Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Zamboni, Andrea (2010) SUPPLY CHAIN MODELLING FOR THE ECONOMIC AND LIFE CYCLE ANALYSIS AND OPTIMISATION OF BIOETHANOL FIRST-GENERATION PRODUCTION PROCESSES. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF (tesi completa) - Versione sottomessa
1973Kb

Abstract (inglese)

In the last decade, we have been assisting to a global redefinition of the world energy system. Firstly motivated by severe concerns about environmental health and global warming, it found its real impetus in a more complex question. Although commonly considered as tightly related to oil depletion, it is rather a multifaceted interconnection of different issues, which could be generally labelled as the supply security question, and of which the oil shortage represents a contributing part. Thus, asking when oil runs out is not the only question and definitely not the main concern related to energy supply. As wisely stated by the Sheikh Ahmad Zaki Yamani about thirty years ago, “the Stone Age did not end for lack of stone, and the Oil Age will end long before the world runs out of oil”. In our opinion, this intriguing prediction represents the hot-spot of the question: how vital is it for policy makers to accelerate the end of the oil age and how that might be achieved?
After a fierce debate centred on the most viable way to manage the transition, renewable energy sources were eventually indicated as a realistic alternative to the conventional fossil sources. In particular, biomass conversion into biofuels was promoted as the best suitable option within the transport sector. At the governmental level, ambitious policies were conceived to drive the transition toward the new frontier. For example, the EU commission was determinant in pushing its Members through the imposition of minimum blending quotas of biomass-based fuels within the conventional fossil-derived ones. The latest EU guidelines also fixed new environmental standards setting at 35% the minimum Greenhouse Gas (GHG) emissions savings to be performed by biofuels with respect to the fossil-based ones they are meant to substitute.
Among the possible choices to reach the targets, bioethanol is currently acknowledged as the most appropriate solution for a short-term gasoline substitution, although during its history has known some discredits and oppositions by both the public opinion and part of the academic community. The core of the question stands in weather the ethanol production is actually capable to give the right answer in terms of energy supply security (as global warming mitigation and market penetration).
Therefore, decision makers should be driven by specific tools capable of steering the design of the novel biofuels systems considering production costs and environmental impact minimisation (or profits and financial sustainability maximisation) as undisputed paradigms. They should also adopt wider approaches which go beyond the limited company-centric view of the business and extends the scope of the analysis at the entire Supply Chain (SC).
Very limited work was found in literature addressing the use of quantitative methodologies for the strategic design of biofuels infrastructures. Therefore, the research project was thought to cover this lack of knowledge through the development an original methodology to embody the Supply Chain Management (SCM) tools application and mathematical programming within a biofuels SCs optimisation framework.
Accordingly, the aim of this Dissertation was to contribute in providing for modelling tools capable of steering the design of first generation bioethanol SCs through a full set of optimisation features. The work focused on the development of Mixed-Integer Linear Programming (MILP) models to assist the policy-making on biofuels industry at strategic and tactical level. The final objective was to deliver a suitable design and planning tool based on the approaches commonly applied to SC strategic design and planning under economic, financial and environmental criteria. Agricultural practice, biomass supplier allocation (domestic or foreign), production site location and capacity assignment, logistic distribution and transport characterisation were simultaneously taken into account within the same modelling framework. This also included different features for spatially explicit siting of supply networks nodes, capacity planning and a stochastic formulation was implemented to handle the effect of market uncertainty. Finally, with concerns to the environmental impact of cultivation practice a further aspect was deepened by assessing and minimising the global warming effect of fertiliser application in cropping biomass. The economics of the entire network was assessed by means of Supply Chain Analysis (SCA) techniques, whereas the environmental performance of the system was evaluated in terms of GHG emissions, by adopting a Well-to-Tank (WTT).
The emerging Italian corn-based ethanol was chosen as a demonstrative real world case study so as to assess the actual model capabilities in steering strategic policies on different interest level.

Abstract (italiano)

Gli ultimi due decenni sono stati caratterizzati da profondi cambiamenti negli equilibri economici e geopolitici mondiali. Uno dei motori di questa trasformazione è stata sicuramente la crisi del sistema di approvvigionamento energetico globale, di cui riscaldamento globale e carenza di petrolio sono solo due delle molteplici sfaccettature. Il cuore della questione può essere riassunto da una dichiarazione dello Sceicco Ahmad Zaki Yamani (all’epoca presidente dell’OPEC), il quale, circa trent’anni fa, asserì che “l’Era della pietra non finì per la mancanza di pietra, così come l’Era del petrolio finirà molto prima che il mondo esaurisca il petrolio”. La vera domanda, quindi, non è tanto quando il petrolio terminerà, ma in che termini agire nell’interpretare e guidare il profondo cambiamento in atto. Tutto ciò ha generato in tutto il mondo un acceso dibattito per stabilire quale fosse la via migliore per gestire la rivoluzione del settore energetico mondiale e individuare quelle risorse di energia rinnovabile in grado di rappresentare l’alternativa più plausibile al sistema di approvvigionamento tradizionale. Tra queste, l’utilizzo della biomassa per la produzione di combustibili liquidi è stata universalmente indicata come la miglior alternativa ai vettori fossili comunemente utilizzati nel settore dei trasporti.
Recentemente, la Commissione Europea ha assunto un ruolo determinante nell’incoraggiare gli Stati Membri all’adozione di programmi ambiziosi volti alla promozione dell’utilizzo di combustibili alternativi: questo si è tradotto in politiche di vario tipo, caratterizzate da un’immissione obbligatoria sul mercato di quote sempre maggiori di combustibili prodotti da biomassa. Standard europei ne regolano la qualità in modo da garantire il perseguimento degli obiettivi energetici e ambientali comunitari. In particolare, un requisito fondamentale è la capacità di riduzione delle emissioni del 35% rispetto alla produzione dello stesso quantitativo energetico di combustibile fossile che andranno a sostituire.
Tra le alternative possibili, il bioetanolo è generalmente considerato la soluzione più pratica e perseguibile (almeno in un’ottica di breve-medio periodo) per sostituire la benzina convenzionale. Nonostante alcuni evidenti vantaggi, vi sono, tuttavia, una serie di questioni di tipo economico, ambientale e di accettazione sociale che ne hanno sinora rallentato l’effettiva penetrazione nel mercato dei carburanti per autotrazione. Il nocciolo della questione è il dubbio se effettivamente il bioetanolo sia in grado di fornire la giusta risposta alle esigenze di sicurezza di approvvigionamento imposte dalla questione energetica. La risposta a questa questione impone l’adozione di strumenti quantitativi in grado di valutare le reali prestazioni del sistema di produzione. In particolare, questi strumenti dovrebbero essere pensati per fornire supporto tecnico a livello politico e manageriale per gestire e progettare i nuovi sistemi di produzione di biocombustibili. Tali strumenti richiedono l’adozione di un approccio più esteso al problema che sia quindi in grado di estendere l’analisi all’intera filiera produttiva (Supply Chain, SC). La ricerca bibliografica ha evidenziato evidenti lacune in materia di progettazione strategica di infrastrutture produttive per biocombustibili e, in particolare, in termini di metodologie quantitative per affrontare il problema.
Il progetto di ricerca discusso in questa Dissertazione ha avuto come obiettivo quello di coprire questa lacuna e sviluppare una metodologia originale per l’accoppiamento di gestione delle SC (Supply Chain Management, SCM) e programmazione matematica. Il lavoro si è focalizzato sulla definizione di modelli a variabili miste lineari e intere (Mixed-Integer Linear Programming, MILP) per l’analisi di sistemi produttivi per il bioetanolo di prima generazione, in grado di essere utilizzati come efficaci strumenti di supporto alle politiche decisionali in materia di biocombustibili. L’obiettivo finale è quello di realizzare uno strumento di progettazione e pianificazione industriale basato sui comuni approcci alla progettazione strategica di filiere produttive, secondo criteri di tipo economico, finanziario e ambientale. I modelli MILP sono stati sviluppati e utilizzati per descrivere e ottimizzare la gestione delle fasi di lavorazione agricola per la produzione di biomassa, la strategia di approvvigionamento della stessa (produzione autarchica o importazione), la locazione e le dimensioni dei siti di produzione (di biomassa e biocombustibile), la distribuzione logistica e la tipologia del sistema di trasporti. Inoltre, la costruzione dei modelli è stata basata su una georeferenziazione delle variabili di progetto. Una formulazione di tipo stocastico è stata incorporata per gestire l’effetto dell’incertezza delle condizioni di mercato sulle prestazioni finanziarie. Infine, è stato approfondito un aspetto relativo all’impatto ambientale delle fasi agricole della catena produttiva così da minimizzare le emissioni di gas serra derivanti dall’impiego di fertilizzanti azotati.
Gli aspetti economici dell’infrastruttura produttiva sono stati valutati mediante approcci di analisi della filiera di produzione (Supply Chain Analysis, SCA), mentre le prestazioni ambientali del ciclo produttivo sono state stimate attraverso un approccio di analisi del ciclo di vita (Life Cycle Analysis, LCA) di tipo Well-to-Tank (WTT). I modelli sviluppati sono stati applicati per studiare la possibile organizzazione della produzione di bioetanolo da mais in Nord Italia.
La struttura della Tesi esposta segue lo schema logico seguente.
Nel primo Capitolo sono presentate le basi bibliografiche del progetto di ricerca. Partendo dall’analisi delle problematiche principali che riguardano le recente crisi del sistema di approvvigionamento energetico globale, il lettore è accompagnato attraverso un percorso che porta alla descrizione delle principali soluzioni prospettate per risolvere il problema in un contesto più specifico, che è quello del settore dei trasporti. In particolare, la produzione di biocombustibili viene analizzata ponendo particolare attenzione al bilancio tra pro e contro emersi nel valutare le sue effettive potenzialità nel sostituire la produzione di combustibili tradizionali. Si passa poi ad un’analisi bibliografica focalizzata sulla produzione di bioetanolo mediante tecnologie di prima generazione, volta a porre in luce i principali problemi da affrontare al fine di realizzare gli obiettivi europei in materia di biocombustibili.
Il Capitolo 2 è dedicato alla descrizione dello stato dell’arte della programmazione matematica e a fornire una base teorica per la formulazione di modelli di ottimizzazione di SC. Sono qui presentati gli approcci algoritmici al SCM, dando un rilievo particolare alla formulazione matematica di modelli di tipo MILP e alla costruzione logica degli algoritmi di soluzione. Infine, sono approfondite alcune tecniche specifiche come la programmazione matematica multi-obiettivo (Multi-objective Mathematical Programming, MoMP) e l’ottimizzazione di tipo stocastico.
Il Capitolo 3 conclude la parte introduttiva della Dissertazione. In questo Capitolo, infatti, sono dichiarate le principali ipotesi relative al modo di affrontare sia la progettazione dei sistemi di biocombustibili, sia la costruzione dei modelli matematici per l’ottimizzazione degli stessi. Viene presentata una descrizione generale delle principali componenti della catena produttiva di bioetanolo e sono discussi i criteri di valutazione economica e ambientale dei nodi della filiera. Il riferimento è il caso reale considerato in questo studio, ovvero la produzione di bioetanolo da mais in Nord Italia.
Nel Capitolo 4 si affronta il primo problema di progettazione. Questo prevede lo sviluppo di un modello MILP stazionario e georeferenziato per la progettazione strategica di SC di bioetanolo secondo un criterio di minimizzazione dei costi operativi. Vengono descritti i principali problemi legati alla progettazione del sistema e la formulazione matematica proposta per il modello di ottimizzazione. Il modello costruito viene poi applicato all’analisi del caso studio reale descritto al Capitolo 3.
Il Capitolo 5 tratta lo sviluppo di modelli di ottimizzazione ambientale. Il modello MILP descritto nel Capitolo 4 è preso come base per l’implementazione di criteri di ottimizzazione ambientale considerati contemporaneamente a quelli di tipo economico attraverso tecniche MoMP. Sono prese in considerazione differenti soluzioni per lo sfruttamento dei sotto-prodotti del processo di produzione di bioetanolo come possibili alternative tecnologiche per l’abbattimento di costi ed emissioni.
Nel Capitolo 6 viene presentato un ulteriore sviluppo del modello al fine di renderlo adatto alla pianificazione degli investimenti a lungo termine e a gestire il rischio d’investimento dovuto all’incertezza delle condizioni di mercato. Si descrive, pertanto, lo sviluppo di un modello MILP di tipo dinamico e stocastico per l’analisi finanziaria e la riduzione del rischio d’investimento nella pianificazione della produzione di bioetanolo. L’implementazione al caso studio si focalizza sull’analisi delle dinamiche di mercato con riferimento ai costi d’acquisto della biomassa e ai prezzi di vendita di etanolo e sottoprodotti.
Il Capitolo 7 descrive lo sviluppo di un ulteriore modello matematico per il miglioramento delle prestazioni ambientali del sistema produttivo in esame, al fine di allinearne le performance agli standard europei in materia di emissioni di gas serra. Un modello di tipo MILP è concepito per l’ottimizzazione delle pratiche agricole (in particolare dell’utilizzo di fertilizzanti azotati) e delle tecnologie di sfruttamento dei sottoprodotti secondo criteri di tipo ambientale e finanziario. Il modello sviluppato è applicato per la massimizzazione del profitto e la minimizzazione delle emissioni di gas serra della produzione di etanolo da mais.
Il Capitolo 8 conclude la discussione della ricerca sviluppata con la presentazione dei principali risultati conseguiti e l’analisi di alcuni dei potenziali sviluppi futuri per proseguire la ricerca sull’argomento.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Bezzo, Fabrizio
Dottorato (corsi e scuole):Ciclo 22 > Scuole per il 22simo ciclo > INGEGNERIA INDUSTRIALE > INGEGNERIA CHIMICA
Data di deposito della tesi:NON SPECIFICATO
Anno di Pubblicazione:28 Gennaio 2010
Parole chiave (italiano / inglese):Supply Chain Optimisation, MILP Modelling, Strategic Design and Planning, Biofuels Systems, Bioethanol, GHG Emissions
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/25 Impianti chimici
Struttura di riferimento:Dipartimenti > Dipartimento di Principi e Impianti di Ingegneria Chimica "I. Sorgato"
Codice ID:2560
Depositato il:24 Set 2010 11:47
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Agra Informa (2009). Agra Informa website: www.agra-net.com. Vai! Cerca con Google

Allen, J.; M. Browne; A. Hunter; J. Boyd; H. Palmer (1998). Logistics management and costs of biomass fuel supply. International Journal of Physical Distribution and Logistics, 28, 463−477. Cerca con Google

Almansoori, A.; N. Shah (2006). Design and operation of a future hydrogen supply chain: Snapshot model. Chemical Engineering Research and Design, 84, 423–438. Cerca con Google

Almansoori, A.; N. Shah (2009). Design and operation of a future hydrogen supply chain: Multi-period model. International Journal of Hydrogen Energy, 34, 7883−7897. Cerca con Google

APAT (2006). APAT database: www.clc2000.sinanet.apat.it. Vai! Cerca con Google

Arora, S.; M. Wu; M. Wang (2008). Update of distillers grains displacement ratios for corn ethanol life-cycle analysis. Center for Transportation Research Energy System Division, Argonne National Laboratory, Chicago, USA. Cerca con Google

Aseeri, A.; M.J. Bagajewicz (2005). New measures and procedures to manage financial risk with applications to the planning of gas commercialization in Asia. Computers & Chemical Engineering, 28, 2791–2821. Cerca con Google

Association for the Study of Peak Oil (ASPO International): www.peakoil.net. Vai! Cerca con Google

Ausubel, J.H. (2000). Where is Energy Going? The Industrial Physicist, 16–19. Cerca con Google

Azapagic, A. (1999). Life cycle assessment and its application to process selection, design and optimisation. Chemical Engineering Journal, 73, 1–21. Cerca con Google

Azapagic, A.; S. Perdan (2000). Indicators of sustainable development for industry: A general framework. Process Safety and Environmental Protection, 78, 243–261. Cerca con Google

Bagajewicz, M. (2008). On the use of net present value in investment capacity planning models. Industrial & Engineering Chemistry Research, 47, 9413–9416. Cerca con Google

Balas, E. (1965). An additive algorithm for solving linear programs with zero-one variables. Operations Research, 13, 517−546. Cerca con Google

Beale, E.M.L. (1968). Mathematical Programming in Practice. Pitman: London, UK. Cerca con Google

Beamon, B. (1998). Supply chain design and analysis: Models and methods. International Journal of Production Economics, 55, 281–294. Cerca con Google

Benders, J.F. (1962). Partitioning procedures for solving mixed variables programming problems. Numerische Mathematik, 4, 238−252. Cerca con Google

Bernard, F.; A. Prieur (2007). Biofuel market and carbon modeling to analyze French biofuel policy. Energy Policy, 35, 5991–6002. Cerca con Google

Berry, P.M.; D.R. Kindred; N.D. Paveley (2008). Quantifying the effects of fungicides and disease esistance on greenhouse gas emissions associated with wheat production. Plant Pathology, 57, 1000–1008. Cerca con Google

Biegler, L.T.; I.E. Grossmann; A.W. Westerberg (1997). Systematic methods of chemical process design. Prentice Hall: New Jersey, USA. Cerca con Google

Birge, J. R.; F. Louveaux (1997). Introduction to Stochastic Programming. Springer-Verlag: New York, USA. Cerca con Google

Bisschop, J.; R. Entriken (1993). AIMMS The modelling system. Paragon Decision Technology: Haarlem, The Netherlands. Cerca con Google

Bose, S.; J.F. Pekny (2000). A model predictive framework for planning and scheduling problems: A case study of customer goods supply chain. Computers & Chemical Engineering, 24, 329–335. Cerca con Google

Brooke, A.; D. Kendrick; A. Meeraus; R. Raman (1998) GAMS Language Guide. GAMS Development Corporation: Washington, USA. Cerca con Google

Brown, G.; J. Wood; A. Estrin (2005). Bioethanol greenhouse gas calculator: Users’ guide. HGCA: London, UK. Cerca con Google

Bruglieri, M.; L. Liberti (2008). Optimal running and planning of a biomass-based energy production process. Energy Policy, 36, 2430−2438. Cerca con Google

Campbell, J.E.; D.B. Lobell; C.B. Field (2009). Great transportation Energy and GHG offsets from bioelectricity than ethanol. Science, 324, 1055−1057. Cerca con Google

Cano-Ruiz, J.; G. McRae (1998). Environmentally conscious chemical process design. Annual Review of Energy and the Environment, 23, 499–536. Cerca con Google

Caputo, A.C.; M. Palumbo; P.M. Pelagagge; F. Scacchia (2005). Economics of biomass energy utilization in combustion and gasification plants: effects of logistic variables. Biomass and Bioenergy, 28, 35−51. Cerca con Google

Cardona, C.A.; O.J. Sànchez (2007). Fuel ethanol production: Process design trends and integration opportunities. Bioresource Technology, 98, 2415–2457. Cerca con Google

Chambers, R.; R. Herendeen; J. Joyce; P. Penner (1979). Gasohol: does it or doesn’t it produce positive net energy? Science, 206, 790–795. Cerca con Google

Chankong, V.; Y.Y. Haimes (1983). Multiobjective Decision Making: Theory and Methodology. North- Holland: New York, USA. Cerca con Google

Chen, C.; W. Lee (2004). Multi-objective optimization of multi-echelon supply chain networks with uncertain product demands and prices. Computers & Chemical Engineering, 28, 1131–1144. Cerca con Google

Cheng, L.; M.A. Duran (2004). Logistics for world-wide crude oil transportation using discrete event simulation and optimal control. Computers & Chemical Engineering, 28, 897–911. Cerca con Google

Cheng, L.; E. Subrahmanian; A.W. Westerberg (2005). Multiobjective decision processes under uncertainty: Applications, problem formulations, and solution strategies. Industrial & Engineering Chemistry Research, 44, 2405−2415. Cerca con Google

Cohon, J.L. (1978). Multiobjective Programming and Planning. Academic Press: New York, USA. Cerca con Google

Collette, Y.; P. Siarry (2003). Multiobjective Opimisation: Principles and Case Studies. Springer Verlag: Berlin-Heidelberg, Germany. Cerca con Google

CONCAWE, EUCAR & JRC (2003). Well-to-Wheels analysis of future automotive fuels and powertrains in the European context: WELL-TO-TANK Report. Version 2c. European Commission: Brussels. Cerca con Google

CONCAWE, EUCAR & JRC (2007). Well-to-Wheels analysis of future automotive fuels and powertrains in the European context: WELL-TO-TANK Report. Version 2c. European Commission: Brussels. Cerca con Google

Cooper, M.C.; D.M. Lambert; J.D. Pagh (1997). Supply chain management: More than just a name for logistics The International Journal of Logistics Management, 8, 1−14. Cerca con Google

Crowder, H.P.; E.L. Johnson; M.W. Padberg (1983). Solving large-scale zero-one linear programming problems. Operations Research, 31, 803−834. Cerca con Google

CRPV (2007). CRPV database: www.crpv.it Vai! Cerca con Google

Crutzen, P.J. (1970). The influence of nitrogen oxides on the atmospheric ozone content. Quarterly Journal of the Royal Meteorological Society, 96, 320–325. Cerca con Google

Crutzen, P.J.; A.R. Mosier; K.A. Smith; W. Winiwarter (2008). N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmospheric Chemistry and Physics, 8, 389–395 Cerca con Google

Dakin, R.J. (1965). A tree search algorithm for mixed integer programming problems. Computer Journal, 8, 250−255. Cerca con Google

Dal Mas, M.; A. Zamboni; F. Bezzo (2009a). Bioethanol production in Northern Italy: supply chain design and capacity planning under uncertainty. 17th European Biomass Conference & Exhibition – From Reasearch to Industry and Markets, 29 June – 3 July. Hamburg, Germany. Cerca con Google

Dal Mas, M.; S. Giarola; A. Zamboni; F. Bezzo (2009b). Strategic design and investment capacity planning of the bioethanol supply chain under price uncertainty. Submitted to: Biomass & Bioenergy. Cerca con Google

Dale, B. (2008). Biofuels: Thinking clearly about the issues. Journal of Agricultural and Food Chemistry, 56, 3885–3891. Cerca con Google

Data 360: www.data360.org. Vai! Cerca con Google

Davis, S.C.; K.J. Anderson-Teixeira; E.H. DeLucia (2009). Life-cycle analysis and the ecology of biofuels. Trends in Plant Science, 14, 140–146. Cerca con Google

De Mol, R.M.; M.A.H. Jogems; P. Van Beek; J.K. Gigler (1997). Simulation and optimization of the logistics of biomass fuel collection. Netherlands Journal of Agricultural Science, 45, 219 −228. Cerca con Google

DEFRA (2008). Guidelines to Defra’s GHG conversion factors: Methodology paper for transport emission factors. Department for Environment, Food and Rural Affairs: London, UK. Cerca con Google

Delucchi, M.A. (2006). Lifecycle analyses of biofuel. Draft report. University of California: Davis, USA. Cerca con Google

Demirbas, A. (2008). Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energy Conversion and Management, 49, 2106–2116. Cerca con Google

Demirbas, M.F. (2009a). Biorefineries for biofuel upgrading: A critical review. Applied Energy, 86, S151–S161. Cerca con Google

Demirbas, A. (2009b). Inexpensive oil and fats feedstocks for production of biodiesel. Energy Education Science and Technology Part A, 23, 1–13. Cerca con Google

Demirbas A. (2009c). Political, economic and environmental impacts of biofuels: A review. Applied Energy, 86, S108–S117. Cerca con Google

Dempster, M.A.H.; N.H. Pedrón; E.A. Medova; J.E. Scott; A. Sembos (2000). Planning logistics operations in the oil industry. Journal of the Operational Research Society, 51, 1271–1288. Cerca con Google

Douglas, J.M. (1988). Conceptual design of chemical processes. McGraw-Hill: New York, USA. Cerca con Google

Dua, V; E.N. Pistikopoulos (2000). An algorithm for the solution of multi-parametric mixed integer linear programming problems. Annals of Operations Research, 99, 123–139. Cerca con Google

Dunnett, A.; C.S. Adjiman; N. Shah (2007). Biomass to heat supply chains: Applications of process optimization. Process Safety and Environmental Protection, 85, 419–429. Cerca con Google

Dunnett, A.; C.S. Adjiman; N. Shah (2008). A spatially explicit whole-system model of the lignocellulosic bioethanol supply chain: An assessment of decentralised processing potential. Biotechnology for Biofuels, 1, 13–30. Cerca con Google

Eaves, J.; S. Eaves (2007). Renewable corn-ethanol and energy security. Energy Policy, 35, 5958−5963. Cerca con Google

EEA (2009). EEA Signals 2009: Key environmental issues facing Europe. European Environment Agency: Copenhagen, Denmark. Cerca con Google

Ehrgott, M.; D.M. Ryan (2002). Constructing robust crew schedules with bicriteria optimization. Journal of Multi-Criteria Decision Analysis, 11, 139−150. Cerca con Google

EIA (2003). Alternatives to traditional transportation fuels 2000. Energy Information Administration: Washington, USA. Cerca con Google

EIA (2009). International Energy Outlook 2009. Energy Information Administration: Washington, USA. Cerca con Google

EME (2003). Greenhouse gas emission factor review: Final technical memorandum. URS Corporation - Edison Mission Energy: Irvine, USA. Cerca con Google

European Bioethanol Fuel Association. http://www.ebio.org/statistics.php. Vai! Cerca con Google

European Commission (EC, 2002). Towards a European strategy for the security of energy supply. Communication from the European Commission. Brussels. Cerca con Google

European Commission (EC, 2003). Directive 2003/30/EC of the European Parliament and of the Council of 8 May 2003 on the promotion of the use of biofuels and other renewable fuels for transport. Official Journal of the European Parliament, Brussels. Cerca con Google

European Commission (EC, 2004). The share of renewable energy in the UE. Communication from the European Commission. Brussels. Cerca con Google

European Commission (EC, 2005). Biomass action plan. Communication from the European Commission. Brussels. Cerca con Google

European Commission (EC, 2007). Presidency Conclusions OR.EN. 7224/07 of the European Parliament and of the Council. Official Journal of the European Parliament. Brussels. Cerca con Google

European Commission (EC, 2009). Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. Official Journal of the European Parliament, Brussels. Cerca con Google

Farrell, A.E.; R.J. Plevin; T.T. Turner; A.D. Jones; M. O’Hare; D.M. Kammen (2006). Ethanol can contribute to energy and environmental goals. Science, 311, 506–508. Cerca con Google

Fourer, R.; D.M. Gay; B.W. Kernighan (1992). AMPL: A Modelling Language for Mathematical Programming. Duxbury Press: Belmont, USA. Cerca con Google

Franceschin, G.; M. Sudiro; A. Zamboni; F. Bezzo; A. Bertucco (2007a). Energy and economic assessment of bioethanol production by a dry milling process. AIDIC Conference Series Vol.8, 141–150. Cerca con Google

Franceschin, G.; M. Sudiro; A. Zamboni; F. Bezzo; A. Bertucco (2007b). Energy and economic assessment of bioethanol production by dry milling process. In: Proceedings ICheap-8, Ischia, Italy, 647–652. Cerca con Google

Franceschin, G.; A. Zamboni; F. Bezzo; A. Bertucco (2008). Ethanol from corn: A technical and economical assessment based on different scenarios. Chemical Engineering Research and Design, 86, 488–498. Cerca con Google

Frascarelli, A. (2008). I prezzi dei cereali in Italia. Prezzi agricoli ed emergenza alimentare: cause, effetti, implicazioni per le politiche. In: Workshop del Gruppo 2013 “Forum internazionale dell’agricoltura e dell’ambiente”. 8 luglio, Roma, Italia. Cerca con Google

Gallagher, P.W.; H. Brubaker; H. Shapouri (2005). Plant size: Capital cost relationships in the dry mill ethanol industry. Biomass Bioenergy, 28, 565–571. Cerca con Google

Geoffrion, A.M. (1969). An improved implicit enumeration approach for integer programming. Operations Research, 17, 437−454. Cerca con Google

Georgiadis, M.C.; E.N. Pistikopoulos (1999). An integrated framework for robust and flexible process systems. Industrial & Engineering Chemistry Research, 38, 133–143. Cerca con Google

Gnansounou, E.; A. Dauriat; J. Villegas; L. Panichelli (2009). Life cycle assessment of biofuels: Energy and greenhouse gas balances. Bioresource Technology, doi:10.1016/j.biortech.2009.05.067. Cerca con Google

Goldemberg, J.; T.B. Johansson; A.K.N. Reddy; R.H. Williams (2001). Energy for the New Millennium. Ambio, 30, 330–337. Cerca con Google

Gomory, R.E. (1958). Outline of an algorithm for integer solutions to linear programs. Bulletin of the American Mathematical Society, 64, 275−278. Cerca con Google

Graboski, M.S. (2002). Fossil energy use in the manufacture of corn ethanol. National Corn Growers Association: Chesterfield, USA. Cerca con Google

Granda, C.B.; L. Zhu; M.T. Holtzapple (2007). Sustainable liquid biofuels and their environmental impact. Environmental Progress, 26, 233–250. Cerca con Google

Granot, F.; P.L. Hammer (1972). On the use of Boolean functions in 0-1 programming. Methods of Operations Research, 12, 154–184. Cerca con Google

Grignani, C.; L. Zavattaro (2000). A survey on actual agricultural practices and their effects on the mineral nitrogen concentration of the soil solution. European Journal of Agronomy, 12, 251–268. Cerca con Google

Grignani, C.; L. Zavattaro; D. Sacco; S. Monaco (2007). Production, nitrogen and carbon balance of maize-based forage systems. European Journal of Agronomy, 26, 442–453. Cerca con Google

Grossmann, I.E. (2004). Challenges in the new millennium: product discovery and design, enterprise and supply chain optimisation, global life cycle assessment. Computers and Chemical Engineering, 29, 29−39. Cerca con Google

Grossmann, I.E. (2005a). Advances in logic-based optimization approaches to process integration and supply chain management. Chapter 11 in Chemical Engineering: Trends and Developments (eds. M.A. Galan and E. Del Valle). John Wiley & Sons Ltd: West Sussex, UK. Cerca con Google

Grossmann, I.E. (2005b). Enterprise-wide Optimization: A new frontier in Process Systems Engineering. AIChE Journal, 51, 1846–1857. Cerca con Google

GSE (2009). GSE database: http://www.gse.it. Vai! Cerca con Google

Guerini, G.; P. Maffeis; L. Allievi; C. Gigliotti (2006). Integrated waste management in a zone of Northern Italy: Compost production and use, and analytical control of compost, soil and crop. Journal of Environmental Science and Health, Part B, 41, 1203–1219. Cerca con Google

Guillén, G.; F.D. Mele; M.J. Bagajewicz; A. Espuña; L. Puigjaner (2005). Multiobjective supply chain design under uncertainty. Chemical Engineering Science, 60, 1535–1553. Cerca con Google

Guillén-Gosálbez, G.; I.E. Grossmann (2009). Optimal design and planning of sustainable chemical supply chains under uncertainty. AIChE Journal, 55, 99–121. Cerca con Google

Gupta, A.; C.D. Maranas; C.M. McDonald (2000). Midterm supply chain planning under uncertainty: Customer demand satisfaction and inventory management. Computers & Chemical Engineering, 24, 2613–2621. Cerca con Google

Gupta, A.; C.D. Maranas (2003). Managing demand uncertainty in supply chain planning. Computers & Chemical Engineering, 27, 1219–1227. Cerca con Google

Hamacher, H.W.; C.R. Pedersen; S. Ruzika (2007). Finding representative systems for discrete bicriterion optimization problems. Operations Research Letters, 35, 336−344. Cerca con Google

Hamelinck, C.N.; R.A.A. Suurs; A.P.C. Faaij (2005). International bioenergy transport costs and energy balance. Biomass and Bioenergy, 29, 114−134. Cerca con Google

Hammer, P.L.; S. Rudeanu (1968). Boolean Methods in Operations Research and Related Areas. Springer Verlag: Berlin-Heidelberg, Germany. Cerca con Google

Hammer, P.L.; U.N. Peled (1972). On the maximisation of a pseudo-Boolean function. Journal of the Association for Computing Machinery, 19, 262−282. Cerca con Google

Hammerschlag, R. (2006). Ethanol’s energy return on investment: a survey of the literature 1990–present. Environmental Science Technology, 40, 1744–1750. Cerca con Google

Henning, G.P. (2009). Production Scheduling in the Process Industries: Current trends, emerging challenges and opportunities. Plenary lecture 6 at: 10th International Symposium on Process Systems Engineering - PSE2009. August 16-20 2009, Salvador, Bahia, Brazil. Cerca con Google

Hettinga, W.G.; H.M. Junginger; S.C. Dekker; M. Hoogwijk; A.J. McAloon; K.B. Hicks (2009). Understanding the reductions in US corn ethanol production costs: An experience curve approach. Energy Policy, 37, 190–203. Cerca con Google

Hugo, A.; E.N. Pistikopoulos (2005). Environmentally conscious long-range planning and design of supply chain networks. Journal of Cleaner Production, 13, 1471–1491. Cerca con Google

Ibrahim, S.A.; H. Kandil (2007). Growth, yield and chemical constituents of corn (Zea Maize L.) as affected by nitrogen and phosphors fertilization under different irrigation intervals. Journal of Applied Sciences Research, 3, 11121120. Cerca con Google

IEA (2009). IEA Scoreboard 2009: 35 Key Energy Trends over 35 Years. International Energy Agency: Paris, France. Cerca con Google

INDIS (2007). La filiera dei carburanti per autotrazione: Un’analisi. Istituto Nazionale Distribuzione e Servizi: Roma, Italy. Cerca con Google

IPCC (2001). Climate change 2001: The scientific basis; Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K., Johnson, C. A., Eds.; Cambridge University Press: Camrbidge, UK. Cerca con Google

IPCC (2006). IPCC guidelines for national greenhouse gas inventories. Prepared by the national greenhouse gas inventories programme; Eggleston, S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds; IGES: Japan. Cerca con Google

ISO (1997). ISO 14040: Environmental management - Life cycle assessment - Principles and framework. International Standards Organisation, Geneva, Switzerland. Cerca con Google

ISTAT (2006). ISTAT database: www.istat.it. Vai! Cerca con Google

ISTAT (2007). ISTAT database: www.istat.it. Vai! Cerca con Google

Italian Government (2007). Legge Finanziaria 2008, L. 24.12.2007 n° 244. Cerca con Google

Italian Government (2008). MSE database: dgerm.sviluppoeconomico.gov.it. Cerca con Google

Iyer, R.R.; I.E. Grossmann (1998). A bilevel decomposition algorithm for long-range planning of process networks. Industrial & Engineering Chemistry Research, 37, 474−481. Cerca con Google

Jacques, K.A.; T.P. Lyons; D.R. Kelsall (2003). The Alcohol Textbook 4th Edition: A reference for the beverage, fuel and industrial alcohol industries. Nottingham University Press: Nottingham, UK. Cerca con Google

Kallrath, J. (2000). Mixed integer optimisation in the chemical process industry: Experience, potential and future perspectives. Chemical Engineering Research and Design, 78, 809–822. Cerca con Google

Karuppiah, R.; A. Peschel; I.E. Grossmann; M. Martín; W. Martinson; L. Zullo (2008). Energy optimization for the design of corn-based ethanol plants. AIChE Journal, 54, 1499−1525. Cerca con Google

Kim, S.; B.E. Dale (2005a). Environmental aspects of ethanol derived from no-tilled corn grain: nonrenewable energy consumption and greenhouse gas emissions. Biomass Bioenergy, 28, 475−489. Cerca con Google

Kim, S.; B.E. Dale (2005b). Life cycle assessment of various cropping systems utilized for producing biofuels: Bioethanol and biodiesel. Biomass Bioenergy, 29, 426–439. Cerca con Google

Kim, S.; B.E. Dale (2008). Life cycle assessment of fuel ethanol derived from corn grain via dry milling. Bioresource Technology, 99, 5250–5260. Cerca con Google

Kindred, D.R.; T.M.O. Verhoeven; R.M. Weightman; J.S. Swanston; R.C. Agu; J.M. Brosnan; R. Sylvester-Bradley (2008). Effects of variety and fertiliser nitrogen on alcohol yield, grain yield, starch and protein content, and protein composition of winter wheat. Journal of Cereal Science, 48, 46–57. Cerca con Google

Knight P. (2006). Sugar and ethanol in Brazil and South America. International Sugar Journal, 108, 472−478. Cerca con Google

Kong, M.T. (2002). Downstream oil products supply chain optimization. PhD ‘Thesis, University of London, London. Cerca con Google

Kouvelis, P.; M. Rosenblatt (2000). A mathematical programming model for global supply chain management: Conceptual approach and managerial insights. Supply chain management: Models, applications and research directions. Chapter 10 in Applied Optimization (vol. 62). Springer Verlag: Berlin-Heidelberg, Germany. Cerca con Google

Kovarik, B. (1998). Henry Ford, Charles F. Kettering and the Fuel of the Future. Automotive History Review, 32, 7−27. Cerca con Google

Kwiatkowski, J.R.; A.J. McAloon; F. Taylor; D.B. Johnston (2006). Modelling the process and costs of the production of fuel ethanol by the corn dry-grind process. Industrial Crops and Products, 23, 288–296. Cerca con Google

Lababidi, H.M.S.; M.A. Ahmed; I.M. Alatiqi; A.F. Al-Enzi (2004). Optimizing the supply chain of a petrochemical company under uncertain operating and economic conditions. Industrial and Engineering Chemistry Research, 43, 63–73. Cerca con Google

Land, A.H.; A.G. Doig (1960). An automatic method for solving discrete programming problems. Econometrica, 28, 497−520. Cerca con Google

Laumanns, M.; L. Thiele; E. Zitzler (2006). An efficient, adaptive parameter variation scheme for metaheuristics based on the epsilon-constraint method. European Journal of Operational Research, 169, 932−942. Cerca con Google

Lee, H.L.; C. Billington (1993). Material management in decentralized supply chains. Operations Research, 41, 835–847. Cerca con Google

Li, Z.K.; M. Ierapetritou (2008). Process scheduling under uncertainty: Review and challenges. Computers & Chemical Engineering, 32, 715−727. Cerca con Google

Li, Z.; M.G. Ierapetritou (2009). Integrated production planning and scheduling using a decomposition framework. Chemical Engineering Science, 64, 3585−3597. Cerca con Google

Liu, M.L.; N,V. Sahinidis (1996). Optimization in process planning under uncertainty. Industrial & Engineering Chemistry Research, 35, 4154−4165 Cerca con Google

Locatelli, L. (2007). Analisi LCA (Life Cycle Assessment) della produzione di bioetanolo. MS Thesis. University of Padova: Padova, Italy. Cerca con Google

Londo, M.; S. Lensink; A. Wakker; G. Fischer; S. Prieler; H. van Velthuizen; M. de Wit; A. Faaij; M. Junginger; G. Berndes; J. Hansson; A. Egeskog; H. Duer; J. Lundbaek; G. Wisniewski; A. Kupczyk; K. Könighofer (2009). The REFUEL EU road map for biofuels in transport: Application of the project’s tools to some short-term policy issues. Biomass and Bioenergy; doi:10.1016/j.biombioe.2009.07.005. Cerca con Google

Lorenz, D.; D. Morris (1995). How much energy does it take to make a gallon of ethanol? Institute for Local Self-Reliance: Washington, USA. Cerca con Google

Lummus, R. (1999). Defining supply chain management: A historical perspective and practical guidelines. Industrial Management and Data Systems, 99, 11−17. Cerca con Google

Malça, J.; F. Freire (2006). Renewability and life-cycle energy efficiency of bioethanol and bio-ethyl tertiary butyl ether (bioETBE): assessing the implications of allocation. Energy, 31, 3362–3380. Cerca con Google

Marchetti, R.; G. Ponzoni; P. Spallacci (2004). Simulating nitrogen dynamics in agricultural soils fertilized with pig slurry and urea. Journal of Environmental Quality, 33, 1217–1229. Cerca con Google

Marland, G.; A.F. Turhollow (1991). CO2 emissions from the production and combustion of fuel ethanol from corn. Energy, 16, 1307–1316. Cerca con Google

Mavrotas, G.; D. Diakoulaki; K. Florios; P. Georgiou (2008).. A mathematical programming framework for energy planning in services’ sector buildings under uncertainty in load demand: The case of a hospital in Athens. Energy Policy, 36, 2415–2429. Cerca con Google

Mavrotas, G. (2009). Effective implementation of the ε-constraint method in multi-objective mathematical programming problems. Applied Mathematics and Computation, doi: 10.1016/j.amc.2009.03.037 Cerca con Google

Miettinen, K. (1999). Nonlinear Multiobjective Optimization. Kluwer Academic Publishers: Dordrecht, Netherlands. Cerca con Google

Morey, R.V.; D.G. Tiffany; D.L. Hatfield (2006). Biomass for electricity and process heat at ethanol plants. Applied Engineering in Agriculture, 22, 723−728. Cerca con Google

Morrow, W.R.; W.M. Griffin; H.S. Matthews (2006). Modelling switchgrass derived cellulosic ethanol distribution in the United States. Environmental Science & Technology, 40, 2877–2886. Cerca con Google

Nguyen, M.H.; R.G.H. Prince (1996). A simple rule for bioenergy conversion plant size optimisation: Bioethanol from sugar cane and sweet sorghum. Biomass and Bioenergy, 10, 361−365. Cerca con Google

Oliver, R.; M. Webber (1982). Supply Chain Management: Logistics catches up with Strategy. In: Booz, Allen & Hamilton: Outlook. Cerca con Google

Papageorgiou, L.G. (2009). Supply chain optimization for the process industries: Advances and opportunities. Computers & Chemical Engineering, 33, 1931−1938. Cerca con Google

Papalexandri, K.; T. Dimkou (1998). A parametric mixed-integer optimization algorithm for multi-objective engineering problems involving discrete decisions. Industrial & Engineering Chemistry Research, 37, 1866–1882. Cerca con Google

Patzek, T.W. (2006). Energy returns on ethanol production. Science, 312,1747–1747. Cerca con Google

Perea-López, E.; I.E. Grossmann; B.E. Ydstie (2001). Dynamic modelling and decentralized control of supply chain. Industrial and Engineering Chemistry Research, 40, 3369–3383. Cerca con Google

Persson, T.; A. Garcia y Garcia; J. Paz; J. Jones; G. Hoogenboom (2009). Maize ethanol feedstock production and net energy value as affected by climate variability and crop management practices. Agricultural Systems, 100, 11–21. Cerca con Google

Peters, M.S.; K.D. Timmerhaus; R.E. West (2003). Plant design and economics for chemical engineers. McGraw-Hill: New York, USA. Cerca con Google

Petrou, E.C.; C.P. Pappis (2009). Biofuels: A survey on pros and cons. Energy & Fuels, 23, Cerca con Google

1055–1066. Cerca con Google

Petrovic, D.; R. Roy; R. Petrovic (1999). Supply chain modelling using fuzzy sets. International Journal of Production Economics, 59, 443–453. Cerca con Google

Piccolo, C.; F. Bezzo (2009). A techno-economic comparison between two technologies for bioethanol production from lignocellulose. Biomass and Bioenergy, 33, 478−491. Cerca con Google

Pimentel, D.; T. Patzek (2005). Ethanol production using corn, switchgrass, and wood; biodiesel production using soybean and sunflower. Natural Resources Research, 14, 65−76. Cerca con Google

Pistikopoulos, E.N.; C.S. Adjiman (2001). Advanced Process Synthesis-Course Notes. Imperial College London, UK. Cerca con Google

Pradhan, A.; D.S. Shrestha; J. Van Gerpen; J. Duffield (2008). The energy balance of soybean oil biodiesel production: a review of past studies. Transactions of the ASABE, 51, 185–194. Cerca con Google

Pre´ Consultants (2000). The Eco-indicator 99, A damage oriented method for life cycle impact assessment: Methodology report and manual for designers. 2nd ed. Amersfoort, Netherlands. Cerca con Google

Regalbuto, J. (2009). Next generation hydrocarbon biorefineries. In: 7th International Conference on FOCAPD: Design for Energy and the environment. June 7-12 2009, Breckenridge, Colorado, USA. Cerca con Google

Reijnders, L; M.A.J. Huijbregts (2007). Life cycle greenhouse gas emissions, fossil fuel demand and solar energy conversion efficiency in European bioethanol production for automotive purposes, Journal of Cleaner Production, 15, 1806−1812. Cerca con Google

Reister, D.B. (1987). The link between energy and GDP in developing countries, Energy, 12, 427–433. Cerca con Google

Rickeard, D.J.; G. Punter; J.F. Larivé; R. Edwards; N.D. Mortimer; R. Horne; A. Bauen; J. Woods (2004). WTW evaluation for production of ethanol from wheat. Low Carbon Vehicle Partnership (LCVP): London, UK. Cerca con Google

Robertson, G.P.; V.H. Dale; O.C. Doering; S.P. Hamburg; J.M. Melillo; M.M. Wander; W.J. Parton; P.R. Adler; J.N. Barney; R.M. Cruse; C.S. Duke; P.M. Fearnside; R.F. Follett; H.K. Gibbs; J. Goldemberg; D.J. Mladenoff; D. Ojima; M.W. Palmer; A. Sharpley; L. Wallace; K.C. Weathers; J.A. Wiens; W.W. Wilhelm (2008). Sustainable Biofuels Redux. Science, 322, 49–50. Cerca con Google

Rockafellar, R.T.; S. Uryasev (2000). Optimization of conditional value-at-risk. Journal of Risk, 2, 21–41. Cerca con Google

Rolls Royce (2006). Rolls Royce website: www.rolls-royce.com. Vai! Cerca con Google

Romero Hernández, O.; E.D. Salas-Porras; M.I. Rode (2008). Panorama of the social, environmental, and economic conditions of corn ethanol in mexico. Instituto Tecnológico Autónomo de México (ITAM): Mexico City, Mexico. Cerca con Google

Rosenthal, R.E. (2006). GAMS - A Users’ Guide (Version 22.5). GAMS Development Corporation: Washington, USA. Cerca con Google

Sacco, D.; M. Bassanino; C. Grignani (2003). Developing a regional agronomic information system for estimating nutrient balances at a larger scale. European Journal of Agronomy, 20, 199–210. Cerca con Google

Sahinidis, N.V.; I.E. Grossmann; R.E. Fornari; M. Chatrathi (1989). Optimization model for long range planning in the chemical industry. Computers & Chemical Engineering, 13, 1049–1063. Cerca con Google

Sahinidis, N. (2004). Optimization under uncertainty: state-of-the-art and opportunities. Computers & Chemical Engineering, 28, 971–983. Cerca con Google

Santoso, T.; S. Ahmed; M. Goetschalckx; A. Shapiro (2005). A stochastic programming approach for supply chain network design under uncertainty. European Journal of Operational Research, 167, 96–115. Cerca con Google

Schmit, T.M.; J. Luo; L.W. Tauer (2009). Ethanol plant investment using net present value and real options analyses. Biomass and Bioenergy, 33, 1442–1451. Cerca con Google

Searchinger, T.; R. Heimlich; R.A. Houghton; F. Dong; A. Elobeid; J. Fabiosa; S. Tokgoz; D. Hayes; T. Yu (2008). Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science, 319, 1238–1240. Cerca con Google

Service, R.F. (2004).Toward a hydrogen economy: The carbon conundrum. Science, 305, 962–963. Cerca con Google

Shah, N. (2005). Process industry supply chains: Advanced and challenges. Computers and Chemical Engineering, 29, 1225−1235. Cerca con Google

Shapiro, J. (2004). Challenges of strategic supply chain planning and modelling. Computers and Chemical Engineering, 28, 855−861. Cerca con Google

Shapouri, H.; J.A. Duffield; M. Wang (2002). The energy balance of corn ethanol: An update. United States Department of Agriculture: Washington, USA. Cerca con Google

Smith, T.C.; D.R. Kindred; J.M. Brosnan; R.M. Weightman; M. Shepherd; R. Sylvester-Bradley (2006). Wheat as a feedstock for alcohol production. HGCA, London, UK. Cerca con Google

Silver, E.A.; D.F. Pyke; R. Peterson (1998). Inventory Management and Production Planning and Scheduling. (3 ed.). John Wiley & Sons: New York, USA. Cerca con Google

Sodhi, M.S.; C.S. Tang (2009). Modelling supply-chain planning under demand uncertainty using stochastic programming: A survey motivated by asset–liability management. International Journal Production Economics, 121, 728–738. Cerca con Google

Solomon, B.D.; J.R. Barnes; K.E. Halvorsen (2007). Grain and cellulosic ethanol: History, economics, and energy policy. Biomass and Bioenergy, 31, 416−425. Cerca con Google

Solomon, B.D.; N.H. Johnson (2009). Valuing climate protection through willingness to pay for biomass ethanol. Ecological Economics, doi:10.1016/j.ecolecon.2009.02.010. Cerca con Google

Sørensen, B. (1991). A history of renewable energy technology. Energy Policy, 19, 8−12. Cerca con Google

Srivastava, S.K. (2007). Green supply-chain management: A state-of-the-art literature review. International Journal of Management Reviews, 9, 53–80. Cerca con Google

Steuer, RE. (1986). Multiple Criteria Optimization: Theory, Computation and Application. John Wiley & Sons: New York, USA. Cerca con Google

Stevens, G. (1989). Integrating the supply chain. International Journal of Physical Distribution and Logistics Management, 19, 3−8. Cerca con Google

Swaminathan, J.; S. Smith; N. Sadeh (1996). A multi agent framework for modeling supply chain dynamics. Technical Report, The Robotics Institute, Carnegie Mellon. Cerca con Google

Tsang, K.H.; N.J. Samsatli; N. Shah (2007a). Capacity investment planning for multiple vaccines under uncertainty. 1. Capacity planning. Food and Bioproducts Processing, 85, 120–128. Cerca con Google

Tsang, K.H.; N.J. Samsatli; N. Shah (2007b). Capacity investment planning for multiple vaccines under uncertainty. 2. Financial risk analysis. Food and Bioproducts Processing, 85, 129–140. Cerca con Google

Tsiakis, P.; N. Shah; C.C. Pantelides (2001). Design of multi-echelon supply chain networks under demand uncertainty. Industrial & Engineering Chemistry Research, 40, 3585−3604. Cerca con Google

Tveit, T.M. (2006). A systematic procedure for analysis and design of energy systems. Doctoral dissertation. Helsinki University of Technology: Helsinki, Finland. Cerca con Google

USDA (2005). USDA, Feed Grains Baseline. United States Department of Agriculture: Washington, USA. Cerca con Google

USDA Foreign Agricultural Service (2008). GAIN Report: EU-27 Bio-Fuels Annual 2008. United States Department of Agriculture: Washington, USA. Cerca con Google

Van Roy, T.J.; L.A. Wolsey (1986). Valid inequalities for mixed 0-1 programs. Discrete Applied Mathematics, 14, 199−213. Cerca con Google

Voudouris, V.T. (1996). Mathematical programming techniques to debottleneck the supply chain of fine chemicals. Computers & Chemical Engineering, 20, S1296–S1274. Cerca con Google

Wartsila (2006). Wartsila website: www.wartsila.com. Vai! Cerca con Google

Williams, H.P. (1985). Mathematical Building in Mathematical Programming. John Wiley & Sons Ltd: Chichester, UK. Cerca con Google

Williams, H.P. (1993). Model Solving in Mathematical Programming. John Wiley & Sons Ltd: Chichester, UK. Cerca con Google

Yu, Y.; J. Bartle; C. Li; H. Wu (2009). Mallee biomass as a key bioenergy source in Western Australia: Importance of biomass supply chain. Energy & Fuels, 23, 3290–3299. Cerca con Google

Zamboni, A.; N. Shah; F. Bezzo (2008). Analisi e ottimizzazione della filiera di produzione di etanolo da mais. Atti Convegno GRICU 2008 – 14-17 settembre 2008, Le Castella (KR), Italia, 1389–1394. Cerca con Google

Zamboni, A.; N. Shah; F. Bezzo (2009a). Spatially explicit static model for the strategic design of future bioethanol production systems. 1. Cost minimization. Energy & Fuels, 23, 5121–5133. Cerca con Google

Zamboni, A.; N. Shah; F. Bezzo (2009b). Bioethanol production system in Northern Italy: Supply chain design and cost optimisation. In Design for Energy and the Environment (M.M. El-Halwagi, A.A. Linninger, Eds.), CRC Press, Boca Raton FL (U.S.A.), 125–139. Cerca con Google

Zamboni, A.; F. Bezzo; N. Shah (2009c). Spatially explicit static model for the strategic design of future bioethanol production systems. 2. Multiobjective environmental optimization. Energy & Fuels, 23, 5134–5143. Cerca con Google

Zamboni, A.; F. Bezzo; N. Shah (2009d). Supply chain optimization for bioethanol production system in Northern Italy: Environmentally conscious strategic design. In: Computer-Aided Chemical Engineering 27, 10th International Symp. on Process Systems Engineering (R.M. Brito-Alves, C.A. Oller do Nascimento, E.C. Biscaia Jr., Eds.), Elsevier, Amsterdam, Paesi Bassi, 2037–2042. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record