole apple fruitlet abscission transcriptome is needed. To this end an apple microarray is being developed from the large number of already available ESTs, to be used for screening of new chemical thinners and for marker assisted selection of self thinning genotypes.


Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Ramina, Angelo
Correlatore:Benedetto, Ruperti - Bonghi, Claudio
Dottorato (corsi e scuole):Ciclo 20 > Scuole per il 20simo ciclo > SCIENZE DELLE PRODUZIONI VEGETALI > AGROBIOTECNOLOGIE
Data di deposito della tesi:Gennaio 2008
Anno di Pubblicazione:Gennaio 2008
Parole chiave (italiano / inglese):abscissione, etilene, Malus domestica, cascola, diradamento, Arabidopsis thaliana, benziladenina, benzilamminopurina
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/11 Biologia molecolare
Area 05 - Scienze biologiche > BIO/04 Fisiologia vegetale
Struttura di riferimento:Dipartimenti > Dipartimento di Agronomia Ambientale e Produzioni Vegetali
Codice ID:232
Depositato il:13 Nov 2008
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Addicott, F. T. (1970). Plant Hormones in Control of Abscission. Biological Reviews of the Cambridge Philosophical Society 45, 485-&. Cerca con Google

2. Albertini, E., Marconi, G., Reale, L., Barcaccia, G., Porceddu, A., Ferranti, F., and Falcinelli, M. (2005). SERK and APOSTART. Candidate genes for apomixis in Poa pratensis. Plant Physiol 138, 2185-99. Cerca con Google

3. Alonso, J. M., and Granell, A. (1995). A putative vacuolar processing protease is regulated by ethylene and also during fruit ripening in Citrus fruit. Plant Physiol 109, 541-7. Cerca con Google

4. Bachem, C. W., van der Hoeven, R. S., de Bruijn, S. M., Vreugdenhil, D., Zabeau, M., and Visser, R. G. (1996). Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development. Plant J 9, 745-53. Cerca con Google

5. Bachem, C. W. B., Oomen, R. J. F. J., and Visser, R. G. F. (1998). Transcript imaging with cDNA-AFLP: A step-by-step protocol. Plant Molecular Biology Reporter 16, 157-173. Cerca con Google

6. Bangerth, F. (2000). Abscission and thinning of young fruit and thier regulation by plant hormones and bioregulators. Plant Growth Regulation 31, 43-59. Cerca con Google

7. Barcaccia, G. V., S.; Meneghetti, S.; Albertini, E.; Porceddu, A.; Parrini, P.; Lucchin, M. (2001). Analysis of gene expression during flowering in apomeiotic mutants of Medicago spp.: cloning of ESTs and candidate genes for 2n eggs. Sexual Plant Reproduction 14, 233-238. Cerca con Google

8. Belfield, E. J., Ruperti, B., Roberts, J. A., and McQueen-Mason, S. (2005). Changes in expansin activity and gene expression during ethylene-promoted leaflet abscission in Sambucus nigra. J Exp Bot 56, 817-23. Cerca con Google

9. Bertioli, D. J., Schlichter, U. H., Adams, M. J., Burrows, P. R., Steinbiss, H. H., and Antoniw, J. F. (1995). An analysis of differential display shows a strong bias towards high copy number mRNAs. Nucleic Acids Res 23, 4520-3. Cerca con Google

10. Beyer, E. M. (1975). Abscission: The Initial Effect of Ethylene Is in the Leaf Blade. Plant Physiol 55, 322-327. Cerca con Google

11. Bleecker, A. B., and Patterson, S. E. (1997). Last exit: senescence, abscission, and meristem arrest in Arabidopsis. Plant Cell 9, 1169-79. Cerca con Google

12. Blencowe, B. J., and Ouzounis, C. A. (1999). The PWI motif: a new protein domain in splicing factors. Trends Biochem Sci 24, 179-80. Cerca con Google

13. Bonghi, C., Rascio, N., Ramina, A., and Casadoro, G. (1992). Cellulase and polygalacturonase involvement in the abscission of leaf and fruit explants of peach. Plant Mol Biol 20, 839-48. Cerca con Google

14. Bonghi, C., Tonutti, P., and Ramina, A. (2000). Biochemical and molecular aspects of fruitlet abscission. Plant Growth Regulation 31, 35-42. Cerca con Google

15. Brown, K. M. (1997). Ethylene and abscission. Physiologia Plantarum 100, 567-576. Cerca con Google

16. Burget, E. G., Verma, R., Molhoj, M., and Reiter, W. D. (2003). The biosynthesis of L-arabinose in plants: molecular cloning and characterization of a Golgi-localized UDP-D-xylose 4-epimerase encoded by the MUR4 gene of Arabidopsis. Plant Cell 15, 523-31. Cerca con Google

17. Burk, D. H., Liu, B., Zhong, R., Morrison, W. H., and Ye, Z. H. (2001). A katanin-like protein regulates normal cell wall biosynthesis and cell elongation. Plant Cell 13, 807-27. Cerca con Google

18. Butenko, M. A., Patterson, S. E., Grini, P. E., Stenvik, G. E., Amundsen, S. S., Mandal, A., and Aalen, R. B. (2003). Inflorescence deficient in abscission controls floral organ abscission in Arabidopsis and identifies a novel family of putative ligands in plants. Plant Cell 15, 2296-307. Cerca con Google

19. Buttner, M., and Sauer, N. (2000). Monosaccharide transporters in plants: structure, function and physiology. Biochim Biophys Acta 1465, 263-74. Cerca con Google

20. Chatre, L., Brandizzi, F., Hocquellet, A., Hawes, C., and Moreau, P. (2005). Sec22 and Memb11 are v-SNAREs of the anterograde endoplasmic reticulum-Golgi pathway in tobacco leaf epidermal cells. Plant Physiol 139, 1244-54. Cerca con Google

21. Chen, Q. H. G., and Bleecker, A. B. (1995). Analysis of Ethylene Signal-Transduction Kinetics Associated with Seedling-Growth Response and Chitinase Induction in Wild-Type and Mutant Arabidopsis. Plant Physiology 108, 597-607. Cerca con Google

22. Chiou, T. J., and Bush, D. R. (1996). Molecular cloning, immunochemical localization to the vacuole, and expression in transgenic yeast and tobacco of a putative sugar transporter from sugar beet. Plant Physiol 110, 511-20. Cerca con Google

23. Clements, J., and Atkins, C. (2001). Characterization of a non-abscission mutant in Lupinus angustifolius. I. Genetic and structural aspects. Am J Bot 88, 31-42. Cerca con Google

24. Colcombet, J., Boisson-Dernier, A., Ros-Palau, R., Vera, C. E., and Schroeder, J. I. (2005). Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASES1 and 2 are essential for tapetum development and microspore maturation. Plant Cell 17, 3350-61. Cerca con Google

25. Conesa, A., Gotz, S., Garcia-Gomez, J. M., Terol, J., Talon, M., and Robles, M. (2005). Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674-6. Cerca con Google

26. Coupe, S. A., Sinclair, B. K., Watson, L. M., Heyes, J. A., and Eason, J. R. (2003). Identification of dehydration-responsive cysteine proteases during post-harvest senescence of broccoli florets. J Exp Bot 54, 1045-56. Cerca con Google

27. Czechowski, T., Stitt, M., Altmann, T., Udvardi, M. K., and Scheible, W. R. (2005). Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139, 5-17. Cerca con Google

28. Da Costa, M., Bach, L., Landrieu, I., Bellec, Y., Catrice, O., Brown, S., De Veylder, L., Lippens, G., Inze, D., and Faure, J. D. (2006). Arabidopsis PASTICCINO2 is an antiphosphatase involved in regulation of cyclin-dependent kinase A. Plant Cell 18, 1426-37. Cerca con Google

29. Dal Cin, V., Danesin, M., Boschetti, A., Dorigoni, A., and Ramina, A. (2005a). Ethylene biosynthesis and perception in apple fruitlet abscission (Malus domestica L. Borck). J Exp Bot 56, 2995-3005. Cerca con Google

30. Dal Cin, V., Danesin, M., Rizzini, F. M., and Ramina, A. (2005b). RNA extraction from plant tissues - The use of calcium to precipitate contaminating pectic sugars. Molecular Biotechnology 31, 113-119. Cerca con Google

31. Darley, C. P., Forrester, A. M., and McQueen-Mason, S. J. (2001). The molecular basis of plant cell wall extension. Plant Mol Biol 47, 179-95. Cerca con Google

32. Donson, J., Fang, Y., Espiritu-Santo, G., Xing, W., Salazar, A., Miyamoto, S., Armendarez, V., and Volkmuth, W. (2002). Comprehensive gene expression analysis by transcript profiling. Plant Mol Biol 48, 75-97. Cerca con Google

33. Dorigoni, A. (2003). Nuovi diradanti del melo da affiancare a quelli già in uso. In "La frutticoltura nelle valli del Noce" (I. A. d. S. M. all'Adige, Ed.), Trento. Cerca con Google

34. Durrant, W. E., Rowland, O., Piedras, P., Hammond-Kosack, K. E., and Jones, J. D. (2000). cDNA-AFLP reveals a striking overlap in race-specific resistance and wound response gene expression profiles. Plant Cell 12, 963-77. Cerca con Google

35. Earley, K. W., Shook, M. S., Brower-Toland, B., Hicks, L., and Pikaard, C. S. (2007). In vitro specificities of Arabidopsis co-activator histone acetyltransferases: implications for histone hyperacetylation in gene activation. Plant J 52, 615-26. Cerca con Google

36. Eason, J. R., Patel, D., Ryan, D., Page, B., Hedderley, D., Watson, L., and West, P. (2007). Controlled atmosphere treatment of broccoli after harvest delays senescence and induces the expression of novel BoCAR genes. Plant Physiol Biochem 45, 445-56. Cerca con Google

37. Eastmond, P. J., van Dijken, A. J., Spielman, M., Kerr, A., Tissier, A. F., Dickinson, H. G., Jones, J. D., Smeekens, S. C., and Graham, I. A. (2002). Trehalose-6-phosphate synthase 1, which catalyses the first step in trehalose synthesis, is essential for Arabidopsis embryo maturation. Plant J 29, 225-35. Cerca con Google

38. Ekkehard, K. (2001). From library screening to microarray technology: strategies to determine gene expression profiles and to identify differentially regulated genes in plants. Annals of Botany 87, 139-155. Cerca con Google

39. Ellis, C. M., Nagpal, P., Young, J. C., Hagen, G., Guilfoyle, T. J., and Reed, J. W. (2005). AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Development 132, 4563-74. Cerca con Google

40. Farras, R., Ferrando, A., Jasik, J., Kleinow, T., Okresz, L., Tiburcio, A., Salchert, K., del Pozo, C., Schell, J., and Koncz, C. (2001). SKP1-SnRK protein kinase interactions mediate proteasomal binding of a plant SCF ubiquitin ligase. Embo J 20, 2742-56. Cerca con Google

41. Fernandez, D. E., Heck, G. R., Perry, S. E., Patterson, S. E., Bleecker, A. B., and Fang, S. C. (2000). The embryo MADS domain factor AGL15 acts postembryonically. Inhibition of perianth senescence and abscission via constitutive expression. Plant Cell 12, 183-98. Cerca con Google

42. Fulop, K., Pettko-Szandtner, A., Magyar, Z., Miskolczi, P., Kondorosi, E., Dudits, D., and Bako, L. (2005). The Medicago CDKC;1-CYCLINT;1 kinase complex phosphorylates the carboxy-terminal domain of RNA polymerase II and promotes transcription. Plant J 42, 810-20. Cerca con Google

43. Ge, X., Dietrich, C., Matsuno, M., Li, G., Berg, H., and Xia, Y. (2005). An Arabidopsis aspartic protease functions as an anti-cell-death component in reproduction and embryogenesis. EMBO Rep 6, 282-8. Cerca con Google

44. Gil, P., Dewey, E., Friml, J., Zhao, Y., Snowden, K. C., Putterill, J., Palme, K., Estelle, M., and Chory, J. (2001). BIG: a calossin-like protein required for polar auxin transport in Arabidopsis. Genes Dev 15, 1985-97. Cerca con Google

45. Giovannoni, J. (2001). Molecular biology of fruit maturation and ripening. Annual Review of Plant Physiology and Plant Molecular Biology 52, 725-749. Cerca con Google

46. Gonzalez-Carranza, Z. H., Lozoya-Gloria, E., and Roberts, J. A. (1998). Recent developments in abscission: Shedding light on the shedding process. Trends in Plant Science 3, 10-14. Cerca con Google

47. Guo, H., and Ecker, J. R. (2003). Plant responses to ethylene gas are mediated by SCF(EBF1/EBF2)-dependent proteolysis of EIN3 transcription factor. Cell 115, 667-77. Cerca con Google

48. Habu, Y., Fukada-Tanaka, S., Hisatomi, Y., and Iida, S. (1997). Amplified restriction fragment length polymorphism-based mRNA fingerprinting using a single restriction enzyme that recognizes a 4-bp sequence. Biochem Biophys Res Commun 234, 516-21. Cerca con Google

49. Halford, N. G., and Hardie, D. G. (1998). SNF1-related protein kinases: global regulators of carbon metabolism in plants? Plant Mol Biol 37, 735-48. Cerca con Google

50. Halford, N. G., Hey, S., Jhurreea, D., Laurie, S., McKibbin, R. S., Paul, M., and Zhang, Y. H. (2003). Metabolic signalling and carbon partitioning: role of Snf1-related (SnRK1) protein kinase. Journal of Experimental Botany 54, 467-475. Cerca con Google

51. Harren, F. J. M., Bijnen, F. G. C., Reuss, J., Voesenek, L. A. C. J., and Blom, C. W. P. M. (1990a). Sensitive Intracavity Photoacoustic Measurements with a Co2 Wave-Guide Laser. Applied Physics B-Photophysics and Laser Chemistry 50, 137-144. Cerca con Google

52. Harren, F. J. M., Reuss, J., and Lenz, F. (1997). Photoacoustic detection of current ethylene evolution in citrus flowers by modern laser techniques. Gartenbauwissenschaft 62, 193-196. Cerca con Google

53. Harren, F. J. M., Reuss, J., Woltering, E. J., and Bicanic, D. D. (1990b). Photoacoustic Measurements of Agriculturally Interesting Gases and Detection of C2h4 Below the Ppb Level. Applied Spectroscopy 44, 1360-1368. Cerca con Google

54. Hartman, J. J., Mahr, J., McNally, K., Okawa, K., Iwamatsu, A., Thomas, S., Cheesman, S., Heuser, J., Vale, R. D., and McNally, F. J. (1998). Katanin, a microtubule-severing protein, is a novel AAA ATPase that targets to the centrosome using a WD40-containing subunit. Cell 93, 277-87. Cerca con Google

55. Hecht, V., Vielle-Calzada, J. P., Hartog, M. V., Schmidt, E. D., Boutilier, K., Grossniklaus, U., and de Vries, S. C. (2001). The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol 127, 803-16. Cerca con Google

56. Hong, S. B., Sexton, R., and Tucker, M. L. (2000). Analysis of gene promoters for two tomato polygalacturonases expressed in abscission zones and the stigma. Plant Physiol 123, 869-81. Cerca con Google

57. Hong, Z., Delauney, A. J., and Verma, D. P. (2001). A cell plate-specific callose synthase and its interaction with phragmoplastin. Plant Cell 13, 755-68. Cerca con Google

58. Ikonomov, O. C., and Jacob, M. H. (1996). Differential display protocol with selected primers that preferentially isolates mRNAs of moderate- to low-abundance in a microscopic system. Biotechniques 20, 1030-4, 1036-8, 1040-2. Cerca con Google

59. Ivashuta, S., Imai, R., Uchiyama, K., and Gau, M. (1999). The coupling of differential display and AFLP approaches for nonradioactive mRNA fingerprinting. Mol Biotechnol 12, 137-41. Cerca con Google

60. Jackson, M. B., and Osborne, D. J. (1970). Ethylene, the natural regulator of leaf abscission. Nature 225, 1019-22. Cerca con Google

61. Jaffe, M. L. G., R. (1979). Auxin and the early stages of the abscission process of Citrus leaf explants. Botanical Gazette 140, 378-383. Cerca con Google

62. Jinn, T. L., Stone, J. M., and Walker, J. C. (2000). HAESA, an Arabidopsis leucine-rich repeat receptor kinase, controls floral organ abscission. Genes Dev 14, 108-17. Cerca con Google

63. Jones, C. S., Davies, H. V., and Taylor, M. A. (2000). Profiling of changes in gene expression during raspberry (Rubus idaeus) fruit ripening by application of RNA fingerprinting techniques. Planta 211, 708-14. Cerca con Google

64. Karlova, R., Boeren, S., Russinova, E., Aker, J., Vervoort, J., and de Vries, S. (2006). The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE1 protein complex includes BRASSINOSTEROID-INSENSITIVE1. Plant Cell 18, 626-38. Cerca con Google

65. Kasajima, I., Ohkama-Ohtsu, N., Ide, Y., Hayashi, H., Yoneyama, T., Suzuki, Y., Naito, S., and Fujiwara, T. (2007). The BIG gene is involved in regulation of sulfur deficiency-responsive genes in Arabidopsis thaliana. Physiologia Plantarum 129, 351-363. Cerca con Google

66. Kitagawa, Y. K., Y.; Yamaki, S. (1995). Isolation of beta-galactosidase fractions from Japanese pear: Activity against native cell wall polysaccharides. Physiologia Plantarum 93, 545-550. Cerca con Google

67. Kiyosue, T., Abe, H., Yamaguchi-Shinozaki, K., and Shinozaki, K. (1998). ERD6, a cDNA clone for an early dehydration-induced gene of Arabidopsis, encodes a putative sugar transporter. Biochim Biophys Acta 1370, 187-91. Cerca con Google

68. Klee, H. J. (2002). Control of ethylene-mediated processes in tomato at the level of receptors. J Exp Bot 53, 2057-63. Cerca con Google

69. Kotake, T., Yamaguchi, D., Ohzono, H., Hojo, S., Kaneko, S., Ishida, H. K., and Tsumuraya, Y. (2004). UDP-sugar pyrophosphorylase with broad substrate specificity toward various monosaccharide 1-phosphates from pea sprouts. J Biol Chem 279, 45728-36. Cerca con Google

70. Lashbrook, C. C., Tieman, D. M., and Klee, H. J. (1998). Differential regulation of the tomato ETR gene family throughout plant development. Plant J 15, 243-52. Cerca con Google

71. Liang, P., and Pardee, A. B. (1992). Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257, 967-71. Cerca con Google

72. Linskens, M. H., Feng, J., Andrews, W. H., Enlow, B. E., Saati, S. M., Tonkin, L. A., Funk, W. D., and Villeponteau, B. (1995). Cataloging altered gene expression in young and senescent cells using enhanced differential display. Nucleic Acids Res 23, 3244-51. Cerca con Google

73. Litterer, L. A., Schnurr, J. A., Plaisance, K. L., Storey, K. K., Gronwald, J. W., and Somers, D. A. (2006). Characterization and expression of Arabidopsis UDP-sugar pyrophosphorylase. Plant Physiol Biochem 44, 171-80. Cerca con Google

74. Luckwill, L. (1953). Studies of fruit development in relation to plant hormones. I Hormone production by the developing apple seed to fruit drop. Journal of Horticulture Science 28, 14-24. Cerca con Google

75. Luda, B. D., J.; Ledesma, A.; Chenchik, A.; Siebert, P.D. (1996). Combining the technique of RNA fingerprint and Differential Display to obtain differentially expressed mRNA. Biochem Biophys Res Commun 219, 824-828. Cerca con Google

76. Luquez, V. M., and Guiamet, J. J. (2002). The stay green mutations d1 and d2 increase water stress susceptibility in soybeans. J Exp Bot 53, 1421-8. Cerca con Google

77. Luschnig, C. (2001). Auxin transport: why plants like to think BIG. Curr Biol 11, R831-3. Cerca con Google

78. Mao, L., Begum, D., Chuang, H. W., Budiman, M. A., Szymkowiak, E. J., Irish, E. E., and Wing, R. A. (2000). JOINTLESS is a MADS-box gene controlling tomato flower abscission zone development. Nature 406, 910-3. Cerca con Google

79. Marinova, K., Pourcel, L., Weder, B., Schwarz, M., Barron, D., Routaboul, J. M., Debeaujon, I., and Klein, M. (2007). The Arabidopsis MATE transporter TT12 acts as a vacuolar flavonoid/H+ -antiporter active in proanthocyanidin-accumulating cells of the seed coat. Plant Cell 19, 2023-38. Cerca con Google

80. Martin, K. J., and Pardee, A. B. (1999). Principles of differential display. Methods Enzymol 303, 234-58. Cerca con Google

81. Matz, M. V., and Lukyanov, S. A. (1998). Different strategies of differential display: areas of application. Nucleic Acids Res 26, 5537-43. Cerca con Google

82. McManus, M. T. (2007). Further examination of abscission zone cells as ethylene target cells in higher plants. Ann Bot (Lond) 101, 285-92. Cerca con Google

83. Menu-Bouaouiche, L., Vriet, C., Peumans, W. J., Barre, A., Van Damme, E. J., and Rouge, P. (2003). A molecular basis for the endo-beta 1,3-glucanase activity of the thaumatin-like proteins from edible fruits. Biochimie 85, 123-31. Cerca con Google

84. Mutlu, A. G., S. (1999). Plant aspartic proteinases: enzymes on the way to a function. Physiologia Plantarum 105, 569-576. Cerca con Google

85. Oka, T., Nemoto, T., and Jigami, Y. (2007). Functional analysis of Arabidopsis thaliana RHM2/MUM4, a multidomain protein involved in UDP-D-glucose to UDP-L-rhamnose conversion. J Biol Chem 282, 5389-403. Cerca con Google

86. Osborne, D. J. (1977). Ethylene and target cells in the growth of plants. Science progress 64, 51-63. Cerca con Google

87. Osborne, D. J., and Sargent, J. A. (1976). Positional Differentiation of Ethylene-Responsive Cells in Rachis Abscission Zones in Leaves of Sambucus-Nigra and Their Growth and Ultrastructural Changes at Senescence and Separation. Planta 130, 203-210. Cerca con Google

88. Osborne, D. J. M., M.T. (2005). Hormones, signals and target cells in plant development. Cambridge University Press. Cerca con Google

89. Pak, C. v. D., W. G. (2005). Delay of Iris flower senescence by protease inhibitor. New Phytologist 165, 473-480. Cerca con Google

90. Pandita, V. K., and Jindal, K. K. (1991). Enzymatic and Anatomical Changes in Abscission Zone Cells of Apple Fruits Induced by Ethephon. Biologia Plantarum 33, 20-&. Cerca con Google

91. Patterson, S. E. (2001). Cutting loose. Abscission and dehiscence in Arabidopsis. Plant Physiol 126, 494-500. Cerca con Google

92. Patterson, S. E., and Bleecker, A. B. (2004). Ethylene-dependent and -independent processes associated with floral organ abscission in Arabidopsis. Plant Physiol 134, 194-203. Cerca con Google

93. Polge, C., and Thomas, M. (2007). SNF1/AMPK/SnRK1 kinases, global regulators at the heart of energy control? Trends Plant Sci 12, 20-8. Cerca con Google

94. Prashar, Y., and Weissman, S. M. (1996). Analysis of differential gene expression by display of 3' end restriction fragments of cDNAs. Proc Natl Acad Sci U S A 93, 659-63. Cerca con Google

95. Qin, L., Overmars, H., Helder, J., Popeijus, H., van der Voort, J. R., Groenink, W., van Koert, P., Schots, A., Bakker, J., and Smant, G. (2000). An efficient cDNA-AFLP-based strategy for the identification of putative pathogenicity factors from the potato cyst nematode Globodera rostochiensis. Mol Plant Microbe Interact 13, 830-6. Cerca con Google

96. Quint, M., Ito, H., Zhang, W., and Gray, W. M. (2005). Characterization of a novel temperature-sensitive allele of the CUL1/AXR6 subunit of SCF ubiquitin-ligases. Plant J 43, 371-83. Cerca con Google

97. Quirino, B. F., Reiter, W. D., and Amasino, R. D. (2001). One of two tandem Arabidopsis genes homologous to monosaccharide transporters is senescence-associated. Plant Molecular Biology 46, 447-457. Cerca con Google

98. Ramina, A. R., N.; Masia, A. (1989). The abscission process in peach: structural, biochemical and hormonal aspect. In "Cell separation in plants" (D. J. J. Osborne, M.B., Ed.), pp. 223-240. Springer Verlag. Cerca con Google

99. Rasori, A., Ruperti, B., Bonghi, C., Tonutti, P., and Ramina, A. (2002). Characterization of two putative ethylene receptor genes expressed during peach fruit development and abscission. J Exp Bot 53, 2333-9. Cerca con Google

100. Ratner, A., Goren, R., and Monselise, S. P. (1969). Activity of Pectin Esterase and Cellulase in the Abscission Zone of Citrus Leaf Explants. Plant Physiol 44, 1717-1723. Cerca con Google

101. Ren, G., An, K., Liao, Y., Zhou, X., Cao, Y., Zhao, H., Ge, X., and Kuai, B. (2007). Identification of a novel chloroplast protein AtNYE1 regulating chlorophyll degradation during leaf senescence in Arabidopsis. Plant Physiol 144, 1429-41. Cerca con Google

102. Rizos, D., Lonergan, P., Boland, M. P., Arroyo-Garcia, R., Pintado, B., de la Fuente, J., and Gutierrez-Adan, A. (2002). Analysis of differential messenger RNA expression between bovine blastocysts produced in different culture systems: implications for blastocyst quality. Biol Reprod 66, 589-95. Cerca con Google

103. Roberts, J. A., Elliott, K. A., and Gonzalez-Carranza, Z. H. (2002). Abscission,dehiscence, and other cell separation processes. Annual Review of Plant Biology 53, 131-158. Cerca con Google

104. Roberts, J. A., Whitelaw, C. A., Gonzalez-Carranza, Z. H., and McManus, M. T. (2000). Cell separation processes in plants - Models, mechanisms and manipulation. Annals of Botany 86, 223-235. Cerca con Google

105. Roberts, J. A. S., C.B; Tucker, G.A. (1984). Ethylene-promoted tomato flower abscission and the possible involvement of an inhibitor. Planta 160, 159-163. Cerca con Google

106. Ross, G. S., Wegrzyn, T., MacRae, E. A., and Redgwell, R. J. (1994). Apple beta-galactosidase. Activity against cell wall polysaccharides and characterization of a related cDNA clone. Plant Physiol 106, 521-8. Cerca con Google

107. Rotari, V. I. H., R.; Gallois, P. (2005). Death by proteases in plants: whodunit. Physiologia Plantarum 123, 376-385. Cerca con Google

108. Ruperti, B., Bonghi, C., Tonutti, P., and Ramina, A. (1998). Ethylene biosynthesis in peach fruitlet abscission. Plant Cell and Environment 21, 731-737. Cerca con Google

109. Schluepmann, H., Pellny, T., van Dijken, A., Smeekens, S., and Paul, M. (2003). Trehalose 6-phosphate is indispensable for carbohydrate utilization and growth in Arabidopsis thaliana. Proc Natl Acad Sci U S A 100, 6849-54. Cerca con Google

110. Sexton, R., and Roberts, J. A. (1982). Cell Biology of Abscission. Annual Review of Plant Physiology and Plant Molecular Biology 33, 133-162. Cerca con Google

111. Shimkets, R. A., Lowe, D. G., Tai, J. T., Sehl, P., Jin, H., Yang, R., Predki, P. F., Rothberg, B. E., Murtha, M. T., Roth, M. E., Shenoy, S. G., Windemuth, A., Simpson, J. W., Simons, J. F., Daley, M. P., Gold, S. A., McKenna, M. P., Hillan, K., Went, G. T., and Rothberg, J. M. (1999). Gene expression analysis by transcript profiling coupled to a gene database query. Nat Biotechnol 17, 798-803. Cerca con Google

112. Sibout, R., Eudes, A., Mouille, G., Pollet, B., Lapierre, C., Jouanin, L., and Seguin, A. (2005). CINNAMYL ALCOHOL DEHYDROGENASE-C and -D are the primary genes involved in lignin biosynthesis in the floral stem of Arabidopsis. Plant Cell 17, 2059-76. Cerca con Google

113. Sompayrac, L., Jane, S., Burn, T. C., Tenen, D. G., and Danna, K. J. (1995). Overcoming limitations of the mRNA differential display technique. Nucleic Acids Res 23, 4738-9. Cerca con Google

114. Sparla, F., Costa, A., Lo Schiavo, F., Pupillo, P., and Trost, P. (2006). Redox regulation of a novel plastid-targeted beta-amylase of Arabidopsis. Plant Physiol 141, 840-50. Cerca con Google

115. Stenvik, G. E., Butenko, M. A., Urbanowicz, B. R., Rose, J. K., and Aalen, R. B. (2006). Overexpression of INFLORESCENCE DEFICIENT IN ABSCISSION activates cell separation in vestigial abscission zones in Arabidopsis. Plant Cell 18, 1467-76. Cerca con Google

116. Stepanova, A. N., and Alonso, J. M. (2005). Ethylene signaling pathway. Sci STKE 2005, cm3. Cerca con Google

117. Sun, Y., Hegamyer, G., and Colburn, N. H. (1994). Molecular cloning of five messenger RNAs differentially expressed in preneoplastic or neoplastic JB6 mouse epidermal cells: one is homologous to human tissue inhibitor of metalloproteinases-3. Cancer Res 54, 1139-44. Cerca con Google

118. Sutcliffe, J. G., Foye, P. E., Erlander, M. G., Hilbush, B. S., Bodzin, L. J., Durham, J. T., and Hasel, K. W. (2000). TOGA: an automated parsing technology for analyzing expression of nearly all genes. Proc Natl Acad Sci U S A 97, 1976-81. Cerca con Google

119. Szymkowiak, E. J., and Irish, E. E. (1999). Interactions between jointless and wild-type tomato tissues during development of the pedicel abscission zone and the inflorescence meristem. Plant Cell 11, 159-75. Cerca con Google

120. Tai, W. C., and Banfield, D. K. (2001). AtBS14a and AtBS14b, two Bet1/Sft1-like SNAREs from Arabidopsis thaliana that complement mutations in the yeast SFT1 gene. FEBS Lett 500, 177-82. Cerca con Google

121. Tamura, K., Shimada, T., Kondo, M., Nishimura, M., and Hara-Nishimura, I. (2005). KATAMARI1/MURUS3 Is a novel golgi membrane protein that is required for endomembrane organization in Arabidopsis. Plant Cell 17, 1764-76. Cerca con Google

122. Tateishi, A., Inoue, H., Shiba, H., and Yamaki, S. (2001). Molecular cloning of beta-galactosidase from Japanese pear (Pyrus pyrifolia) and its gene expression with fruit ripening. Plant Cell Physiol 42, 492-8. Cerca con Google

123. Taylor, J. E., and Whitelaw, C. A. (2001). Signals in abscission. New Phytologist 151, 323-339. Cerca con Google

124. Taylor, J. T., GA; Lasslett, Y; Smith, CJS; Arnold, CM; Watson, CF; Schuch, W; Grierson, D; Roberts, JA. (1990). Polygalacturonase expression during leaf abscission of normal and transgenic tomato plants. Planta 183, 133-138. Cerca con Google

125. Thompson, D. S., and Osborne, D. J. (1994). A Role for the Stele in Intertissue Signaling in the Initiation of Abscission in Bean Leaves (Phaseolus vulgaris L.). Plant Physiol 105, 341-347. Cerca con Google

126. Trainotti, L., Spolaore, S., Ferrarese, L., and Casadoro, G. (1997). Characterization of ppEG1, a member of a multigene family which encodes endo-beta-1,4-glucanase in peach. Plant Mol Biol 34, 791-802. Cerca con Google

127. Verma, D. P., and Hong, Z. (2001). Plant callose synthase complexes. Plant Mol Biol 47, 693-701. Cerca con Google

128. Vieten, A., Vanneste, S., Wisniewska, J., Benkova, E., Benjamins, R., Beeckman, T., Luschnig, C., and Friml, J. (2005). Functional redundancy of PIN proteins is accompanied by auxin-dependent cross-regulation of PIN expression. Development 132, 4521-31. Cerca con Google

129. Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T., Hornes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M., and et al. (1995). AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23, 4407-14. Cerca con Google

130. Wang, Z., Yuan, Z., and Quebedeaux, B. (1998). Photoperiod alters partitioning of newly-fixed <sup>14</sup>C and reserve carbon into sorbitol, sucrose and starch in apple leaves, stems, and roots. Functional Plant Biology. 25, 503-506. Cerca con Google

131. Wertheim, S. (2000). Development in the chemical thinning of apple and pear. Plant Growth Regulation 31, 85-100. Cerca con Google

132. Whitelaw, C. A. P., W.; Jenkins, E; Taylor, V.; Roberts, J. (1999). An mRNA encoding a response regulator protein from Brassica napus is up-regulated during pod development. Journal of Experimental Botany 50, 335-341. Cerca con Google

133. Wilkinson, J. Q., Lanahan, M. B., Clark, D. G., Bleecker, A. B., Chang, C., Meyerowitz, E. M., and Klee, H. J. (1997). A dominant mutant receptor from Arabidopsis confers ethylene insensitivity in heterologous plants. Nat Biotechnol 15, 444-7. Cerca con Google

134. Wright, M., and Osborne, D. J. (1974). Abscission in Phaseolus-Vulgaris Positional Differentiation and Ethylene-Induced Expansion Growth of Specialized Cells. Planta 120, 163-170. Cerca con Google

135. Wu, Z., and Burns, J. K. (2004). A beta-galactosidase gene is expressed during mature fruit abscission of 'Valencia' orange (Citrus sinensis). J Exp Bot 55, 1483-90. Cerca con Google

136. Yu, Y. H., Xia, X. L., Yin, W. L., and Zhang, H. C. (2007). Comparative genomic analysis of CIPK gene family in Arabidopsis and Populus. Plant Growth Regulation 52, 101-110. Cerca con Google

137. Zhang, J. S., Duncan, E. L., Chang, A. C., and Reddel, R. R. (1998). Differential display of mRNA. Mol Biotechnol 10, 155-65. Cerca con Google

138. Zimmermann, P., Hirsch-Hoffmann, M., Hennig, L., and Gruissem, W. (2004). GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136, 2621-32. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record