Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Mattiazzo, Serena (2008) Performances of the Ion Electron Emission Microscope at SIRAD. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
7Mb

Abstract (inglese)

When an energetic ion strikes a microelectronic device it induces current transients that may lead to a variety of undesirable Single Event Effects (SEE). An important part of the activity of the SIRAD heavy ion facility at the 15 MV Tandem accelerator of the INFN Laboratories of Legnaro (Italy) concerns SEE studies of microelectronic devices destined for radiation hostile environments.
An Ion Electron Emission Microscope (IEEM) is working at the SIRAD facility. In the IEEM technique, a broad ion beam irradiates a device under test (DUT) and the secondary electrons emitted by the target surface by each ion impact are collected and focused by a commercial electron emission microscope onto a fast electron detector. The spatial (x and y coordinates) and the temporal information of the ion impacts are then correlated to the SEE induced in the device under test and a SEE sensitivity map is obtained. An IEEM can achieve resolutions better than 1um, comparable to the ones achieved by nuclear microprobes techniques where the DUT is systematically scanned with micrometric precision with a microfocused beam. For a heavy ion microbeam to work one must meet severe requirements in terms of beam monochromaticity and stability. The IEEM poses no such requests.
In this thesis we describe in detail the IEEM apparatus working at SIRAD facility and the performed experiments, with an initial discussion on the physical aspects involved in radiation hardness testing.


Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Bisello, Dario
Correlatore:Wyss, Jeffery
Dottorato (corsi e scuole):Ciclo 20 > Scuole per il 20simo ciclo > FISICA
Data di deposito della tesi:2008
Anno di Pubblicazione:2008
Parole chiave (italiano / inglese):Ion Electron Emission Microscopy, radiation hardness
Settori scientifico-disciplinari MIUR:Area 02 - Scienze fisiche > FIS/01 Fisica sperimentale
Struttura di riferimento:Dipartimenti > Dipartimento di Fisica e Astronomia "Galileo Galilei"
Codice ID:234
Depositato il:08 Set 2008
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981). Cerca con Google

[2] E. L. Petersen, “Single Event Analysis and Prediction”, 1997 IEEE NSREC Short Course, Snowmass, CO. Cerca con Google

[3] J. Barak J. Levinson, M. Victoria, and W. Hajdas, “Direct processes in the energy deposition of protons in silicon,” IEEE Trans. Nucl. Sci., vol. 43, no. 6, pp. 2820-2826, 1996. Cerca con Google

[4] S. Duzelier, R. Ecoffet, D. Falguère, T. Nuns, L. Guibert, W. Hajdas, M. C. Calvet, “Low energy proton induced SEE in memories,” IEEE Trans. Nucl. Sci., vol. 44, no. 6, pp. 2306-2310, 1997. Cerca con Google

[5] G. R. Hopkinson, C. J. Dale, and P. W. Marshall, “Proton effects in charge-coupled devices,” IEEE Trans.Nucl. Sci., vol. 43, no. 2, pp. 614-627, 1996. Cerca con Google

[6] M. W. Savage, P. J. McNulty, D. R. Roth, and . C. Foster, “Possible role for secondary particles in proton-induced single event upsets of modern devices,” IEEE Trans. Nucl. Sci., vol 45, no 6, pp. 2745-2751, 1998. Cerca con Google

[7] C. M. Hsieh, P. C. Murley, and R. R. O’Brien, “A field-funneling effect on the collection of alpha-particle generated carriers in silicon devices,” IEEE Electron Device Lett., vol. 2, no 4, pp 103-105, 1981. Cerca con Google

[8] P. E. Dodd, “Device simulation of charge collection and single-event upset,” IEEE Trans. Nucl. Sci., vol. 43, no. 2, pp. 561-575, 1996. Cerca con Google

[9] H. Schöne, D. S. Walsh, F. W. Sexton, B. L. Doyle, P. E. Dodd, J. F. Aurand, R. S. Flores, N. Wing, “Time-resolved ion beam induced charge collection (TRIBICC) in microelectronics,” IEEE Trans. Nucl. Sci., vol. 45, no. 6, pp. 2544-2549, 1998. Cerca con Google

[10] P. E. Dodd and F. Sexton, “Critical charge concepts for CMOS SRAMs,” IEEE Tran. Nucl. Sci., vol. 42, no. 6, pp. 1764-1771, 1995. Cerca con Google

[11] J. R. Srour, C. J. Marshall, P. W. Marshall, “Review of displacement damage effects in silicon devices,” IEEE Trans. Nucl. Sci., vol. 50, no. 3, 2003. Cerca con Google

[12] D. Binder, E. C. Smith, and A. B. Holman, “Satellite anomalies from galactic cosmic rays,” IEEE Trans. Nucl. Sci., vol. 22, pp. 2675–2680, Dec. 1975. Cerca con Google

[13] T. C. May and M. H. Woods, “Alpha-particle-induced soft errors in dynamic memories,” IEEE Trans. Electron. Devices, vol. 26, pp. 2–9, Feb. 1979. Cerca con Google

[14] J. C. Pickel and J. T. Blandford, Jr., “Cosmic ray induced errors in MOS memory cells,” IEEE Trans. Nucl. Sci., vol. 25, pp. 1166–1171, Dec. 1978 Cerca con Google

[15] R. C. Wyatt, P. J. McNulty, P. Toumbas, P. L. Rothwell, and R. C. Filz, “Soft errors induced by energetic protons,” IEEE Trans. Nucl. Sci., vol. 26, pp. 4905–4910, Dec. 1979. Cerca con Google

[16] C. S. Guenzer, E. A. Wolicki, and R. G. Allas, “Single event upset of dynamic RAM’s by neutrons and protons,” IEEE Trans. Nucl. Sci., vol. 26, pp. 5048–5053, Dec. 1979. Cerca con Google

[17] J. L. Andrews, J. E. Schroeder, B. L. Gingerich, W. A. Kolasinski, R. Koga, and S. E. Diehl, “Single event error immune CMOS RAM,” IEEE Trans. Nucl. Sci., vol. 29, pp. 2040–2043, Dec. 1982. Cerca con Google

[18] A. E. Giddings, F.W. Hewlett, R. K. Treece, D. K. Nichols, L. S. Smith, and J. A. Zoutendyk, “Single event upset immune integrated circuits for Project Galileo,” IEEE Trans. Nucl. Sci., vol. 32, pp. 4159–4163, Dec. 1985. Cerca con Google

[19] F. Faccio, K. Kloukinas, A. Marchioro, T. Calin, J. Cosculluela, M. Nicolaidis, and R. Velazco, “Single event effects in static and dynamic registers in an a 0.25 ?m CMOS technology,” IEEE Trans. Nucl. Sci., vol. 46, pp. 1434–1439, Dec. 1999. Cerca con Google

[20] M. P. Baze, S. P. Buchner, and D. McMorrow, “A digital CMOS design technique for SEU hardening,” IEEE Trans. Nucl. Sci., vol. 47, pp. 2603–2608, Dec. 2000. Cerca con Google

[21] A. W. Waskiewicz, J. W. Groninger, V. H. Strahan, and D. M. Long, “Burnout of power MOS transistors with heavy ions of Californium-252,” IEEE Trans. Nucl. Sci., vol. 33, no. 6, pp. 1710-1713, 1986. Cerca con Google

[22] J. L. Titus, C. F. Wheatley, K. M. Van Tyne, J. F. Krieg, D. I. Burton, and A. B. Campbell, “Effect of ion energy upon dielectric breakdown of the capacitor response in vertical power MOSFETs,” IEEE Trans. Nucl. Sci., vol. 45, no. 6, pp. 2492-2499, 1998. Cerca con Google

[23] J. L. Titus and C. F. Wheatley, “Experimental studies of single-event gate rupture and burnout in vertical power MOSFETs,” IEEE Trans. Nucl. Sci., vol. 43, no. 2, pp. 533-545, 1996. Cerca con Google

[24] T. C. May and M. H. Woods, “A new physical mechanism for soft errors in dynamic memories,” Proc. IEEE Int. Reliability Phys. Symp., pp. 33-40, 1978. Cerca con Google

[25] L. W. Massengill, “Cosmic and terrestrial single-event radiation effects in dynamic random access memories,” IEEE Trans. Nucl. Sci., vol. 43, no. 2, pp. 576-593, 1996. Cerca con Google

[26] T. V. Rajeevakumar, N. C. Liu, W. H. Henkels, W. Hwang, and R. Franch, “A new failure mode of radiation-induced soft errors in dynamic memories,” IEEE Electron Dev. Lett., vol. 9, no. 12, pp. 644-646, 1988. Cerca con Google

[27] C. L. Axness, H. T. Weaver, J. S. Fu, R. Koga, and W. A. Kolasinski, “Mechanisms leading to single event upset,” IEEE Trans. Nucl. Sci., vol. 33, no. 6, pp. 1577-1580, 1986. Cerca con Google

[28] H. T. Weaver, C. L. Axness, J. S. Fu, J. S. Binkley, and J. Mansfield, “RAM cell recovery mechanisms following high-energy ion strikes,” IEEE Electron Device Lett., vol. 8, no. 1, pp. 7-9, 1987. Cerca con Google

[29] J. R. Schwank, P. E. Dodd, M. R. Shaneyfelt, G.Vizkelethy, B. L. Draper, T. A. Hill, D. S. Walsh, G. L. Hash, B. L. Doyle, and F. D. McDaniel, “Charge collection in SOI capacitors and circuits and its effect on SEU hardness,” IEEE Trans. Nucl. Sci., vol. 49, pp. 2937–2947, 2002. Cerca con Google

[30] W. J. Shaptor, J. P. Meyers, J. B. Langworthy, E. L. Peterson, “Two parameter Bendel model calculations for predicting proton induced upset”, IEEE Trans. Nucl. Sci., vol. 37, pp. 1966, 1990. Cerca con Google

[31] J. L. Barth, “Modeling Space Radiation Environments,” 1997 IEEE NSREC Short Course, Snowmass, CO. Cerca con Google

[32] C. S. Dyer, “Space Radiation Environment Dosimetry,” 1998 IEEE NSREC Short Course, Newport Beach, CA. Cerca con Google

[33] J. L. Barth, “Modeling Space Radiation Environments,” 1997 IEEE NSREC Short Course, Snowmass, CO. Cerca con Google

[34] E. G. Stassinopoulos, G. J. Brucker, D. W. Nakamura, C. A. Stauffer, G. B. Gee, and J. L. Barth, “Solarflare proton evaluation at geostationary orbits for engineering applications,” IEEE Trans. Nucl. Sci., vol.43, no. 2, pp. 369-382, 1996. Cerca con Google

[35] A. J. Tylka, W. F. Dietrich, and P. R. Boberg, “Probability distributions of high-energy solar-heavy-ion fluxes from IMP-8: 1973-1996,” IEEE Trans. Nucl. Sci., vol. 44, no. 6, pp. 2140-2149, 1997. Cerca con Google

[36] F. W. Sexton, “Measurement of single event phenomena in devices and ICs,” 1992 IEEE NSREC Short Course, New Orleans, LA. Cerca con Google

[37] J. Mazur, “The radiation environment outside and inside a spacecraft,” 2002 IEEE NSREC Short Course, Phoenix, Arizona. Cerca con Google

[38] C. H. Tsao, R. Silberberg, and J. R. Letaw, “Cosmic Ray Heavy Ions At and Above 40,000 Feet,” IEEE Trans. on Nucl. Science, Vol. 31, No. 6, pp. 1066-1068, December 1984. Cerca con Google

[39] R. Silberberg, C. H. Tsao, J. R. Letaw, “Neutron Generated Single Event Upsets,” IEEE Trans. on Nucl. Science, Vol. 31, No. 6, pp. 1183-1185, December 1984. Cerca con Google

[40] A. H. Tabor and E. Normand, “Single Upset in Avionics,” IEEE Trans. on Nucl. Science, Vol. 40, p 120, December 1993. Cerca con Google

[41] J. L. Barth, C. S. Dyer, E. G. Stassinopoulos, “Space, Atmospheric, and terrestrial radiation environments”, IEEE Trans. Nucl. Sci., vol. 50, no. 3, pp. 466?482, 2003. Cerca con Google

[42] J. F. Dicello, M. Wasiolek, M. Zaider, “Measured microdosimetric spectra of energetic ion beams of Fe, Ar, Ne, and C: limitations of LET distributions and quality factors in space research and radiation effects”, IEEE Trans. Nucl. Sci., vol. 38, no. 1, pp. 1203-1209, 1991. Cerca con Google

[43] J. F. Ziegler, “Terrestrial cosmic rays,” IBM J. Res. Development, vol.40, no. 1, pp. 19–39, Jan. 1996. Cerca con Google

[44] J. C. Pickel and T. J. Blandford Jr., “Cosmic ray induced errors in MOS memory cells”, IEEE Trans. Nucl. Sci., vol. NS?25, pp. 1166, 1978. Cerca con Google

[45] E. L. Petersen, J. B. Langworthy and S. E. Diehl, “Suggested single event upset figure of merit”, IEEE Trans. Nucl. Sci., vol. NS?30, pp. 4533, 1983. Cerca con Google

[46] W. L. Bendel, E. L. Petersen, “Proton upset in orbit”, IEEE Trans. Nucl. Sci., vol. NS?30, pp. 4481, 1983. Cerca con Google

[47] W. J. Stapor, J. P. Meyers, J. B. Langworthy, and E. L. Petersen, “Two parameter bendel model calculations for predicting proton induced upset,” IEEE Trans. Nucl. Sci., vol. NS-37, p. 1966, 1990. Cerca con Google

[48] Y. Shimano, T. Goka, S. Kuboyama, K. Kawachi, T. Kanai, and Y. Takami, “The measurement and prediction of proton upset,” ZEEE Trans. Nucl. Sei., vol. 36, p. 2344, 1989. Cerca con Google

[49] E. Noah, T. Bauer, D. Bisello, F. Faccio, M. Friedl, J.R. Fulcher, G. Hall, M. Huhtinen, A. Kaminsky, M. pernicka, M. Raymond, J. Wyss, “Single event upset studies on the CMP tracker APV25 readout chip”, Nucl. Instr. Meth. A, 492 (2002) 434. Cerca con Google

[50] P. E. Dodd, M. R. Shaneyfelt, K. M. Horn, D. S. Walsh, G. L. Hash, T. A. Hill, B. L. Draper, J. R. Schwank, F. W. Sexton, and P. S. Winokur, “SEU?sensitive volumes in bulk and SOI SRAM’s from first?principles calculations and experiments”, IEEE Trans. Nucl. Sci., vol. 48, pp.1893–1903, 2001. Cerca con Google

[51] B.E. Fischer, “The scanning heavy ion microscope at GSI”, Nucl. Intrum. Methods Phys. Res. B 10-11, (1985) 693. Cerca con Google

[52] G. Dollinger, G. Datzmann, A. Hauptner, R. Hertenberger, H. Körner, P. Reichart and B. Volckaerts, “The Munich ion microprobe: Characteristics and prospect”, Nucl. Instrum. Meth. B, 210 (2003) 6. Cerca con Google

[53] S. Kurashima, N. Miyawaki, S. Okumura, M. Oikawa, K. Yoshida, T. Kamiya, M. Fukuda, T. Satoh, T. Nara, T. Agematsu, I. Ishibori, W. Yokota and Y. Nakamura, “Improvement in beam quality of the JAEA AVF cyclotron for focusing heavy-ion beams with energies of hundreds of MeV”, Nucl. Instrum. Meth. B 260 (2007) 65. Cerca con Google

[54] F. Watt, J. A. van Kan, I. Rajta, A. A. Bettiol, T. F. Choo, M. B. H. Breese, T.Osipowicz, “The National University of Singapore high energy ion nano-probe facility: Performance tests”, Nucl. Instr. and Meths. B, vol. 210, pp. 14?20, 2003. Cerca con Google

[55] G. Datzmann, G. Dollinger, C. Goeden, A. Hauptner, H. J. Korner, P. Reichart, O. Schmelmer, “The Munich Microprobe SNAKE: First results using 20 MeV protons and 90 MeV sulfur ions”, Nucl. Instr. And Meth. B, vol. 181, pp. 20?26, 2001. Cerca con Google

[56] B. L. Doyle, G. Vizkelethy, D. S. Walsh, B. Senftinger and M. Mellon., “A new approach to nuclear microscopy: the ion–electron emission microscope” Nucl. Instr. Meth. B 158 (1999) 6. Cerca con Google

[57] 350 PEEM from Staib Instrumente GmgH Lagenbach, Germany. Cerca con Google

[58] E. J. Sternglass, “Theory of Secondary Electron Emission by High-Speed Ions”, Phys. Rev. 108 (1957) 1. Cerca con Google

[59] J. E. Borovsky, D. M. Suszcynsky, “Experimental investigation of the z2 scaling law of fast-ion-produced secondary-electron emission”, Phys. Rev. A, vol. 43, pp. 1416?1432, 1991. Cerca con Google

[60] J. Schou, Scanning Microscopy 2 (1988) 607. Cerca con Google

[61] D. Hasselkamp, K.G. Lang, A. Scharmann, N. Stiller, “Ion induced electron emission from metal surfaces” Nucl. Instr. Meth. 180 (1981) 349. Cerca con Google

[62] Griffith and Engel, Ultramicroscopy 36, 1 (1991). Cerca con Google

[63] Quantar technology Inc., Santa Cruz, Calif. Cerca con Google

[64] D. Bisello, A. Kaminsky, A. Magalini, M. Nigro, D. Pantano, S. Sedykh and J. Wyss, “Ion electron emission microscopy at the SIRAD single event effect facility”, Nucl. Inst. Meth. B, 181 (2001) 254. Cerca con Google

[65] J. Wyss, D. Bisello and D. Pantano, “SIRAD: an irradiation facility at the LNL Tandem accelerator for radiation damage studies on semiconductor detectors and electronic devices and systems” Nucl. Instr. Meth. A 462 (2001) 426. Cerca con Google

[66] BURLE instruments QS 11983-2: APD 3040PS 12/10/8 I 60:1 6.4CH P47 two stacks, 40 mm diameter with 8 mm central hole diameter MCP coupled to a P47 phosphor layer. Cerca con Google

[67] Physik Instrumente (PI) Gmbh & Co. KG, Auf der Romerstrasse 1, D-76228 Karlsruhe/Palmbach Germany; www.physikinstrumente.de. M-126 Series (linear positioning stages), M-0.42 (Tip/Tilt stages). Vai! Cerca con Google

[68] SiTek 2L20SP UV-enhanced PSD; www.sitek.se. Vai! Cerca con Google

[69] D. Bisello, A. Candelori, P. Giubilato, A. Kaminsky, S. Mattiazzo, M. Nigro, D. Pantano, R. Rando, M. Tessaro and J. Wyss, “Position sensitive detectors for Ion Electron Emission Microscopy”, Nucl. Instr. Meth. Cerca con Google

[70] D. Bisello, M. Dal Maschio, P. Giubilato, A. Kaminsky, M. Nigro, D. Pantano, R. Rando, M. Tessaro and J. Wyss, “A novel sensor for ion electron emission microscopy”, Nucl. Instr. Meth. B, 219 (2004) 1000. Cerca con Google

[71] “The novel Ion Electron Emission Microscope at SIRAD”, Piero Giubilato’s PhD Thesis. Cerca con Google

[72] PROXITRONIC BV25-82BY-V, 25 mm diameter Image Intensifier with quartz input window, Bialkali photocathode, v-stack MCP, P47 phosphor layer and output fiber optic plate. Cerca con Google

[73] Hamamatsu S3901/3904 NMOS linear image sensor. Cerca con Google

[74] Silson Ltd, Northampton, England, www.silson.com. Vai! Cerca con Google

[75] B.E. Fischer, M. Cholewa, H.Noguchi, “Some experiences on the way to biological single ion experiments”, NIM B181 (2001) 60-65. Cerca con Google

[76] SRIM (Stopping and Range of Ions in Matter) and TRIM by James Ziegler. www.srim.org. Vai! Cerca con Google

[77] GEANT4: a toolkit for the simulation of the passage of particles through matter, http://geant4.web.cern.ch/geant4/ Vai! Cerca con Google

[78] D. Bisello, A. Candelori, P. Giubilato, A. Kaminsky, S. Mattiazzo, M. Nigro, D. Pantano, R. Rando, L. Silvestrin, M. Tessaro and J. Wyss, “Secondary electron yield of Au and Al2O3 surfaces from swift heavy ion impact in the 2.5–7.9 MeV/amu energy range” Nucl. Instr. Meth. B, 266 (2008) 173. Cerca con Google

[79] A. Itoh, T. Majima, F. Obata, Y. Hamamoto and A. Yogo, “Secondary electron emission from Au by medium energy atomic and molecular ions”, Nucl. Instr. Meth. B 193 (2002) 626. Cerca con Google

[80] Amptek MCA8000A Multichannel Analyzer. Cerca con Google

[81] S. Bertazzoni, D. Di Giovenale, L. Mongiardo, M. Salmeri, A. Mencattini, A. Salsano, D. Bisello, A. Candelori, P. Giubilato, A. Kaminski, M. Nigro, R. Rando, J. Wyss, S. Lora, “TID and SEE characterization and damaging analysis of 256 Mbit COTS SDRAM for IEEM application” Cerca con Google

[82] S. Bertazzoni, G. C. Cardarilli, G. C. Grande, D. Piergentili, M. Salmeri, S. Sperandei, S. Bartalucci, G. Mazenga, M. Ricci, V. Bidoli, D. De Francesco, E. Reali, and A. Rovelli, “Tests of 64 Mb SDRAM for space applications,” in European Conference on Circuit Theory and Design, Stresa, Italy, August 1999. Cerca con Google

[83] S. Bertazzoni, , G. C. Cardarilli, D. Di Giovenale, G. C. Grande, P. Marinucci, D. Piergentili, M. Salmeri, A. Salsano, S. Sperandei, S. Bartalucci, G. Mazenga, M. Ricci, V. Bidoli, D. De Francesco, P. G. Picozza, and A. Rovelli, “Failure tests on 64 Mb SDRAM in radiation environments,” in IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, Albuquerque, New Mexico, USA, November 1999. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record