Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Rampazzo, Mirco (2010) Efficient Management of HVAC Systems. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF (Tesi di Dottorato) - Versione aggiornata
Available under License Creative Commons Attribution Non-commercial No Derivatives.

4Mb

Abstract (inglese)

In HVAC (Heating, Ventilation and Air Conditioning) plants of medium-high cooling capacity, multiple-chiller systems are often employed. In such systems, chillers are independent of each other in order to provide standby capacity, operational exibility, and less disruption maintenance. However, the problem of an eciently managing of multiple-chiller systems is complex in many respects. In particular, the electrical energy consumption in the chiller plant markedly increases if the chillers are managed improperly, therefore signicant energy savings can be achieved by optimizing the chiller operations of HVAC systems.
In this Thesis an unied method for Multi-Chiller Management optimization is presented, that deals simultaneously with the Optimal Chiller Loading and Optimal Chiller Sequencing problems. The main objective is that of reducing both power consumption and operative costs. The approach is based on a cooling load estimation algorithm, and the optimization step is performed by means of a multi-phase genetic algorithm, that provides an ecient and suitable approach to solve this kind of complex multi-objective optimization problem. The performance of the algorithm is evaluated by resorting to a dynamic simulation environment, developed in Matlab and Simulink, where the plant dynamics are accurately described. It is shown that the proposed algorithm gives superior performance with respect to standard approaches, in terms of both energy performance and load prole tracking.

Abstract (italiano)

Negli impianti HVAC di capacità frigorifera medio-grande vengono spesso impiegati sistemi con più refrigeratori di liquido (chiller) in parallelo. Il problema della gestione eciente di tali sistemi è complesso sotto diversi punti di vista. In particolare, il consumo di energia elettrica dell'impianto aumenta notevolmente allorché i refrigeratori siano gestiti scorrettamente. In questa Tesi viene presentato un metodo unicato per l'ottimizzazione della gestione di chiller in parallelo che risolve simultaneamente i problemi del carico ottimo e della sequenza ottima di accensioni/spegnimenti relativi ai refrigeratori. L'obiettivo principale è quello ridurre il consumo energetico ed abbassare i costi di esercizio. L'approccio si basa su un algoritmo di stima del carico frigorifero richiesto e l'ottimizzazione è realizzata attraverso l'impiego di un algoritmo genetico multi-fase; quest'ultimo fornisce un approccio eciente per risolvere questo genere di problema di ottimo multi-obiettivo. Le prestazioni dell'algoritmo sono valutate ricorrendo ad un ambiente di simulazione dinamico, sviluppato in Matlab e Simulink, dove le dinamiche del sistema sono accuratamente descritte.
Si evince che l'algoritmo proposto fornisce prestazioni superiori, rispetto agli approcci standard, sia in termini di soddisfacimento del carico che di prestazione energetica.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Beghi, Alessandro
Dottorato (corsi e scuole):Ciclo 22 > Scuole per il 22simo ciclo > INGEGNERIA DELL'INFORMAZIONE > SCIENZA E TECNOLOGIA DELL'INFORMAZIONE
Data di deposito della tesi:NON SPECIFICATO
Anno di Pubblicazione:27 Gennaio 2010
Parole chiave (italiano / inglese):HVAC, energy saving, multiple chiller, optimization, optimal chiller loading, optimal chiller sequencing, genetic algorithm(s).
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-INF/04 Automatica
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria dell'Informazione
Codice ID:2639
Depositato il:21 Set 2010 12:38
Simple Metadata
Full Metadata
EndNote Format

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record