Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Zanon, Francesco (2010) Radar Hydrology and Flash Flood Event Analysis. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document (Tesi di dottorato)
26Mb

Abstract (english)

A flash flood is a flood that follows the causative storm event in a short period of time. The term “flash”
reflects a rapid response, with water levels in the drainage network reaching a crest within minutes to a
few hours after the onset of the rain event, leaving extremely short time for warning [Creutin and Borga,
2003; Borga et al., 2008]. Flash floods are localized phenomena that occur in watersheds of few hundred
kilometres or less, with response times of a few hours or less [Creutin and Borga, 2003; O’Connor and
Costa, 2004]. Such basins respond rapidly to intense rainfall because of steep slopes and impermeable
surfaces, saturated soils, or because of human (i.e., urbanization) or fire-induced alterations to the natural
drainage. Causative events are generally excessive storms, but can also be the sudden release of water
impounded by a natural jam (i.e., formed by ice or rock, mud, and wood debris) or human-made dam or
levee. This thesis focuses on flash flood events associated with heavy rainfall.
Europe experienced several catastrophic flash floods in the last decades. Data concerning a number
of these floods occurred during the last 15 years have been reported in Marchi et al. (2010). Examination
of these data and references therein shows that:
Flash floods occur in any of the hydroclimatic regions of Europe, even though three regions appear
to be characterized by high flash flood potential: Mediterranean, Alpine Mediterranean, and Inland
Continental Europe;
Heavy rainfall accumulation is a necessary but not sufficient condition for flash floods, since hydrology
critically controls flash-flood-triggering. Without hydrological analysis, it is impossible to evaluate
the flood potential of storms, particularly in the fringe of the flood/no flood threshold;
Flash flood hazard is related to both stream response (flood) and landscape response (landslide and
erosion). The intense erosion and solid transport associated with these extreme events add to the
hazard and strongly influence the quality of soils, waters and ecosystems.
The twofold consequence of the above observations is that forecasting of flash-floods:
Depends critically on meso-scale storm forecasting, with a specific attention to the processes leading
to slow movement of the precipitation system;
Necessitates real time hydrological modelling, with a specific attention to the runoff generation
processes over a wide range of scales.
Although they are seldom all deployed at the same time, the technical requirements for a hydrometeorological
flash flood forecasting system include:
A numerical weather prediction (NWP) model, capable to provide short-range Quantitative Precipitation
Forecasts (QPF);
A remote sensing based (radar, satellites) precipitation detection system, for storm monitoring and
for the possible initialization and conditioning of the NWP model, and
A hydrological-hydraulic forecasting model, capable to forecast the stream response from the rain
input.
These requirements are similar to those of more common riverine flood forecasting systems. However,
some features characterise flash flood forecasting with respect to riverine flood forecasting and point out
to their larger uncertainty. These are:
The short lead time, which implies both the integration of meteorological and hydrologic forecast,
and the difficulties of using data assimilation procedures based on real time observed discharges to
reduce uncertainty in hydrologic predictions;
The need to provide local forecasts, which means that, on one hand, the rainfall must be monitored
and forecasted on a wide range of space/time scales, and, on the other hand, every tributary of a
monitored basin can be considered as a potential target for flood warning.
Estimation of extreme rainfall rates by weather radar at the appropriate time and space scales is the
cornerstone of flash flood analysis and forecasting. A large body of research work has greatly improved in
the last two decades radar technology and algorithms for rain quantification. This work has shown that
well maintained conventional radar systems can estimate rainfall at ground level provided that a number
of precautions are taken, and in particular:
The siting of the instrument and its scanning protocol must be carefully selected and analysed;
The quality of the instrument must be routinely checked;
The signal processing must take into account the physics of the instrument as well as the properties
of the atmospheric and ground targets. A downstream control of the radar rainfall processing can
rely on rain-gauge measurements at ground level using a variety of methods.
When these precautions are taken, different studies have shown that radar-based rainfall estimates
are reliable and may be used as input in rainfall-runoff models for flood modelling and forecasting [Borga
et al., 2000; Delrieu et al., 2005; Borga et al., 2002]. These very positive results must not be hiding some
weaknesses:
Most of these results never had the opportunity to be coherently validated over a significant number
of flash floods events. The use of specific experiments or of limited operational radar data sets
is insufficient to test complex combinations of algorithms, especially if high rain intensities are of
interest.
Very few results have been translated into operational hydrologic applications.
This thesis aims to investigate the use of weather radar for the purpose of understanding the hydrometeorological
mechanisms leading to flash floods, and then for flash flood forecasting.
The outline of the thesis work is as follows. Chapter 1 provides a literature review of the rainfall
estimation by weather radar for flash flood-generating storms. Chapter 2 describes a number of procedures
for the rainfall estimation at the ground during flash flood events in mountainous catchments. A metric
for the analysis of the rainfall field spatial patterns is proposed in Chapter 3, in the context of the analysis
of a number of Romenian flash floods. This metric is used for the analysis of two flash flood events,
respectively occurred in 2003 in the Eastern Italian Alps (Chapter 4) and in Western Slovenia (Chapter 5).
Major conclusions from the work are reported in Chapter 6.

Abstract (italian)

Una piena improvvisa è una piena che segue l’evento precipitativo che la ha causata entro un breve periodo
di tempo. Il termine “improvvisa o flash” riflette una risposta rapida, con il picco di piena che si verifica nella
rete di drenaggio nel volgere di alcuni minuti fino a poche ore dopo l’inizio dell’evento di pioggia. Questo
fatto lascia intendere quanto poco tempo ci sia per l’allerta [Creutin and Borga, 2003; Borga et al., 2008].
Questo tipo di bacini rispondo rapidamente ad una precipitazione intensa a causa di pendii ripidi e superfici
impermeabili, terreni saturi, o a per fattori determinati dall’uomo (vedi per esempio l’urbanizzazione) o a
causa di alterazioni del drenaggio naturale del terreno dovuto ad incendi. Gli eventi scatenanti le piene
improvvise sono generalmente precipitazioni che portano all’eccesso di drenaggio, ma questo tipo di piene
possono anche essere scatenate dal rilascio improvviso di acqua trattenuta da impedimenti naturali (per
esempio formati da ghiaccio e roccia, fango e detriti di legno) o di tipo artificiale come dighe e argini.
Questa tesi si concentra su eventi di piena improvvisa associati a precipitazioni intense.
L’Europa ha conosciuto diverse inondazioni catastrofiche negli ultimi decenni. I dati relativi un certo
numero di queste inondazioni che si sono verificate nel corso degli ultimi 15 anni sono riportati da Marchi
et al. (2010). Dall’analisi di questi dati e di queste fonti risulta che:
Una piena improvvisa si può verificare in qualsivoglia regione idroclimatica dell’Europa, anche se
tre regioni sembrano essere caratterizzate da una grande incidenza di di piene improvvise: l’area
Mediterranea, quella Alpino-Mediterranea, e quella Continentale;
Una gran quantità di pioggia accumulata è una condizione necessaria ma non sufficiente al verificarsi
di una piena improvvisa, dal momento che l’idrologia controlla in modo decisivo l’innesco della piena
improvvisa. Senza un’analisi di tipo idrologico, risulta impossibile valutare la probabilità che una
data precipitazione scateni una piena, in praticolare in termini di una soglia oltre la quale si verifica
la piena;
La pericolosià delle piene improvvise è collegata sia alla risposta del fiume (la piena) che alla risposta
del terreno (fenomeni di tipo franoso ed erosivo). L’intensa erosione ed il trasporto solido associati a questi fenomeni estremi si aggiungono alla pericolosità ed influenzano in modo significativo la
qualità dei terreni, delle acque e degli ecosistemi.
La duplice conseguenza delle osservazioni appena fatte è che la previsione di piene improvvise:
Dipende in modo determinante dalle previsioni delle precipitazioni che si sviluppano alla meso-scala,
con una attenzione specifica ai processi che frenano la circolazione del sistema di precipitazione;
Richiedone modelli idrologici che lavorino in tempo reale, con una particolare attenzione ai processi
du generazione del deflusso a vasta scala.
Anche se raramente sono tutti utilizzati contemporaneamente, i requisiti tecnici per un sistema di
previsione idrometeorologica per le piene improvvise comprendono:
Un modello numerico di previsione (NWP2), in grado di fornire previsioni quantitative di pioggia a
corto raggio (QPF3);
Un sistema di rilevamento in remoto per la pioggia (radar, satellite), per il monitoriraggio dei
fenomeni temporaleschi e la possibilie inizializzazione e condizionamento del modello NWP, e
Un modello di previsione idrologico-idraulico, in grado di prevedere la risposta del corso d’acqua
all’input pioggia.
Tali requisiti sono simili a quelli più comuni utilizzati per la previsione delle alluvioni dei sistemi fluviali.
Tuttavia, alcuni elementi caratterizzano la previsione delle piene improvvise rispetto alla previsione delle
alluvioni e ne sottolineano la grande incertezza. Questi sono:
Il breve periodo durante il quale questi processi si sviluppano, che implica sia l’integrazione di un
sistema di previsione di tipo meteorologico e idrologico, che la difficoltà nell’utilizzo di procedure di
assimilazione di dati basate sull’osservazione in tempo reale delle portate al fine di ridurre l’incertezza
nelle previsioni idrologiche;
La necessità di fornire previsioni a scala locale, il che significa da una parte che la pioggia deve essere
monitorata e prevista su una vasta scala spazio-temporale, all’altra che ciascun tributario del bacino
monitorato può essere considerato come un bersaglio potenziale per un allarme di piena.
La stima di fenomeni precipitativi estremi tramite l’utilizzo del radar meteorologico alla appropriata
scala spazio-temporale è una pietra miliare dell’analisi e della previsione delle piene improvvise. Una grande
branca della ricerca in questo campo ha favorito un notevolmente migliorato, negli ultimi due decenni, delle tecnologie radar e degli algoritmi per la stima di pioggia. Questo lavoro ha dimostrato che anche
utilizzando sistemi radar convenzionali si possono ottenere stime di precipitaziona a livello del suolo, a
condizione che vengono adottate una serie di precauzioni, in particolare:
L’ubicazione dello strumento e del suo protocollo di scansione devono essere attentamente selezionati
ed analizzati;
La qualità dello strumento deve essere sottoposta a controlli ordinari;
L’elaborazione del segnale deve tener conto della fisica dello strumento così come delle proprietà
atmosferiche e dei bersagli di terra. Un controllo a valle del trattamento delle precipitazioni radar
può essere fatto tramite misurazioni da pluviometro a livello del suolo utilizzando una varietà di
metodi.
Quando si sono prese queste precauzioni, diversi studi hanno dimostrato che le stime di precipitazione
basate su radar meteorologico sono affidabili e possono essere utilizzate come input di modelli afflussodeflusso
per la modellazione e la previsione delle piene [Borga et al., 2000; Delrieu et al., 2005; Borga
et al., 2002]. A fronte di questi risultati molto positivi non devono però essere nascosti alcuni punti deboli:
La maggior parte di questi risultati non hanno mai la possibilità di essere coerentemente convalidati
su un numero significativo di eventi di piena improvvisa. L’utilizzo di esperimenti specifici o di una
banca dati limitata di dati radar è insufficiente a testare la combinazione complessa degli algoritmi
utilizzati, specialmente se si è interessati ad intensità di pioggia elevata.
Un numero molto limitato di risultati positivi è stato tradotto in applicazioni idrologiche operative.
Questa tesi si propone di esaminare l’uso del radar meteorologico ai fini della comprensione dei meccanismi
idrometeorologici che portano alla formazione di piene improvvise, e quindi alla loro previsione.
L’organizzazione del lavoro di tesi è la seguente. Il Capitolo 1 fornisce una revisione della letteratura
sul tema della stima di precipitazione tramite radar meteorologico per le precipitazioni che causano la formazione
di piene improvvise. Il Capitolo 2 descrive una serie di procedure per la stima delle precipitazioni
al suolo durante gli eventi di piena improvvisa in bacini montani. Una metrica per l’analisi spaziale del
campo di pioggia viene proposta nel Capitolo 3, nel contesto dell’analisi di una serie di piene improvvise
verificatesi in Romania. Questa metrica è utilizzata per l’analisi di due eventi di piena, accaduti rispettivamente
nel 2003 nelle Alpi Italiane friulane e nella parte ovest della Slovenia (Capitolo 5). Le conclusioni
principali del lavoro di tesi sono riportate nel Capitolo 6.

Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Borga, Marco
Ph.D. course:Ciclo 22 > Scuole per il 22simo ciclo > TERRITORIO, AMBIENTE, RISORSE E SALUTE > IDRONOMIA AMBIENTALE
Data di deposito della tesi:UNSPECIFIED
Anno di Pubblicazione:27 January 2010
Key Words:radar hydrology, flash flood
Settori scientifico-disciplinari MIUR:Area 07 - Scienze agrarie e veterinarie > AGR/08 Idraulica agraria e sistemazioni idraulico-forestali
Struttura di riferimento:Dipartimenti > Dipartimento Territorio e Sistemi Agro-Forestali
Codice ID:2596
Depositato il:04 Nov 2010 11:16
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Anagnostou, M. N., Krajewski, W. F., Seo, D. J., and Johnson, E. R. (1998). Meanfield radar rainfall bias Cerca con Google

studies for wsr-88d. asce. J. Eng. Hydrol., 3, 149–159. Cerca con Google

Anagnostou, M. N., Kalogeros, J., Tarolli, M., Anagnostou, E. N., Borga, M., and Papadopoulos, A. Cerca con Google

(2008). Rainfall measurements of x-band polarimetric weather radar in complex terrain. proceeding for Cerca con Google

ERAD - the 5th European conference on radar in meteorology and hydrology. Cerca con Google

Anderson, M. G. and Burt, T. P. (1990). Process studies in hillslope hydrology. John Wiley, Hoboken, N. Cerca con Google

J., page 539 pp. Cerca con Google

Andréassian, V., Perrin, C., Michel, C., Usart-Sanchez, I., and Lavabre, J. (2001). Impact of imperfect Cerca con Google

rainfall knowledge on the efficiency and the parameters of watershed models. Journal of Hydrology, Cerca con Google

250, 206–223. Cerca con Google

Andrieu, H., Creutin, J. D., Delrieu, G., and Faure, D. (1997). Use of a weather radar for the hydrology Cerca con Google

of a mountainous area. part i: Radar measurement interpretation. J. Hydrol, 193, 1–25. Cerca con Google

Bacchi, B., Ranzi, R., and Borga, M. (1996). Statistical characterization of spatial patterns of rainfall Cerca con Google

cells in extratropical cyclones. J. Geophys. Res., 101(D21), 26277–26286. Cerca con Google

Baeck, M. L. and Smith, J. A. (1995). Climatological analysis of manually digitized radar data for the Cerca con Google

united states. Water Resour. Res., 31, 3033–3049. Cerca con Google

Baeck, M. L. and Smith, J. A. (1998). Estimation of heavy rainfall by the wsr-88d. Weather Forecast, Cerca con Google

13, 416–436. Cerca con Google

Barry, D., Parlange, J. Y., Li, L., Jeng, D. S., and Crapper, M. (2005). Green-ampt approximations. Adv. Cerca con Google

Water. Res, 28, 1003–1009. doi:10.1016/j.advwatres.2005.03.010. Cerca con Google

Battan, L. J. (1973). Radar observation of the atmosphere. University of Chicago Press, page 324 pp. Cerca con Google

Bechini, R., Gorgucci, E., Scarchilli, G., and Dietrich, S. (2002). The operational weather radar of fossalon Cerca con Google

di grado (gorizia, italy): Accuracy of reflectivity and differential reflectivity measurements. Meteor. Cerca con Google

Atmos. Phys., 79, 275–284. Cerca con Google

Bell, V. A. and Moore, R. J. (2000). The sensitivity of catchment runoff models to rainfall data at different Cerca con Google

spatial scales. Hydrology and Earth System Sciences, 4(4), 653–667. Cerca con Google

Benda, L. and Dunne, T. (1997). Stochastic forcing of sediment supply to channel networks from landsliding Cerca con Google

and debris flow. Water Resources Research, 33, 2849–2863. Cerca con Google

Berenguer, M., Lee, G. W., Sempere-Torres, D., and Zawadzki, I. (2002). A variational method for Cerca con Google

attenuation correction of radar signal. Proceedings of ERAD, pages 11–16. Cerca con Google

Berne, A., Delrieu, G., Creutin, J. D., and Obled, C. (2004). Temporal and spatial resolution of rainfall Cerca con Google

measurements require for urban hydrology. J. Hydrol., 299, 166–179. Cerca con Google

Beven, K. J. (1981). Kinematic subsurface stormflow. Wat. Res. Res., 33, 2849–2863. Cerca con Google

Beven, K. J. and Hornberger, G. M. (1982). Assessing the effect of spatial pattern of precipitation in Cerca con Google

modeling stream flow hydrographs. Water Res. Bulletin, pages 823–829. Cerca con Google

Blanchard, D. C. and Spencer, A. T. (1970). Experiments of the generation of raindrop size distributions Cerca con Google

by drop breakup. J. Atmos. Sci., 27, 101–108. Cerca con Google

Blöschl, G. and Sivapalan, M. (1995). Scale issues in hydrological modelling: a review. Hydrological Cerca con Google

Processes, 9, 251–290. Cerca con Google

Blöschl, G. and Zehe, E. (2005). On hydrological predictability. . Hydrol. Process., 19, 3923–3929. Cerca con Google

Bonacci, O., Ljubenkov, I., and Roje-Bonaci, T. (2006). Karst flash floods: an example from the dinaric Cerca con Google

karst (croatia). Nat. Hazards Earth Syst. Sci., 6, 195–203. Cerca con Google

Borga, M., Anagnostou, E. N., and Frank, E. (2000). On the use of real-time radar rainfall estimates for Cerca con Google

flood prediction in mountainous basins. J. Geophys. Res, 105(D2), 2269–2280. Cerca con Google

Borga, M., Dalla Fontana, G., and Cazorzi, F. (2002). Analysis of topographic and climatic control on Cerca con Google

rainfall-triggered shallow landsliding using a quasi-dynamic wetness index. J. Hydrol., 268(1-4), 56–71. Cerca con Google

Borga, M., Boscolo, P., Zanon, F., and Sangati, M. (2007). Hydrometeorological analysis of the august Cerca con Google

29, 2003 flash flood in the eastern italian alps. Journal of Hydrometeorology , 8, 1049–1067. Cerca con Google

Borga, M., Gaume, E., Creutin, J. D., and Marchi, L. (2008). Surveying flash floods: gauging the ungauged Cerca con Google

extremes. Hydrological Processes,, 22(18), 3883–3885. Cerca con Google

Bouilloud, L., Delrieu, G., Boudevillain, B., Borga, M., and Zanon, F. (2009). Radar rainfall estimation for Cerca con Google

the post-event analysis of a slovenian flash-flood case: application of the mountain reference technique Cerca con Google

at c-band frequency. Hydrology and Earth System Sciences, 13, 1349–1360. Cerca con Google

Bouilloud, L., Delrieu, G., Boudevillain, B., and Kirstetter, P. E. (2010). Radar rainfall estimation in the Cerca con Google

context of post-event analysis of flash floods. Journal of Hydrology. submitted. Cerca con Google

Bringi, V. N., Goddard, J. W. F., and Cherry, S. M. (1982). Comparison of dual polarization radar Cerca con Google

measurements of rain with ground based disdrometer measurements. J Appl Meteor , 21, 252–254. Cerca con Google

Caine, N. (1980). The rainfall intensity duration control of shallow landslides and debris flows. Geogr. Cerca con Google

Ann., 62(1-2), 23–37. Cerca con Google

Casty, C., Wanner, H., Luterbach, J., Esper, J., and Böhm, R. (2005). Temperature and precipitation Cerca con Google

variability in the european alps since 1500. Int. J. Climatol., 25, 1855–1880. Cerca con Google

Cazacioc, L. (2007). Spatial and temporal variability of extreme daily precipitation amounts in romania. Cerca con Google

Romanian Journal of Meteorology , 9(1-2), 34–46. Cerca con Google

Cazorzi, F. and Bincoletto, L. (2005). Modellazione dei processi idrologici. la prevenzione del rischio Cerca con Google

idrogeologico nei piccoli bacini montani della regione: Esperienze e conoscenze acquisite con il progetto Cerca con Google

catchrisk (in italian). Convegno finale del Progetto CATCHRISK, Udine, Italy , INTERREG IIIB, 45–74. Cerca con Google

Cazorzi, F. and Dalla Fontana, G. (1992). L’utilizzo dei sistemi informativi geografici nello studio idrologico Cerca con Google

di bacino (in italian). Quaderni di idrologia montana, 12, 83–115. Cerca con Google

Cesare, B. (1999). Multi stage pseudomorphic replacement of garnet during polymetamorphism: Microstructures Cerca con Google

and their interpretation. Journal of Metamorphic Geology, 17, 723–734. Cerca con Google

Cesare, B., Fioretti, A., and Rosenberg, C. (2004). The periadriatic intrusion of vedrette di ries - rieserferner Cerca con Google

(eastern alps): petrology, emplacement mechanisms and contact aureole. 32nd IGC, B17 Field Trip Cerca con Google

Guide Book. Published by APAT, 17, 723–734. Italian Agency for the Environmental Protection and Cerca con Google

Technical Services - Via Vitaliano Brancati, 48 - 00144 Roma - Italy, 36pp. Cerca con Google

Ceschia, M., Micheletti, S., and Carnie, R. (1991). Rainfall over friuli venezia giulia: High amounts and Cerca con Google

strong geographical gradients. Theor. Appl. Climatol, 43, 175–180. Cerca con Google

Chandrasekar, V., Bringi, V. N., Balakrishnan, V. N., and Zrnic, D. S. (1990). Error structure of multiparameter Cerca con Google

radar and surface measurements of rainfall. part iii: Specific differential phase. J Atmos Cerca con Google

Oceanic Technol, 7, 621–629. Cerca con Google

Collier, C. G. (1989). Applications of weather radar systems. Ellis Horwood, page 294 pp. Cerca con Google

Constantin-Horia, B., Simona, S., Gabriela, P., and Adrian, S. (2009). Human factors in the floods of Cerca con Google

romania. in: Threats to global water security, nato science for peace and security series c: Environmental Cerca con Google

security. Eds: J. Anthony A. Jones, Trahel G. Vardanian and Christina Hakopian, pages 187–192. Cerca con Google

Corral, C., Torres, D. S., Revilla, M., and Berenguer, M. (2000). A semidistributed hydrological model Cerca con Google

using rainfall estimates by radar. application to mediterranean basins. Phys Chem Earth Part B: Hydrol Cerca con Google

Oceans Atmos, 25, 1133–1136. Cerca con Google

Costa, J. E. (1987). Hydraulics and basin morphometry of the largest flash floods in the conterminous Cerca con Google

united states. J Hydrol, 93(313-338). Cerca con Google

Creutin, J. D. and Borga, M. (2003). Radar hydrology modifies the monitoring of flash flood hazard. Cerca con Google

Hydrological Processes, 17(7), 1453–1456. Invited commentary. 10.10002/hyp.5122. Cerca con Google

Cucchi, F., Piano, C., Marinetti, E., Massari, G., Oberti, S., and Zini, L. (2000). Studies for the realization Cerca con Google

of the hydrogeological map of friuli-venezia giuli. Ipogea, 3, 57–71. Cerca con Google

Da Ros, D. and Borga, M. (1997). Use of digital elevation model data for the derivation of the geomorphologic Cerca con Google

instantaneous unit hydrograph. Hydrol. Processes, 11, 13–33. Cerca con Google

D’Agostino, V. and Marchi, L. (2001). Debris flow magnitude in the eastern italian alps: data collection Cerca con Google

and analysis. Physics and Chemistry of the Earth, Part C, 26(9), 657–663. Cerca con Google

Dawdy, D. R. and Bergmann, J. M. (1969). Effect of rainfall variability on streamflow simulation. Water Cerca con Google

Resour. Res., 5, 958–969. Cerca con Google

De Lima, J. and Singh, V. (2002). The influence of the pattern of moving rainstorms on overland flow. Cerca con Google

Advances in Wat. Res., 25, 817–828. Cerca con Google

Deganutti, A. and Marchi, L. (2000). Rainfall and debris-flow occurrence in the moscardo basin (italian Cerca con Google

alps). Proc. of the second International Conference on Debris flow hazards mitigation, Taipei August, Cerca con Google

pages 26–72. Cerca con Google

Delrieu, G. and Creutin, J. D. (1995). Simulation of Radar Mountain Returns Using a Digitized Terrain Cerca con Google

Model. Journal of Atmospheric and Oceanic Technology, 12, 1038–1049. Cerca con Google

Delrieu, G., Caoudal, S., and Creutin, J. D. (1997). Feasibility of using mountain return for the correction Cerca con Google

of ground based x-band weather radar data. Journal of Atmospheric and Oceanic Technology, 14, Cerca con Google

368–385. Cerca con Google

Delrieu, G., Hucke, L., and Creutin, J. D. (1999a). Attenuation in rain for x- and c- band weather radar Cerca con Google

systems operating in heavy rainfall: sensitivity with respect to the drop size distribution. Journal of Cerca con Google

Applied Meteorology , 38, 57–68. Cerca con Google

Delrieu, G., Serrar, S., Guardo, E., and Creutin, J. D. (1999b). Rain measurement in hilly terrain with xband Cerca con Google

radar systems: Accuracy of path-integrated attenuation estimates derived from mountain returns. Cerca con Google

Journal of Atmospheric and Oceanic Technology, 16, 405–416. Cerca con Google

Delrieu, G., Andrieu, H., and Creutin, J. D. (2000). Quantification of path-integrated attenuation for Cerca con Google

x and c-band weather radar systems operating in mediterranean heavy rainfall. Journal of Applied Cerca con Google

Meteorology , 39, 840–850. Cerca con Google

Delrieu, G., Ducrocq, V., Gaume, E., Nicol, J., Payrastre, O., Yates, E., Kirstetter, P. E., Andrieu, H., Cerca con Google

Ayral, P. A., Bouvier, C., Creutin, J. D., Livet, M., Anquetin, A., Lang, M., Neppel, L., Obled, C., Cerca con Google

du Chatelet, J. P., Saulnier, G. M., Walpersdorf, A., and Wobrock, W. (2005). The catastrophic flashflood Cerca con Google

event of 8-9 september 2002 in the gard region, france: a first case study for the cévennes-vivarais Cerca con Google

mediterranean hydro-meteorological observatory. Journal of Hydrometeorology , 6, 34–52. Cerca con Google

Delrieu, G., Boudevillain, B., qnd B. Chapon, J. N., Kirstetter, P. E., Andrieu, H., and Faure, D. (2009). Cerca con Google

Bollène 2002 experiment: radar rainfall estimation in the cévennes-vivarais region, france. Journal of Cerca con Google

Applied Meteorology and Climatology. in press. Cerca con Google

Di Baldassarre, G. and Montanari, A. (2009). Uncertainty in river discharge observations: a quantitative Cerca con Google

analysis. . Hydrology and Earth System Sciences Discussion, 6, 39–61. www.hydrol-earth-syst-scidiscuss. Vai! Cerca con Google

net/6/39/2009/. Cerca con Google

Dietrich, W. E. and Dunne, T. (1978). Sediment budget for a small catchment in mountainous terrain. Cerca con Google

Zeitschrift für Geomorphologie, 29, 191–206. Cerca con Google

Doswell III, C. A., Brooks, H. E., and Maddox, R. A. (1996). Flash-flood forecasting: an ingredients-based Cerca con Google

methodology. Weather Forecast, 11, 360–381. Cerca con Google

Doviak, R. J. and Zrnic, D. S. (1993). Doppler radar and weather observations, 2nd edition. Academic Cerca con Google

Press Inc., page 562 p. Cerca con Google

Dunne, T. (1978). Field studies of hillslope flow processes. Hillslope hydrology, M. J. Kirkby, Ed., John Cerca con Google

Wiley, pages 227–293. Cerca con Google

Dunne, T. (1983). Relation of field studies and modeling in the prediction of storm runoff. . J. Hydrol., Cerca con Google

65, 24– 48. Cerca con Google

Fabre, G. (1990). La catastrophe hydrologique éclaire de nîmes (3 octobre 1988). the nimes flash flood Cerca con Google

on october 3, 1988. Bulletin de l’Association des Géographes Français, 67(2), 113–122. Cerca con Google

Fabry, F. and Zawadzki, I. (1995). Long-term radar observations of the melting layer of precipitation and Cerca con Google

their interpretation. J. Atmos. Sci.,, 52, 838–851. Cerca con Google

Faures, J. M., Goodrich, D. C., Woolhiser, D. A., and Sorooshian, S. (1995). Impact of small-scale spatial Cerca con Google

rainfall variability on runoff modeling. Journal of Hydrology, (173), 309–326. Cerca con Google

Frei, C. and Schär, C. (1998). A precipitation climatology of the alps from high-resolution rain-gauge Cerca con Google

observations. Int. J. Climatol., 18, 873–900. Cerca con Google

Furey, P. R. and Gupta, V. J. (2005). Effects of excess rainfall on the temporal variability of observed Cerca con Google

peak-discharge power laws. Adv. Water Resour., 28, 1240–1253. Cerca con Google

Ganoulis, J. (1995). Floodplain protection and management in karst areas, in gardiner. J. et al. (ed.), Cerca con Google

Defence from Floods and Floodplain Management. NATO ASI Series, Vol. 299, Kluwer Academic, Cerca con Google

Dordrecht, pages 419–428. Cerca con Google

Ganoulis, J. (2003). Risk-based floodplain management: A case study from greece. Intl. J. River Basin Cerca con Google

Management, 1(1), 41–47. Cerca con Google

Gaume, E. (2006). Post flash-flood investigation - methodological note. floodsite european research Cerca con Google

project. Available at http://www.floodsite.net/, report D23.2, page 62 p. Vai! Cerca con Google

Gaume, E., Livet, M., and Desbordes, M. (2003). Study of the hydrological processes during the avène Cerca con Google

river extraordinary flood (south of france): 6-7 october 1997. Phys. Chem. Earth., 28, 263–267. Cerca con Google

Gaume, E., Livet, M., Desbordes, M., and Villeneuve, J. P. (2004). Hydrological analysis of the river aude, Cerca con Google

france, flash flood on 12 and 13 november 1999. Journal of Hydrology, 286(1), 135–154. Cerca con Google

Gaume, E., Bain, V., Bernardara, P., Newinger, O., Barbuc, M., Bateman, A., Blaskovicova, L., Blöschl, Cerca con Google

G., Borga, M., Dumitrescu, A., Daliakopoulos, I., Garcia, J., Irimescu, A., Kohnova, S., Koutroulis, A., Cerca con Google

Marchi, L., Matreata, S., Medina, V., Preciso, E., Sempere-Torres, D., Stancalie, G., Szolgay, J., Tsanis, Cerca con Google

J., Velasco, D., and Viglione, A. (2009). A compilation of data on european flash floods. Journal of Cerca con Google

Hydrology, 367, , 70–78. doi:10.1016/j.jhydrol.2008.12.028. Cerca con Google

Geotis, S. G. (1975). Some measurements of the attenuation of 5-cm radiation in rain. Preprints 16th Cerca con Google

Conf. on Radar Meteorology, Houston, TX, Amer. Meteor. Soc., pages 63–66. Cerca con Google

Germann, U., Galli, G., Boscacci, M., and Bolliger, M. (2006). Radar precipitation measurement in a Cerca con Google

mountainous region. Q. J. R. Meteorol. Soc., 132, 1669–1692. Cerca con Google

Giannoni, F., Smith, J. A., Zhang, Y., and Roth, G. (2003). Hydrologic modeling of extreme floods using Cerca con Google

radar rainfall estimate. Adv. Water Resour., 26, 195–200. Cerca con Google

Gosset, M. and Zawadzki, I. (2001). Effect of nonuniform beam filling on the propagation of the radar Cerca con Google

signal at x-band frequencies. part i: Changes in the k(z) relationship. Journal of Atmospheric and Cerca con Google

Oceanic Technology, 18(7), 1113–1126. Cerca con Google

Grayson, R. and Blöschl, G. (2001). Spatial patterns in catchment hydrology: Observations and modelling. Cerca con Google

Cambridge Univ. Press, New York, (404 pp.). Cerca con Google

Gregoretti, C. and Dalla Fontana, G. (2006). The triggering of debris flow due to a channel-bed failure in Cerca con Google

four alpine basins of dolomites. part ii: rainfall analyses. Submitted. Cerca con Google

Herman, H. K., Toran, L., and White, W. (2008). Threshold events in spring discharge: Evidence from Cerca con Google

sediment and continuous water level measurement. Journal of Hydrology, 351, 98– 106. Cerca con Google

Hicks, N. S., Smith, J. A., and Nelson, P. A. (2005). Catastrophic flooding from an orographic thunderstorm Cerca con Google

in the central appalachians. Wat. Res. Res., 41. , W12428, doi: 10.1029/2005WR004129. Cerca con Google

Hildebrand, P. H. (1977). Iterative Correction for Attenuation of 5 cm Radar in Rain. Journal of Applied Cerca con Google

Meteorology , 17, 508–514. Cerca con Google

Hitschfeld, W. and Bordan, J. (1954). Errors inherent in the radar measurement of rainfall at attenuationg Cerca con Google

wavelenghts. J. Meteorol., 11, 58–67. Cerca con Google

Hubbert, J. and Bringi, V. N. (1995). An iterative filtering technique for the analysis of copolar differential Cerca con Google

phase and dual-frequency radar measurements. J. Atmos. Ocean. Technol., 12, 643–648. Cerca con Google

Hudson, N. W. (1963). Raindrop size distribution in high intensity rain. Rhod J Agric Res, 1, 6–11. Cerca con Google

Jameson, A. R. (1994). An alternative approach to estimating rainfall rate by radar using propagation Cerca con Google

differential phase shift. J Atmos Oceanic Technol, 11(122-131). Cerca con Google

Johnson, A. M. and Rodine, J. R. (1984). Debris flow. In Slope Instability, Brundsen D, Prior DB (ed.). Cerca con Google

John Wiley, Hoboken, N. J., pages 257–361. Cerca con Google

Joss, J. and Gori, E. G. (1978). Shapes of raindrop size distributions. J. Appl. Meteor., 17, 1054–1061. Cerca con Google

Joss, J. and Waldvogel, A. (1968). Raindrop size distribution and sampling size errors. J. Atmos. Sci., Cerca con Google

26, 566–569. Cerca con Google

Joss, J. and Waldvogel, A. (1990). Precipitation measurement and hydrology. Radar in Meteorology: Cerca con Google

Battan Memorial and 40th Anniversary Radar Meteorology Conference, D. Atlas, Ed., Amer. Meteor. Cerca con Google

Soc., pages 577–606. Cerca con Google

Jothityangkoon, C. and Sivapalan, M. (2003). Towards estimation of extreme floods: Examination of the Cerca con Google

roles of runoff process changes and floodplain flows. Journal of Hydrology, 281, 206–229. Cerca con Google

Journel, A. and Huijbregts, C. (1978). Mining geostatistics. Academic Press, London. k. Beven and Wood, E. F. (1993). Flow routing and the hydrological response of channel networks. In: Cerca con Google

Beven, K.J., Kirkby, M.J. (Eds.). Channel Network Hydrology, John Wiley, Chichester, pp. 99. Cerca con Google

Keenan, T. D. (1998). The bmrc/ncar c-band polarimetric (cpol) radar system. J Atmos Oceanic Technol, Cerca con Google

15, 871–886. Cerca con Google

Krajewski, W. F. (1995). Rainfall estimation using weather radar and ground stations. Proceedings of the Cerca con Google

III International Symposium on Weather Radars. San Paulo, Brazil. Cerca con Google

Krajewski, W. F., Lakshmi, V., Georgakakos, K. P., and Jain, S. C. (1991). A monte-carlo study of rainfall Cerca con Google

sampling effect on a distributed catchment model. Water Resour Res, 27, 119–128. Cerca con Google

Leijnse, H., Uijlenhoet, R., and Stricker, J. N. M. (2007). Rainfall measurements using radio links from cellular Cerca con Google

communications networks. Water Resources Research. 43, W03201, doi:10.1029/2006WR005631. Cerca con Google

Lewis, H. W., Harrison, D. L., and Kitchen, M. (2007). Local vertical profile corrections using data Cerca con Google

from multiple scan elevations, met. office, united kingdom. Proceedings for 33rd Conference on Radar Cerca con Google

Meteorology . Cerca con Google

List, R. (1991). A linear radar reflectivity rain rate relationship for steady tropical rain. J. Atmos. Sci., Cerca con Google

45, 3564–3572. Cerca con Google

Long, A. J. and Derickson, R. G. (1999). Linear systems analysis in a karst aquifer. Journal of Hydrology, Cerca con Google

219(3-4), 206–217. Cerca con Google

Mager, D. (1985). Geologische karte des rieserfernergruppe zwischen magerstein und windschar (südtirol). Cerca con Google

Der Schlern, 6. Bozen. Cerca con Google

Maksimov, V. A. (1964). Computing runoff produced by a heavy rainstorm with a moving center. Soviet Cerca con Google

Hydrology, 5, 510–513. Cerca con Google

Marchi, L. and D’Agostino, V. (2004). Estimation of debris-flow magnitude in the eastern italian alps. Cerca con Google

Earth Surface Processes and Landforms, 29(2), 207–220. Cerca con Google

Marchi, L., Borga, M., Preciso, E., Sangati, M., Gaume, E., Bain, V., Delrieu, G., Bonnifait, L., and Cerca con Google

Pogancik, N. (2009a). Comprehensive post-event survey of a flash flood in western slovenia: observation Cerca con Google

strategy and lessons learned. Hydrological Processes, 23(26), 3761–3770. DOI: 10.1002/hyp.7542. Cerca con Google

Marchi, L., Cavalli, M., Sangati, M., and Borga, M. (2009b). Hydrological controls and erosive response Cerca con Google

of a major alpine debris flow. Hydrological Processes. in print. Cerca con Google

Marchi, L., Borga, M., Preciso, E., , and Gaume, E. (2010). Characterisation of selected extreme flash Cerca con Google

floods in europe and implications for flood risk management. Journal of Hydrology. Under review. Cerca con Google

Marechal, J. C., Ladouche, B., and Dörfliger, N. (2008). Karst flash flooding in a mediterranean karst, Cerca con Google

the example of fontaine de nîmes. Eng. Geol., 99, 138–146. Cerca con Google

Marechal, J. C., Ladouche, B., and Dörfliger, N. (2009). Analyse hydrogéologique de la contribution Cerca con Google

de l’eau souterraine à la crue éclair des 6 et 8 septembre 2005 à nîmes (hydrogeological analysis of Cerca con Google

groundwater contribution to the 6-8 september 2005 flash flood in nîmes). La Houille Blanche, 2, Cerca con Google

88–93. Cerca con Google

Marshall, J. S. and Palmer, W. K. (1948). The distribution of raindrop size to intensity. J. Meteor., Cerca con Google

5(165-166). Cerca con Google

Marzoug, M. and Amayenc, P. (1994). A class of single and dual-frequency algorithms for rain rate Cerca con Google

profilimg from a spaceborne radar, part 1, principle and tests from numericalò simulations. J. Atmos. Cerca con Google

Oceanic Technol, 11, 1480–1506. Cerca con Google

Matrosov, S. Y., Kropfli, R. A., Reinking, R. F., and Martner, B. E. (1999). Prospects for measuring Cerca con Google

rainfall using propagation differential phase in x and ka-radar bands. J Appl Meteor , 38, 766–776. Cerca con Google

Mc Collum, J. R., Krajewski, W. F., Ferraro, R. R., and Ba, M. B. (2002). Evaluation of biases of satellite Cerca con Google

rainfall estimation algorithms over the continental united states. J Appl Meteor , 41(11), 1065–1080. Cerca con Google

Meneghini, R., Eckerman, J., and Atlas, D. (1983). Determination of rain rate from a spaceborne radar Cerca con Google

using measurements of total attenuation. IEEE Trans. Geosci. and Remote Sensing, GE-21, 34–43. Cerca con Google

Michaud, J. and Sorooshian, S. (1994). Effect of rainfall-sampling errors on simulations of desert flash Cerca con Google

floods. Water Resources Research, 30(10), 2765–2775. Cerca con Google

Montgomery, D. R., Dietrich, W. E., and Heffner, J. T. (2002). Piezometric response in shallow Cerca con Google

bedrock at cb1: Implications for runoff generation and landsliding. Water Resour. Res., 38, 1274, Cerca con Google

doi:10.1029/2002WR001429. Cerca con Google

Moser, J. (2003). Hochwasser am vorderberger wildbach (in ger- man). Amt der Kärntner Landesregierung, Cerca con Google

Abteilung 18 Wasserwirtschaft, page 15 pp. Cerca con Google

Mosetti, F. (1983). Sintesi sull’idrologia del friuli-venzia giulia, quaderni dell’ente tutela pesce del friulivenzia Cerca con Google

giulia (in italian). Rivista di Limnologia, 6, 1–295. Cerca con Google

Moulin, L., Gaume, E., and Obled, C. (2008). Uncertainties on mean areal precipitation: assessment and Cerca con Google

impact on streamflow simulations. Hydrol Earth Syst Sci Discuss, 5, 2067–2110. Cerca con Google

Naden, P. S. (1992). Spatial variability in flood estimation for large catchments: the exploitation of Cerca con Google

channel network structure. Journal des Sciences Hydrologiques, 37(1), 53–71. Cerca con Google

Nicotina, L., Celegon, E. A., Rinaldo, A., and Marani, M. (2008). On the impact of rainfall patterns on Cerca con Google

the hydrologic response. Water Resources Research, 44. W12401. Cerca con Google

Niemczynowicz, J. (1984). Investigation of the influence of rainfall movement on runoff hydrograph: Part Cerca con Google

i. simulation of conceptual cathcment. Nordic Hydrology, 15, 57–70. Cerca con Google

Norbiato, D., Borga, M., Esposti, S. D., Gaume, E., and Anquetin, S. (2008). Flash flood warning based on Cerca con Google

rainfall depth-duration thresholds and soil moisture conditions: an assessment for gauged and ungauged Cerca con Google

basins. Journal of Hydrology, 362, 3–4. Cerca con Google

Norbiato, D., Borga, M., Merz, R., Blöschl, G., and Carton, A. (2009). Controls on event runoff coefficients Cerca con Google

in the eastern italian alps. J. Hydrology, in print. Cerca con Google

Obled, C. H., Wendling, J., and Beven, K. (1994). The sensitivity of hydrological models to spatial rainfall Cerca con Google

patterns: an evaluation using observed data. Journal of Hydrol., 159, 305–333. Cerca con Google

O’Connor, J. E. and Costa, J. E. (2004). Spatial distribution of the largest rainfall-runoff floods from Cerca con Google

basins between 2.6 and 26,000 km2 in the united states and puerto rico. Water Resources Research,, Cerca con Google

40(W1107). Cerca con Google

Ogden, F., Sharif, L. H. O., Senarath, S. U. S., Smith, J. A., Baeck, M. L., and Richardson, J. R. (2000). Cerca con Google

Hydrologic analysis of the fort collins, colorado flash flood of 1997. J. Hydrol, 228, 82–100. Cerca con Google

Ogden, F. L. and Julien, P. Y. (1994). Runoff model sensitivity to radar rainfall resolution. Journal of Cerca con Google

Hydrology, 158, 1–18. Cerca con Google

Ogden, F. L. and Saghafian, B. (1997). Green and ampt infiltration with redistribution. J. Irrig. Drain. Cerca con Google

Eng., 123(5), 386–393. Cerca con Google

Ogrinc, N., Kanduc, T., Stichler, W., and Vreca, P. (2008). Spatial and seasonal variations Cerca con Google

in 18o and d values in the river sava in slovenia. Journal of Hydrology, 359, 303–312. Cerca con Google

doi:10.1016/j.jhydrol.2008.07.010. Cerca con Google

Okunishi, K. and Iida, T. (1981). Evolution of hillslopes including landslides. Transactions, Japanese Cerca con Google

Geomorphological Union, 2, 291–300. Cerca con Google

Orlanski, I. (1975). A rational subdivision of scales for atmospheric processes. Bull. Am. Meteorol. Soc., Cerca con Google

56(5), 527–530. Cerca con Google

Parajka, J., Kohnová, S., Bálint, G., Barbuc, M., Borga, M., Claps, P., Cheval, S., Gaume, E., Hlavcová, Cerca con Google

K., Merz, R., Pfaundler, M., Stancalie, G., Szolgay, J., and Blöschl, G. (2009). Seasonal characteristics Cerca con Google

of flood regimes across the alpine-carpathian range. Journal of Hydrology. submitted. Cerca con Google

Pellarin, T., Delrieu, G., Creutin, J. D., and Andrieu, H. (2000). Hydrologic visibility of weather radars Cerca con Google

operating in high-mountainous regions: A case study for the toce catchment (italy) during the mesoscale Cerca con Google

alpine programme. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, Cerca con Google

25, 953–957. Cerca con Google

Pellarin, T., Delrieu, G., Saulnier, G. M., Andrieu, H., Vignal, B., and Creutin, J. D. (2002). Hydrologic Cerca con Google

visibility of weather radar systems operating in mountainous regions: Case study for the ardèche Cerca con Google

catchment (france). J. Hydrometeor., 3, 539–555. Cerca con Google

Peschke, G., Etzenberg, C., Muller, G., Topfer, J., and Zimmermann, S. (1999). Das wissensbasierte Cerca con Google

system flab-ein instrument zur rechnergestützten bestimmung von landschaftseinheiten mit gleicher Cerca con Google

abflussbildung. IHI-Schr. 10, Int. Hochsch. Zittau, Zittau, Germany. Cerca con Google

Pessoa, M. L., Bras, R., and Williams, E. (1993). Use of weather radar for flood forecasting in the sieve Cerca con Google

river basin: A sensitivity analysis. Journal of Applied Meteorology , 32, 462–475. Cerca con Google

Petersen, W. A., Carey, L. D., Rutledge, S. A., Knievel, J. C., Doesken, N. J., and Johnson, R. H. (1997). Cerca con Google

Mesoscale and radar observations of the fort collins flash flood of 28 july 1997. Bull Am Meteorol Soc, Cerca con Google

80, 191–216. Cerca con Google

Ponce, V. M. and Hawkins, E. R. H. (1996). Runoff curve number: Has it reached maturity? J. Hydrol. Cerca con Google

Eng., 1, 11–19. Cerca con Google

Querini, R. (1977). L’influenza del terremoto sulla torrenzialità nei bacini montani del friuli (in italian). Cerca con Google

Annali dell’Accademia Italiana di Scienze Forestal, 26, 139–185. Cerca con Google

Rusjan, S., Kobold, M., and Mikos, M. (2009). Characteristics of the extreme rainfall event and consequent Cerca con Google

flash floods in w slovenia in september 2007. Natural Hazards and Earth System Sciences, 9, 947–956. Cerca con Google

www.nat-hazards-earth-syst-sci.net/9/947/2009/. Vai! Cerca con Google

Sanchez-Diezma, R., Zawadzki, I., and Sempere-Torres, D. (2000). Identification of the bright band Cerca con Google

through the analysis of volumetric radar data. . J. Geophys. Res., 105(D2), 2225–2236. Cerca con Google

Sangati, M. (2006). Analisi e modellazione di piene improvvise in ambiente montano (in italian). University Cerca con Google

of Padova, Dept. TESAF, unpublished report. Cerca con Google

Sangati, M. and Borga, M. (2009). Influence of rainfall spatial resolution on flash flood modelling. Nat. Cerca con Google

Hazards Earth Syst. Sci., (9), 575–584. www.nat-hazards-earth-syst-sci.net/9/575/2009/. Vai! Cerca con Google

Sangati, M., Borga, M., Rabuffetti, D., and Bechini, R. (2009). Influence of rainfall and soil properties Cerca con Google

spatial aggregation on extreme flash flood response modelling: an evaluation based on the sesia river Cerca con Google

basin, north western italy. Advances Water Resources, 32(7), 1090–1106. Cerca con Google

Saulnier, G. and Le Lay, M. (2009). Sensitivity of flash-flood simulations on the volume, the intensity, Cerca con Google

and the localization of rainfall in the cevennes-vivarais region (france). Water Resources Research, 45. Cerca con Google

W10425, doi:10.1029/2008WR006906. Cerca con Google

Schilling, W. (1991). Rainfall data for urban hydrology: what do we need? Atmos. Res., 27(1-3), 5–21. Cerca con Google

Schuurmans, J. M. and Bierkens, M. (2007). Effect of spatial distribution of daily rainfall on interior Cerca con Google

catchment response of a distributed hydrological model. Hydrology and Earth System Sciences, 11(2), Cerca con Google

677–693. Cerca con Google

Sekhon, R. S. and Srivastava, R. C. (1970). Doppler radar observations of rain drop distributions in a Cerca con Google

thunderstorm. J. Atmos. Sci., 28, 983–994. Cerca con Google

Seo, D. J. and Breidenbach, J. P. (2002). Real-time correction of spatially nonuniform bias in radar rainfall Cerca con Google

data using rain gauge measurements. J Hydrometeorol, 3(93-111). Cerca con Google

Seo, D. J., Breidenbach, J. P., Fulton, R., Miller, D., and O’Banon, T. (2000). Real time adjustment of Cerca con Google

range dependent biases in wsr-88d rainfall estimates due to nonuniform vertical profile of reflectivity. J Cerca con Google

Hydrometeorol, 1(222-240). Cerca con Google

Serrar, S., Delrieu, G., Creutin, J. D., and Uijlenhoet, R. (2000). Mountain reference technique: Use Cerca con Google

of mountain returns to calibrate radars operating at attenuating wavelengths. Journal of Geophysical Cerca con Google

research, 105(D2), 2281–2290. Cerca con Google

Singh, V. P. (1998). Effect of the direction of storm movement on planar flow. Hydrological Processes, Cerca con Google

12, 147–170. Cerca con Google

Sivapalan, M. (2006). Pattern, process and function: Elements of a unified theory of hydrology at the Cerca con Google

catchment scale, encyclopedia of hydrological sciences- part 1. theory, organization and scale. Cerca con Google

Skoien, J. O., Merz, R., and Bloeschl, G. (2001). Top-kriging: Geostatistics on stream networks. Hydrol. Cerca con Google

Earth Syst. Sci., 10, 277–287. Cerca con Google

Slymaker, O. (1988). The distinctive attributes of debris torrents. Hydrol. Sci., 33, 567–573. Cerca con Google

Smith, J., Baeck, A. M. L., Steiner, M., and Miller, A. J. (1996a). Catastrophic rainfall from an upslope Cerca con Google

thunderstorm in the central appalachians: The rapidan storm of 27 june 1995. Water Resour. Res., Cerca con Google

32(10), 3099–3113. Cerca con Google

Smith, J. A. and Krajewski, W. F. (1991). Estimation of the mean field bias of radar rainfall estimates. J Cerca con Google

Appl Meteor , 30, 397–412. Cerca con Google

Smith, J. A., Seo, D. J., Baeck, M. L., and Hudlow, M. D. (1996b). An intercomparison study of nexrad Cerca con Google

precipitation estimates. Water Resour Res, 32, 2035–2045. Cerca con Google

Smith, J. A., Baeck, M. L., Zhang, Y., and Doswell Jr, C. A. (2002a). Extreme rainfall and flooding from Cerca con Google

supercell thunderstorms. Journal of Hydrometeorology , 2(5), 469–489. Cerca con Google

Smith, J. A., Baeck, M. L., Morrison, J. E., Sturdevant-Rees, P. L., Turner-Gillespie, D. F., and Bates, Cerca con Google

P. D. (2002b). The regional hydrology of extreme floods in an urbanizing drainage basin. Journal of Cerca con Google

Hydrometeorology , 3(3), 267–282. Cerca con Google

Smith, J. A., Seo, D. J., Koren, V. I., Reed, S. M., Zhang, Z., Duan, Q., Moreda, F., and Cong, S. Cerca con Google

(2004a). The distributed model intercomparison project (dmip): motivation and experiment design. Cerca con Google

Journal of Hydrology, 298(1-4), 4–26. Cerca con Google

Smith, J. A., Baeck, M. L., Meierdiercks, K. L., Nelson, P. A., Miller, A. J., and Holland, E. J. (2005). Cerca con Google

Field studies of the storm event hydrologic response in an urbanizing watershed. Water Resour. Res., Cerca con Google

41(W10413, doi:10.1029/2004WR003712). Cerca con Google

Smith, M., Koren, V., Zhang, Z., Reed, S., Pan, J., and Moreda, F. (2004b). Runoff response to spatial Cerca con Google

variability in precipitation: an analysis of observed data. Journal of Hydrology, (298), 267–286. Cerca con Google

Stedinger, J. R., Voge, R. M., and Foufoula-Georgiu, E. (2002). Frequency analysis of extreme events. Cerca con Google

Handbook of Hydrol., pages 18.1–18.66. D. R. Maidment, Ed., McGraw-Hill. Cerca con Google

Steiner, M., Houze, R. A., and Yuter, S. E. (1995). Characterization of three dimensional storm structure Cerca con Google

from operational radar and rain gauge data. J. Appl. Meteor., 34, 1978–2007. Cerca con Google

Sturdevant-Rees, P., Smith, J. A., Morrison, J. E., and Baeck, M. L. (2001). Tropical storms and the Cerca con Google

flood hydrology of the central appalachians. Water Resources Research, 37(8), 2143 – 2168. Cerca con Google

Syed, K., Goodrich, D., Myers, D., and Sorooshian, S. (2003). Spatial characteristics of thunderstorm Cerca con Google

rainfall fields and their relation to runoff. Journal of Hydrology, 271, 1–21. Cerca con Google

Tan, J., Holt, A. R., and Hendry, A. (1991). Bebbington dho. extracting rainfall rates from x-band cdr Cerca con Google

radar data by using differential propagation phase shift. J Atmos Oceanic Technol, 8(790-801). Cerca con Google

Tarolli, P., Borga, M., and Dalla Fontana, G. (2008). Analyzing the influence of upslope bedrock outcrops Cerca con Google

on shallow landsliding. Geomorphology, 93, 186–200. doi:10.1016/j.geomorph.2007.02.017. Cerca con Google

Trisic, N., Bat, M., Polajnar, J., and Pristov, J. (1997). Water balance investigations in the bohinj region. Cerca con Google

Tracer Hydrology. Rotterdam. Cerca con Google

Tropeano, D., Turconi, L., and Sanna, S. (2004). Debris flow triggered by the 29 august 2003 cloudburst Cerca con Google

in val canale, eastern italian alps. Proc. Int. Symp. INTERPRAEVENT 2004 Riva del Garda, Italy., Cerca con Google

pages 121–132. Cerca con Google

Uijlenheot, R., Smith, J. A., and Steiner, M. (2003). The microphysical structure of extreme precipitation Cerca con Google

as inferred from ground-based raindrop spectra. J. Atmos. Sci., 60, 1220–1238. Cerca con Google

Ulbrich, C. W. (1983). Natural variations in the analytical form of the raindrop size distribution. J. Clim. Cerca con Google

Appl. Meteor., 22, 1764–1775. Cerca con Google

US-SCS (1986). Department of agriculture urban hydrology for small watershed. U.S. Department of Cerca con Google

Agriculture Tech. Release, 55, 164 pp. Cerca con Google

Viglione, A., Chirico, G. B., Woods, R., and Blöschl, G. (2010a). Generalised synthesis of 851 space-time Cerca con Google

variability in flood response: 1. analytical framework. Journal of Hydrology. Under review. Cerca con Google

Viglione, A., Chirico, G. B., Komma, J., Woods, R., Borga, M., and Blöschl, G. (2010b). Generalized synthesis Cerca con Google

of space-time variability in flood response: Dynamics of flood event types. Journal of Hydrology. Cerca con Google

Under review. Cerca con Google

Vignal, B. and Krajewski, W. F. (2001). Large sample evaluation of two methods to correct rangedependent Cerca con Google

error for wsr-88d rainfall estimates. J Hydrometeorol, 2(5), 490–504. Cerca con Google

Vignal, B., Andrieu, H., and Creutin, J. D. (1999). Identification of vertical profiles of reflectivity from Cerca con Google

voluminal radar data. J Appl Meteor , 38, 1214–1228. Cerca con Google

Vignal, B., Galli, G., Joss, J., and Germann, U. (2000). Three methods to determine profiles of reflectivity Cerca con Google

from volumetric radar data to correct precipitation estimates. J Appl Meteor , 39, 1715–1726. Cerca con Google

Villi, V., Caleffa, G., Gatto, G., and Mori, G. (1986). Distribuzione spazio temporale delle piogge intense Cerca con Google

nel triveneto cartografia. Quaderni di ricerca C.N.R and Regione Veneto, 7, 1–444. Cerca con Google

Vivekanandan, J., Yates, D. N., and Brandes, E. A. (1999). The influence of terrain on rainfall estimates Cerca con Google

from radar reflectivity and specific propagation phase observations. J. Atmos. Oceanic Technol., 16, Cerca con Google

837–845. Cerca con Google

Vivoni, E. R., Bowman, R. S., Wyckoff, R. L., Jakubowski, R. T., and Richards, K. E. (2006). Analysis Cerca con Google

of a monsoon flood event in an ephemeral tributary and its downstream hydrologic effects. Wat. Res. Cerca con Google

Res., 42. W03404, doi: 10.1029/2005WR004036. Cerca con Google

Wainwright, K. M. J. (2002). Modelling the effects of hillslope channel coupling on catchment hydrological Cerca con Google

response. Earth Surface Processes and Landforms, 27(13), 1441–1457. Cerca con Google

Waldvogel, A. (1974). The n0 jump of raindrop spectra. J. Atmos. Sci., 31, 1067–1078. Cerca con Google

Ward, J. V., Tockner, K., Edwards, P. J., Kollmann, J., Bretschko, G., Gurnell, A. M., Petts, G. E., and Cerca con Google

Rossaro, B. (1999). A reference system for the alps: The “fiume tagliamento.”. Regul. Rivers, 15, Cerca con Google

63–75. Cerca con Google

Wigmosta, M. S. L. W. and Lettenmaier, D. P. (1981). A distributed hydrology-vegetation model for Cerca con Google

complex terrain. Wat. Res. Res., 30, 1665–1679. Cerca con Google

Willis, P. T. and Tattleman, P. (1989). Drop-size distributions associated with extreme rainfall. J Appl Cerca con Google

Meteor , 28(3-15). Cerca con Google

Wilson, C. B., Valdes, J. B., and Rodriquez-Iturbe, I. (1979). On the influence of the spatial distribution Cerca con Google

of rainfall on storm runoff. Water Res. Res., (15(2)), 321–328. Cerca con Google

Wilson, R. C. and Wieczorek, G. F. (1995). Rainfall thresholds for the initiation of debris flow at la honda, Cerca con Google

california. Environ. Eng. Geosci., 1(1), 11–27. Cerca con Google

WMO (1994). (world meteorological organization) (1994): Guide to hydrological practices. WMO-164, Cerca con Google

WMO, Geneva (5th edn), WMO-N.168, Geneva, Switzerland. Cerca con Google

Wood, E. F., Sivapalan, M., Beven, K., and Band, L. (1988). Effects of spatial variability and scale with Cerca con Google

implications to hydrologic modeling. Hydrological processes, 102, 29–47. Cerca con Google

Wood, E. F., Sivapalan, M., and Beven, K. (1990). Similarity and scale in catchment storm response. Cerca con Google

Review of Geophysics, 28(1), 1–18. Cerca con Google

Woods, R. A. and Sivapalan, M. (1999). A synthesis of space-time variability in storm response: Rainfall, Cerca con Google

runoff generation and routing. Water Resour. Res., 35(8), 2469–2485. Cerca con Google

Zhang, Y., Smith, J. A., and Baeck, M. L. (2001). The hydrology and hydrometeorology of extreme floods Cerca con Google

in the great plains of eastern nebraska. Adv. Water Resour., 24, 1037–1050. Cerca con Google

Zrnic, D. S. and Ryzhkov, A. V. (1996). Advantages of rain measurements using specific differential phase. Cerca con Google

J Atmos Oceanic Technol, 13, 454–464. Cerca con Google

Zrnic, D. S. and Ryzhkov, A. V. (1999). Polarimetry for weather surveillance radars. Bull Am Meteorol Cerca con Google

Soc, 80, 289–406. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record