Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Silletti, Alberto (2009) Dynamic shape detection and analysis of deformable structures in biomedical imaging. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF - Versione accettata
34Mb

Abstract (inglese)

The goal of this work is to discuss a three-step-approach to detect, analyze and synthesize a shape given an image, or a sequence of images. Chapter 1 discusses what is a shape. The concept of shape is fuzzy: before delving with more complex topics we need at least to agree on what we call “shape”. Chapter 2 briefly present the biological case studies we used along the work.
Chapter 3 deals with the single shape detection problem, the easiest problem one could face: given a single image with a single shape of interest, how do we design an algorithm to detect it? Chapter 4 extends the single shape detection approach to reticular shapes, a kind of shapes common in biological images. Chapter 5 extends the single shape detection approach (and its reticular analogous) to a sequence of images, exploiting the temporal coherence.
Chapter 6 analyzes the shape, developing new metrics and measures, while chapter 7 closes the work dealing with the synthesis step.
A special section is chapter 8, which covers the Toolbox we developed to detect shapes. The Toolbox is meant to provide functions reusable on a plethora of problems.
Conclusions and future works are discussed in chapter 9.

Abstract (italiano)

The goal of this work is to discuss a three-step-approach to detect, analyze and synthesize a shape given an image, or a sequence of images. Chapter 1 discusses what is a shape. The concept of shape is fuzzy: before delving with more complex topics we need at least to agree on what we call “shape”. Chapter 2 briefly present the biological case studies we used along the work.
Chapter 3 deals with the single shape detection problem, the easiest problem one could face: given a single image with a single shape of interest, how do we design an algorithm to detect it? Chapter 4 extends the single shape detection approach to reticular shapes, a kind of shapes common in biological images. Chapter 5 extends the single shape detection approach (and its reticular analogous) to a sequence of images, exploiting the temporal coherence.
Chapter 6 analyzes the shape, developing new metrics and measures, while chapter 7 closes the work dealing with the synthesis step.
A special section is chapter 8, which covers the Toolbox we developed to detect shapes. The Toolbox is meant to provide functions reusable on a plethora of problems.
Conclusions and future works are discussed in chapter 9.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Cenedese , Angelo
Dottorato (corsi e scuole):Ciclo 22 > Scuole per il 22simo ciclo > INGEGNERIA DELL'INFORMAZIONE > SCIENZA E TECNOLOGIA DELL'INFORMAZIONE
Data di deposito della tesi:NON SPECIFICATO
Anno di Pubblicazione:21 Dicembre 2009
Parole chiave (italiano / inglese):Shape detection, image analysis, computer vision, drosophila
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-INF/05 Sistemi di elaborazione delle informazioni
Area 09 - Ingegneria industriale e dell'informazione > ING-INF/04 Automatica
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria dell'Informazione
Codice ID:2530
Depositato il:21 Set 2010 12:54
Simple Metadata
Full Metadata
EndNote Format

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record