Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

AIELLO, ROSA (2010) Structural characterization of the STAS domain of the motor protein prestin: a general template for SLC26/SulP anion transporters. [Tesi di dottorato]

Full text disponibile come:

[img]Documento PDF (Tesi di Dottorato) - Altro
Tesi non accessible fino a 31 Dicembre 2017 per motivi correlati alla proprietà intellettuale.
Visibile a: nessuno

2970Kb

Abstract (inglese)

The subject of this thesis is a small cytoplasmatic domain, the STAS domain, present in the C-terminal portion of the anion SulP transporters. The Sulphate Permease (SulP) family includes more than two hundred proteins, identified in archea, bacteria, fungi, plants and animals, many of which have been functionally characterized as anion exchanger or transporters. In mammals, this family, also known as Solute Linked Carrier 26 (SLC26), includes eleven members with important roles in normal physiology.
The STAS domain is located in the less conserved C-terminal portion of all SulP transporters. STAS is an acronym for Sulphate Transporter and Anti-Sigma factor antagonist. The name derives from a sequence homology between this SulP portion and the bacterial antisigma-factor antagonists (ASAs). Even if the 3D structures of some bacterial ASAs are known, STAS domains are poorly characterized in terms of both their function and structure. However, there are many clues of their involvement in the regulation of transport SulP activity. In fact, mutation in this domain can cause the loss of the transporter function, for instance resulting in serious genetic disease. No three-dimensional structures of the STAS domains are available. Their structural characterization is important to understand their precise role and function.
This work has been focused on production and characterization of STAS domain of two SulP transporters, one from a SLC26 member, the motor protein prestin, and the other from Arabidopsis Thaliana Sultr1.2. Because it is difficult to identify the exact boundaries of the STAS domains in the C-terminal SulP transporters, various constructs of the two selected STAS domains have been produced and characterized. The 3D structure of a chimeras prestin variant has been determined through X-ray crystallography at 1.57 Å resolution. The structure revealed a common global fold with the ASA protein but there are significant differences compared to the ASA STAS particularly at the N-terminus. Unexpectedly, our data reveal that the prestin STAS domain starts immediately after the last transmembrane segment and lies just beneath the lipid bilayer. A structure-function analysis suggests that our model can be a general template for most SLC26 and SulP anion transporters and supports the notion that the STAS domain is involved in functionally important inter- and intramolecular- interactions.

Abstract (italiano)

: Oggetto di questo lavoro di tesi è stato il dominio STAS, presente nella porzione C-terminale di proteine transmembrana della famiglia SulP (Sulphate Permease). Tale famiglia include oltre 200 trasportatori o scambiatori di anioni inorganici appartenenti a batteri, funghi, piante e animali. Nei mammiferi questa famiglia è anche conosciuta con il nome di Solute Linked carrier 26 (SLC26)I trasportatori SulP sono caratterizzati da una comune organizzazione strutturale: un core centrale idrofobico transmenbrana ed due porzioni N- e C- terminali citoplasmatiche, la seconda delle quali contiene lo STAS domain.
Con dominio STAS (Sulphate Transporter and AntiSigma factor antagonist) si indica un piccolo dominio citoplasmatico dei trasportatoti SulP che mostra omologia di sequenza con gli antagonisti batterici al fattore anti-sigma (o proteine ASA).
Al contrario degli ASA batterici, di cui è nota la struttura, il dominio STAS dei trasportatori di anioni è poco caratterizzato sia in termini di funzione che di struttura. Esistono, però, diversi indizi sul coinvolgimento di tale dominio nella regolazione dell’attività di trasporto delle proteine SulP. Nei mammiferi, mutazioni nello STAS possono causare la perdita dell’attività di trasporto, portando anche all’insorgenza di gravi patologie genetiche. Al momento non sono note strutture 3D di domini STAS e la loro caratterizzazione sarebbe fondamentale per comprendere il loro ruolo e la funzione all’interno della famiglia SulP.
Questa tesi è stata incentrata sulla produzione e caratterizzazione del dominio STAS della proteina di mammifero prestina e del trasportatore Sultr1.2 di Arabidopsis thaliana. Poiché le esatte estremità dello STAS all’interno del C-terminale dei trasportatori SulP sono difficili da identificare, sono stati disegnati diversi costrutti delle due proteine selezionate.
La struttura 3D di una variante dello STAS di prestina è stata risolta tramite cristallografia ai raggi X ad una risoluzione di 1.57 Å rivelando un fold comune tra lo STAS di prestina e le proteine ASA batteriche ma notevoli differenze particolarmente all’ N-terminale. I nostri dati hanno mostato inaspettatamente che il domino STAS inizia subito dopo l’ultimo segmento transmembrana, situato giusto al di sotto del doppio strato fosfolipidico. Inoltre, un’ attenta analisi struttura-funzione ha suggerito che la nostra struttura può essere considerato un modello generale per molti trasportatori di anioni SulP e SLC26 e conferma l’ipotesi che il dominio STAS è coinvolto in interazioni inter- intra-molecolari.

Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:BATTISTUTTA, ROBERTO
Dottorato (corsi e scuole):Ciclo 22 > Scuole per il 22simo ciclo > SCIENZE MOLECOLARI > SCIENZE CHIMICHE
Data di deposito della tesi:NON SPECIFICATO
Anno di Pubblicazione:Gennaio 2010
Parole chiave (italiano / inglese):STAS DOMAIN, PRESTIN, ANION TRANSPORTER, SLC26, SULP
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/10 Biochimica
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze Chimiche
Codice ID:2512
Depositato il:05 Nov 2010 13:33
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Albert J.T., Winter H., Schaechinger T.J., Weber T., Wang X., He D.Z.Z., Hendrich O., Geisler H.-S., Zimmermann U., Oelmann K., Knipper M., Gopfert M.C., Oliver D. (2007). Voltage-sensitive prestin orthologue expressed in zebrafish hair cells. J. Physiol. 580: 451-461. Cerca con Google

Alper S., Duncan L., Losick R. (1994). An adenosine nucleotide switch controlling the activity of a cell type-specific transcription factor in B. subtilis. Cell 77: 195-205. Cerca con Google

Alvarez B.V., Vilas G.L., Casey J.R. (2005). Metabolon disruption: a mechanism that regulates bicarbonate transport. EMBO J. 24: 2499-2511. Cerca con Google

Aravind L., Koonin E.V. (2000). The STAS domain - a link between anion transporters and antisigma-factor antagonists Curr. Biol. 10: 53-55. Cerca con Google

Ashmore J.F. (1990). Forward and reverse transduction in the mammalian cochlea. Neurosci. Res. Suppl. 12: 39-50. Cerca con Google

Bai J.P., Navaratnam D., Samaranayake H., Santos-Sacchi J. (2006). En block C-terminal charge cluster reversals in prestin (SLC26A5): effects on voltage-dependent electromechanical activity. Neurosci. Lett. 404: 270-275. Cerca con Google

Blons H., Feldmann D., Duval V., Messaz O., Denoyelle F., Loundon N., Sergout-Allaoui A., Houang M., Duriez F., Lacombe D., Delobel B., Leman J., Catros H., Journel H., Drouin-Garraud V., Obstoy M.F., Toutain A., Oden S., Toublanc J.E., Couderc R., Petit C., Garabédian E.N., Marlin S. (2004). Screening of SLC26A4 (PDS) gene in Pendred's syndrome: a large spectrum of mutations in France and phenotypic heterogeneity. Clin. Genet. 66: 333-340. Cerca con Google

Brownell W.E., Bader C.R., Bertrand D., de Ribaupierre Y. (1985). Evoked mechanical responses of isolated cochlear outer hair cells. Science 227: 194-196. Cerca con Google

Campbell C., Cucci R.A., Prasad S., Green G.E., Edeal J.B., Galer C.E., Karniski L.P., Sheffield V.C., Smith R.J. (2001). Pendred syndrome, DFNB4, and PDS/SLC26A4 identification of eight novel mutations and possible genotype–phenotype correlations. Hum. Mutat. 17: 403-411. Cerca con Google

Campbell E.A., Masuda S., Sun J.L., Muzzin O., Olson C.A., Wang S., Darst S.A. (2002). Crystal structure of the Bacillus stearothermophilus anti-sigma factor SpoIIAB with the sporulation sigma factor sigmaF. Cell 108: 795-807. Cerca con Google

Chang M.H., Plata C., Sindic A., Ranatunga W.K., Chen A.P., Zandi-Nejad K., Chan K.W., Thompson J., Mount D.B., Romero M.F. (2009a). Slc26a9 is inhibited by the R-region of the cystic fibrosis transmembrane conductance regulator via the STAS domain. J. Biol. Chem. 284: 28306-28318. Cerca con Google

Chang M.H., Plata C., Zandi-Nejad K., Sindić A., Sussman C.R., Mercado A., Broumand V., Raghuram. V, Mount D.B., Romero M.F. (2009b). Slc26a9-anion exchanger, channel and Na+ transporter. J. Membr. Biol. 228: 125-140. Cerca con Google

Cheatham M.A., Huynh K.H., Gao J., Zuo J., Dallos P. (2004). Cochlear function in Prestin knockout mice. J. Physiol. 560: 821-830. Cerca con Google

Cherest H., Davidian J.C., Thomas D., Benes V., Ansorge W., Surdin-Kerjan Y. (1997). Molecular characterization of two high affinity sulfate transporters in Saccharomyces cerevisiae. Genetics 145: 627-635. Cerca con Google

Chernova M.N., Jiang L., Shmukler B.E., Schweinfest C.W., Blanco P., Freedman S.D., Stewart A.K., Alper S.L. (2003). Acute regulation of the SLC26A3 congenital chloride diarrhoea anion exchanger (DRA) expressed in Xenopus oocytes. J. Physiol. 549: 3-19. Cerca con Google

Choi J.Y., Muallem D., Kiselyov K., Lee M.G., Thomas P.J., Muallem S. (2001). Aberrant CFTR-dependent HCO3- transport in mutations associated with cystic fibrosis. Nature 410: 94-97. Cerca con Google

Cowtan K. (1994). dm: An automated procedure for phase improvement by density modification. Joint CCP4 and ESF-EACBM Newsletter on Protein Crystallography 31: 34-38 Cerca con Google

Cowtan K. (2006). The Buccaneer software for automated model building. 1. Tracing protein chains. Acta Crystallogr. D Biol. Crystallogr. 62: 1002-1011. Cerca con Google

Dallos P. (1992). The active cochlea. J. Neurosci. 12: 4575-4585. Cerca con Google

Dallos P., Fakler B. (2002). Prestin, a new type of motor protein. Nat. Rev. Mol. Cell Biol. 3: 104-111. Cerca con Google

Dallos P., Zheng J., Cheatham M.A. (2006). Prestin and the cochlear amplifier. J. Physiol. 76: 37-42. Cerca con Google

Dawson P.A., Marchovich D. (2005). Pathogenetics of the human SLC26 transporters. Curr. Medicinal Chem. 12: 385-396. Cerca con Google

Deak L., Zheng J., Orem A., Du G.G., Aguinaga S., Matsuda K., Dallos P. (2005). Effects of cyclic nucleotides on the function of prestin. J. Physiol. 563: 483-496. Cerca con Google

Detro-Dassen S., Schänzler M., Lauks H., Martin I., zu Berstenhorst S.M., Nothmann D., Torres-Salazar D., Hidalgo P., Schmalzing G., Fahlke C. (2008). Conserved dimeric subunit stoichiometry of SLC26 multifunctional anion exchangers. J. Biol Chem. 283: 4177-4188. Cerca con Google

Dong X.X., Iwasa K.H. (2004). Tension sensitivity of prestin: comparison with the membrane motor in outer hair cells. Biophys. J. 86:1201-1208. Cerca con Google

Dong X.X., Ospeck M., Iwasa K.H. (2002). Piezoelectric reciprocal relationship of the membrane motor in the cochlear outer hair cell. Biophys. J. 82: 1254-1259. Cerca con Google

Dorwart M.R., Shcheynikov N., Baker J.M., Forman-Kay J.D., Muallem S., Thomas P.J. (2008a). Congenital chloride-losing diarrhea causing mutations in the STAS domain result in misfolding and mistrafficking of SLC26A3. J. Biol. Chem. 283: 8711-8722. Cerca con Google

Dorwart M.R., Shcheynikov N., Yang D., Muallem S. (2008b). The solute carrier 26 family of proteins in epithelial ion transport. Physiology 23:104-114. Cerca con Google

Dossena S., Rodighiero S., Vezzoli V., Nofziger C., Salvioni E., Boccazzi M., Grabmayer E., Bottà G., Meyer G., Fugazzola L., Beck-Peccoz P., Paulmichl M. (2009). Functional characterization of wild-type and mutated pendrin (SLC26A4), the anion transporter involved in Pendred syndrome. J. Mol. Endocrinol. 43: 93-103. Cerca con Google

Emsley P., Cowtan K. (2004). Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60: 2126-2132. Cerca con Google

Errington J. (1996). Determination of cell fate in Bacillus subtilis. Trends Genet. 12: 31-34. Cerca con Google

Etezady-Esfarjani T., Placzek W.J., Herrmann T., Wüthrich K. (2006). Solution structures of the putative anti-sigma-factor antagonist TM1442 from Thermotoga maritima in the free and phosphorylated states. Magn. Reson. Chem. 44: 61-70. Cerca con Google

Evans P. (2006). Scaling and assessment of data quality. Acta Crystallogr. D Biol. Crystallogr. 62: 72-82. Cerca con Google

Everett L.A. and Green E.D. (1999). A family of mammalian anion transporters and their involvement in human genetic diseases. Hum. Mol. Genet. 8: 1883-1891. Cerca con Google

Felce J., Saier M.H. (2004). Carbonic anhydrases fused to anion transporters of the SulP family: evidence for a novel type of bicarbonate transporter. J. Mol. Microbiol. Biotechnol. 8: 169-176. Cerca con Google

Feucht A., Magnin T., Yudkin M.D., Errington J. (1996). Bifunctional protein required for asymmetric cell division and cell-specific transcription in Bacillus subtilis. Genes Dev. 10: 794-803. Cerca con Google

Forge A. (1991). Structural features of the lateral walls in mammalian cochlear outer hair cells. Cell Tissue Res. 265: 473-483. Cerca con Google

Frank G., Hemmert W., Gummer A.W. (1999). Limiting dynamics of high-frequency electromechanical transduction of outer hair cells. Proc. Natl. Acad. Sci. USA 96: 4420-4425. Cerca con Google

Greeson J.N., Organ L.E., Pereira F.A., Raphael R.M. (2006). Assessment of prestin self-association using fluorescence resonance energy transfer. Brain Res. 1091: 140-150. Cerca con Google

Hastbacka J., de la Chapelle A., Mahtani M.M., Clines G., Reeve-Daly M.P., Daly M., Hamilton B.A., Kusumi K., Trivedi B., Weaver A, Coloma A., Lovett M., Buckler A., Kaitila I., Lander E.S. (1994). The diastrophic dysplasia gene encodes a novel sulphate transporter: positional cloning by fine-structure linkage disequilibrium mapping. Cell 78: 1073-1087. Cerca con Google

Hästbacka J., Superti-Furga A., Wilcox W.R., Rimoin D.L., Cohn D.H., Lander E.S. (1996). Atelosteogenesis type II is caused by mutations in the diastrophic dysplasia sulfate-transporter gene (DTDST): evidence for a phenotypic series involving three chondrodysplasias. Am. J. Hum. Genet. 58: 255-262. Cerca con Google

Hawkesford M.J. (2003). Transporter gene families in plants: the sulphate transporter gene family-redundancy or specialization? Physiol. Plant 117: 155-163. Cerca con Google

He D.Z., Zheng J., Kalinec F., Kakehata S., Santos-Sacchi J. (2006). Tuning in to the amazing outer hair cell: membrane wizardry with a twist and shout J. Membr. Biol. 209: 119-134. Cerca con Google

Kalinec F., Holley M.C., Iwasa K.H., Lim D.J., Kachar B. (1992). A membrane-based force generation mechanism in auditory sensory cells. Proc. Natl. Acad. Sci. USA 89: 8671-8675. Cerca con Google

Karniski L.P. (2004). Functional expression and cellular distribution of diastrophic dysplasia sulfate transporter (DTDST) gene mutations in HEK cells. Hum. Mol. Genet. 13: 2165-2171. Cerca con Google

Karniski L.P., Lötscher M., Fucentese M., Hilfiker H., Biber J., Murer H. (1998). Immunolocalization of sat-1 sulfate/oxalate/bicarbonate anion exchanger in the rat kidney. Am. J. Physiol. 275: 79-87. Cerca con Google

Keller P., Simons K. (1997). Post-Golgi biosynthetic trafficking. J. Cell Sci. 110: 3001-3009. Cerca con Google

Khurana O.K., Coupland L.A., Shelden M.C., Howitt S.M. (2000). Homologous mutations in two diverse sulphate transporters have similar effects. FEBS Lett. 477: 118-122. Cerca con Google

Ko S.B., Shcheynikov N., Choi J.Y., Luo X., Ishibashi K., Thomas P.J., Kim J.Y., Kim K.H., Lee M.G., Naruse S., Muallem S. (2002). A molecular mechanism for aberrant CFTR-dependent HCO3- transport in cystic fibrosis. EMBO J. 21: 5662-5672. Cerca con Google

Ko S.B.H., Zeng W., Dorwart M.R:, Luo X., Kim K.H., Millen L., Goto H., Naruse S., Soyombo A., Thomas P.J., Muallem S. (2004). Gating of CFTR by the STAS domain of the SLC26 transporters. Nature Cell. Biology 6: 343-350. Cerca con Google

Kovacs H., Comfort D., Lord M., Campbell I.D., Yudkin M.D. (1998) Solution structure of SpoIIAA, a phosphorylatable component of the system that regulates transcription factor sigmaF of Bacillus subtilis. Proc. Natl. Acad. Sci. USA 95: 5067-5071. Cerca con Google

Lamprecht G., Hsieh C.J., Lissner S., Nold L., Heil A., Gaco V., Schäfer J., Turner J.R., Gregor M. (2009). Intestinal anion exchanger down-regulated in adenoma (DRA) is inhibited by intracellular calcium. J. Biol. Chem. 284:19744-19753. Cerca con Google

Lee J.Y., Ahn H.J., Ha K.S., Suh S.W. (2004). Crystal structure of the TM1442 protein from Thermotoga maritima, a homolog of the Bacillus subtilis general stress response anti-anti-sigma factor RsbV. Proteins 56: 176-179. Cerca con Google

Leslie A.G.W. (1991). Crystallographic Computing V (Moras D., Podjarny A.D., Thierry J. P. eds), pp 27-38, Oxford University Press, Oxford. Cerca con Google

Leves F.P., Tierney M.L., Howitt S.M. (2008). Polar residues in a conserved motif spanning helices 1 and 2 are functionally important in the SulP transporter family. Int. J. Biochem. Cell Biol. 40: 2596-2605. Cerca con Google

Li S.J., Hochstrasser M. (1999). A new protease required for cell-cycle progression in yeast. Nature 398: 246-251. Cerca con Google

Liberman M.C., Gao J., He D.Z., Wu X., Jia S., Zuo J. (2002). Prestin is required for electromotility of the outer hair cell and for the cochlear amplifier. Nature 419:300-304. Cerca con Google

Liu X.Z., Ouyang X.M., Xia X.J., Zheng J., Pandya A., Li F., Du L.L., Welch K.O., Petit C., Smith R.J., Webb B.T., Yan D., Arnos K.S., Corey D., Dallos P., Nance W.E., Chen Z.Y. (2003). Prestin, a cochlear motor protein, is defective in non-syndromic hearing loss. Hum. Mol. Genet. 12:1155-1162. Cerca con Google

Lohi H., Lamprecht G., Markovich D., Heil A., Kujala M., Seidler U., Kere J. (2003). Isoforms of SLC26A6 mediate anion transport and have functional PDZ interaction domains. Am. J. Physiol. Cell Physiol. 284: 769-779. Cerca con Google

Lomize M.A., Lomize A.L., Pogozheva I.D., Mosberg H.I. (2006). OPM: orientations of proteins in membranes database. Bioinformatics 22: 623-635. Cerca con Google

Loughlin P., Shelden M. C., Tierney M. L., Howitt S. M. (2002) Structure and function of a model member of the SulP transporter family. Cell. Biochem. Biophys. 36: 183-190. Cerca con Google

Ludwig J., Oliver D., Frank G., Klöcker N., Gummer A.W., Fakler B. (2001). Reciprocal electromechanical properties of rat prestin: The motor molecule from rat outer hair cells. Proc. Natl. Acad. Sci. USA 98: 4178–4183. Cerca con Google

Mammano F., Bortolozzi M., Ortolano S., Anselmi F. (2007). Ca2+ signaling in the inner ear. Physiology 22: 131-144. Cerca con Google

Masuda S., Murakami K.S., Wang S., Anders Olson C., Donigian J., Leon F., Darst S.A., Campbell E.A. (2004). Crystal structures of the ADP and ATP bound forms of the Bacillus anti-sigma factor SpoIIAB in complex with the anti-anti-sigma SpoIIAA. J. Mol. Biol. 340: 941-956. Cerca con Google

Matsuda K., Zheng J., Du G.G., Klöcker N., Madison L.D., Dallos P. (2004). N-linked glycosylation sites of the motor protein prestin: effects on membrane targeting and electrophysiological function. J. Neurochem. 89: 928-938. Cerca con Google

Meltzer J., Santos-Sacchi J. (2001). Temperature dependence of non-linear capacitance in human embryonic kidney cells transfected with prestin, the outer hair cell motor protein. Neurosci. Lett. 313: 141-144. Cerca con Google

Mio K., Kubo Y., Ogura T., Yamamoto T., Ariska F., Sato C. (2008). The motor protein prestin is a bullet-shaped molecule with inner cavities. J. Biol. Chem. 283: 1137-1145. Cerca con Google

Moseley R.H., Höglund P., Wu G.D., Silberg D.G., Haila S., de la Chapelle A. Holmberg C., Kere J. (1999). Downregulated in adenoma gene encodes a chloride transporter defective in congenital chloride diarrhea. Am. J. Physiol. 276: 185-192. Cerca con Google

Mount D.B., Romero M.F. (2004). The SLC26 gene family of multifunctional anion exchangers. Pflugers. Arch. 447: 710-721. Cerca con Google

Muallem D., Ashmore J. (2006). An anion antiporter model of prestin, the outer hair cell motor protein. Biophys. J. 90: 4035-4045. Cerca con Google

Murshudov G.N., Vagin A.A,. Dodson E.J. (1997). Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53: 240-255. Cerca con Google

Najafi S.M., Harris D.A., Yudkin M.D. (1996). The SpoIIAA protein of Bacillus subtilis has GTP-binding properties. J. Bacteriol. 178: 6632-6634. Cerca con Google

Navaratnam D., Bai J.P., Samaranayake H., Santos-Sacchi J. (2005). N-terminal mediated homo-multimerization of prestin, the outer hair cell motor protein. Biophys. J. 89: 3345-3352. Cerca con Google

Okoruwa O.E., Weston M.D., Sanjeevi D.C., Millemon A.R., Fritzsch B., Hallworth R., Beisel K.W. (2008). Evolutionary insights into the unique electromotility motor of mammalian outer hair cells. Evol. Dev. 10: 300-315. Cerca con Google

Ohana E., Yang D., Shcheynikov N., Muallem S. (2009). Diverse transport modes by the solute carrier 26 family of anion transporters. J. Physiol. 587: 2179-2185. Cerca con Google

Oliver D., He D.Z., Klöcker N., Ludwig J., Schulte U., Waldegger S., Ruppersberg J.P., Dallos P., Fakler B. (2001). Intracellular anions as the voltage sensor of prestin, the outer hair cell motor protein Science 292: 2340-2343. Cerca con Google

Pasqualetto E., Seydel A., Pellini A., Battistutta R. (2008). Expression, purification and characterization of the C-terminal STAS domain of the SLC26 anion transporter prestin. Protein Expr. Purif. 58 :249-256. Cerca con Google

Price G., Woodger F., Badger M., Howitt S., Tucker L. (2004). Identification of a SulP type bicarbonate transporter in marine cyanobacteria. Proc. Natl. Acad. Sci. USA 101: 18228-18233. Cerca con Google

Rajagopalan L., Patel N., Madabushi S., Goddard J.A., Anjan V., Lin F., Shope C., Farrell B., Lichtarge O., Davidson A.L., Brownell W.E., Pereira F.A. (2006). Essential helix interactions in the anion transporter domain of prestin revealed by evolutionary trace analysis. J. Neurosci. 26: 12727-12734. Cerca con Google

Regeer R.R., Markovich D. (2004). A dileucine motif targets the sulfate anion transporter sat-1 to the basolateral membrane in renal cell lines. Am. J. Physiol. Cell Physiol. 287: 365-372. Cerca con Google

Rosenberg N.K., Lee R.W., Yancey, P.H. (2006). High contents of hypotaurine and thiotaurine in hydrothermal-vent gastropods without thiotrophic endosymbionts. J. Exp. Zool. A Comp. Exp. Biol. 305: 655-662. Cerca con Google

Rossi A., Bonaventure J., Delezoide A.L., Cetta G., Superti-Furga A. (1996). Undersulfation of proteoglycans synthesized by chondrocytes from a patient with achondrogenesis type 1B homozygous for an L483P substitution in the diastrophic dysplasia sulfate transporter J. Biol. Chem. 271: 18456-18464. Cerca con Google

Rossi A., Superti-Furga A. (2001). Mutations in the diastrophic dysplasia sulfate transporter (DTDST) gene (SLC26A2): 22 novel mutations, mutation review, associated skeletal phenotypes, and diagnostic relevance. Hum. Mutat. 17: 159-171. Cerca con Google

Rossmann H., Jacob P., Baisch S., Hassoun R., Meier J., Natour D., Yahya K., Yun C., Biber J., Lackner K.J., Fiehn W., Gregor M., Seidler U., Lamprecht G. (2005). The CFTR associated protein CAP70 interacts with the apical Cl-/HCO3- exchanger DRA in rabbit small intestinal mucosa. Biochemistry 44: 4477-4487. Cerca con Google

Rotman-Pikielny P., Hirschberg K., Maruvada P., Suzuki K., Royaux I.E., Green E.D., Kohn L.D., Lippincott-Schwartz J., Yen P.M. (2002). Retention of pendrin in the endoplasmic reticulum is a major mechanism for Pendred syndrome. Hum. Mol. Genet. 11: 2625-2633. Cerca con Google

Rouached H., Berthomieu P., El Kassis E., Cathala N., Catherinot V., Labesse G., Davidian J.C., Fourcroy P. (2005). Structural and functional analysis of the C-terminal STAS (sulfate transporter and anti-sigma antagonist) domain of the Arabidopsis thaliana sulfate transporter SULTR1.2. J. Biol. Chem. 280: 15976-15983. Cerca con Google

Ryan A., Dallos P. (1975). Effect of absence of cochlear outer hair cells on behavioural auditory threshold. Nature 253: 44-46. Cerca con Google

Rybalchenko V., Santos-Sacchi J. (2003). Cl- flux through a non-selective, stretch-sensitive conductance influences the outer hair cell motor of the guinea-pig. J. Physiol. 547: 873-891. Cerca con Google

Saier M.H. (1999). A functional–phylogenetic system for the classification of transport proteins. J. Cell Biochem. 33: 84-94. Cerca con Google

Saier M.H. Jr, Eng B.H., Fard S., Garg J., Haggerty D.A., Hutchinson W.J., Jack D.L., Lai E.C., Liu H.J., Nusinew D.P., Omar A.M., Pao S.S., Paulsen I.T., Quan J.A., Sliwinski M., Tseng T.T., Wachi S., Young G.B. (1999b). Phylogenetic characterization of novel transport protein families revealed by genome analyses. Biochim. Biophys. Acta 1422: 1-56. Cerca con Google

Saito K., Tautz L., Mustelin T. (2007). The lipid-binding SEC14 domain. Biochim. Biophys. Acta 1771: 719-726. Cerca con Google

Sandal N.N., Marcker K.A. (1994). Similarities between a soybean nodulin, Neurospora crassa sulphate permease II and a putative human tumour suppressor. Trends Biochem. Sci. 19: 19 Cerca con Google

Santos-Sacchi J., Dilger J.P. (1988). Whole cell currents and mechanical responses of isolated outer hair cells. Hear Res. 35: 143-150. Cerca con Google

Santos-Sacchi J., Shen W., Zheng J., Dallos P. (2001). Effects of membrane potential and tension on prestin, the outer hair cell lateral membrane motor protein. J. Physiol. 531: 661-666. Cerca con Google

Santos-Sacchi J., Song L., Zheng J., Nuttall A.L. (2006). Control of mammalian cochlear amplification by chloride anions. J. Neurosci. 26: 3992-3998. Cerca con Google

Schaechinger T.J., Oliver D. (2007). Non mammalian orthologs of prestin (SLC26A5) are electrogenic divalent/chloride anion exchangers. Proc. Natl. Acad. Sci. USA 104: 7693-7698. Cerca con Google

Schneider T.R., Sheldrick G.M. (2002). Substructure solution with SHELXD. Acta Crystallogr. D Biol. Crystallogr. 58: 1772-1779. Cerca con Google

Schweinfest C.W., Henderson K.W., Suster S., Kondoh N., Papas T.S. (1993). Identification of a colon mucosa gene that is down-regulated in colon adenomas and adenocarcinomas. Proc. Natl. Acad. Sci. USA 90: 4166-4170. Cerca con Google

Scott D.A., Wang R., Kreman T.M., Andrews M., McDonald J.M., Bishop J.R., Smith R.J., Karniski L.P., Sheffield V.C. (2000). Functional differences of the PDS gene product are associated with phenotypic variation in patients with Pendred syndrome and non-syndromic hearing loss (DFNB4). Hum. Mol. Genet. 9: 1709-1715. Cerca con Google

Seavers P.R., Lewis R.J., Brannigan J.A., Verschueren K.H., Murshudov G.N., Wilkinson A.J. (2001). Structure of the Bacillus cell fate determinant SpoIIAA in phosphorylated and unphosphorylated forms. Structure 9:605-614. Cerca con Google

Sha B., Phillips S.E., Bankaitis V.A., Luo M. (1998). Crystal structure of the Saccharomyces cerevisiae phosphatidylinositol-transfer protein. Nature 391:506-510. Cerca con Google

Shcheynikov N., Wang Y., Park M., Ko S.B., Dorwart M., Naruse S., Thomas P.J., Muallem S. (2006). Coupling modes and stoichiometry of Cl-/HCO3- exchange by slc26a3 and slc26a6. J. Gen. Physiol. 127: 511-524. Cerca con Google

Shcheynikov N., Yang D., Wang Y., Zeng W., Karniski L.P., So I., Wall S.M., Muallem S. (2008). The Slc26a4 transporter functions as an electroneutral Cl-/I-/HCO3- exchanger: role of Slc26a4 and Slc26a6 in I- and HCO3- secretion and in regulation of CFTR in the parotid duct. J. Physiol. 586: 3813-3824. Cerca con Google

Shelden M.C., Loughlin P., Tierney M.L., Howitt S.M. (2001). Proline residues in two tightly coupled helices of the sulphate transporter, SHST1, are important for sulphate transport. Biochem. J. 356: 589-594. Cerca con Google

Sheldrick G.M. (2002). Macromolecular phasing with SHELXE. Z. Kristallogr. 217: 644-650. Cerca con Google

Sheppard D.N., Welsh M.J. (1999). Structure and function of the CFTR chloride channel. Physiol. Rev. 79: 23-45. Cerca con Google

Shibagaki N., Grossman A.R. (2004). Probing the function of STAS domains of the Arabidopsis sulfate transporters. J. Biol. Chem. 279: 30791-30799. Cerca con Google

Shibagaki N., Grossman A.R. (2006). The role of the STAS domain in the function and biogenesis of a sulfate transporter as probed by random mutagenesis. J. Biol. Chem. 281: 22964-22973. Cerca con Google

Smith F.W., Ealing P.M., Hawkesford M.J., Clarkson D.T. (1995). Plant members of a family of sulfate transporters reveal functional subtypes. Proc. Natl. Acad. Sci. USA 92: 9373-9377. Cerca con Google

Song L., Seeger A., Santos-Sacchi J. (2005). On membrane motor activity and chloride flux in the outer hair cell: lessons learned from the environmental toxin tributyltin. Biophys. J. 88: 2350-2362. Cerca con Google

Tang H.Y., Xia A., Oghalai J.S., Pereira F.A., Alford R.L. (2005). High frequency of the IVS2-2A>G DNA sequence variation in SLC26A5, encoding the cochlear motor protein prestin, precludes its involvement in hereditary hearing loss. BMC Med. Genet. 6: 30. Cerca con Google

Taylor J.P, Metcalfe R.A., Watson P.F., Weetman A.P., Trembath R.C. (2002). Mutations of the PDS gene, encoding pendrin, are associated with protein mislocalization and loss of iodide efflux: implications for thyroid dysfunction in Pendred syndrome. J. Clin. Endocrinol. Metab. 87: 1778-1784. Cerca con Google

Teek R., Oitmaa E., Kruustük K., Zordania R., Joost K., Raukas E., Tõnisson N., Gardner P., Schrijver I., Kull M., Ounap K. (2009). Splice variant IVS2-2A>G in the SLC26A5 (Prestin) gene in five Estonian families with hearing loss. Int. J. Pediatr. Otorhinolaryngol. 73: 103-107. Cerca con Google

Toth T., Deak L., Fazakas F., Zheng J., Muszbek L., Sziklai I. (2007). A new mutation in the human pres gene and its effect on prestin function. Int. J. Mol. Med. 20: 545-550. Cerca con Google

van de Kamp M., Pizzinini E., Vos A., van der Lende T.R., Schuurs T.A., Newbert R.W., Turner G., Konings W.N., Driessen A.J. (1999). Sulfate transport in Penicillium chrysogenum: cloning and characterization of the sutA and sutB genes. J. Bacteriol. 181: 7228-7234. Cerca con Google

Waterhouse A.M., Procter J.B., Martin D.M.A., Clamp M. Barton G. J. (2009) Jalview Version 2 - a multiple sequence alignment editor and analysis workbench. Bioinformatics 25: 1189-1191. Cerca con Google

Yoon J.S., Park H.J., Yoo S.Y., Namkung W., Jo M.J., Koo S.K., Park H.Y., Lee W.S., Kim K.H., Lee M.G. (2008). Heterogeneity in the processing defect of SLC26A4 mutants. J Med Genet. 45: 411-419. Cerca con Google

Zheng J., Du G.G., Anderson C.T., Keller J.P., Orem A., Dallos P., Cheatham M.A. (2006). Analysis of the oligomeric structure of the motor protein prestin. J. Biol. Chem. 281: 19916-19924. Cerca con Google

Zheng J., Du G.G., Matsuda K., Orem A., Aguinaga S., Levente D., Navarrete E., Madison L.D., Dallos P. (2005). The C-terminus of prestin influences nonlinear capacitance and plasma membrane targeting. J. Cell Sci. 118: 2987-2996. Cerca con Google

Zheng J., Long K.B., Shen W., Madison L.D., Dallos P. (2001). Prestin topology: localization of protein epitopes in relation to the plasma membrane. Neuroreport. 12: 1929-1935. Cerca con Google

Zheng J., Shen W., He D.Z., Long K.B., Madison L.D., Dallos P. (2000). Prestin is the motor protein of cochlear outer hair cells. Nature 405:149-155. Cerca con Google

Zolotarev A.S., Unnikrishnan M., Shmukler B.E., Clark J.S., Vandorpe D.H., Grigorieff N, Rubin E.J., Alper S.L. (2008). Increased sulfate uptake by E. coli overexpressing the SLC26–related SulP protein Rv1739c from Mycobacterium tuberculosis. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 149: 255-266. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record