Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Bagatin, Marta (2010) Effects of Ionizing Radiation in Flash Memories. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF (Tesi di dottorato) - Versione sottomessa
3435Kb

Abstract (inglese)

Semiconductor memories operating at sea level are constantly bombarded by ionizing radiation. Alpha particles, emitted by the radioactive contaminants that are inevitably present in the package and solder materials, may reach the sensitive areas of the chips and generate bit upsets. Furthermore, a shower of neutrons caused by interactions of cosmic rays with the external atmospheric layers can be a serious threat for the correct operation of electronics in the terrestrial environment. Satellite and spacecraft electronics must work reliably in an environment that is much harsher, because the huge presence of ionizing radiation, in particular protons, electrons, and heavy-ions, constantly threatens its correct behavior.
Flash memories are susceptible to radiation effects. They are multifaceted devices with a large number of miscellaneous building blocks, hence their response to ionizing radiation features different signatures, which may sometimes be very complex to interpret. SRAM memories, for their part, are the most common benchmark to evaluate the sensitivity to soft error of a given CMOS generation. In addition, they are present virtually everywhere in integrated circuits, for instance in the page buffer of Flash memories.
This thesis provides several original contributions to the field of radiation effects in Flash memories and SRAMs. A complete study, both experimental and modeling work, has been performed on Flash memories, using x-rays, heavy ions, and neutrons, to emulate both the space and terrestrial environments.
Concerning total ionizing dose results, the failure doses of the floating gate memory matrix, the charge pump circuitry, and the row decoder are assessed by selectively irradiating the device building blocks, in contrast to the common procedure of exposing the whole device.
As far as single event effects are concerned, the role of the page buffer is elucidated and the dependence of page buffer errors on the operating conditions (e.g., the read activity) during heavy-ion irradiation is clarified. An ‘effective’ device cross section is proposed that measures the device sensitivity, accounting for the main usage patterns.
During last years annealing effects in floating gate errors have been discussed several times after heavy-ion exposure, but apparently collided with observations on the floating gate charge loss. New results are presented in this work, which proves that the existing theories of charge loss and charge trapping can actually coexist.
This work shows for the first time that atmospheric neutrons are able to induce errors in advanced Flash memories, an effect that until a short time ago was believed to exist only in SRAMs and DRAMs. These results highlight new issues for the use of Flash in the terrestrial environment.
Finally, last section illustrates the main factors determining temperature dependence of the soft error in SRAMs. Experimental results, simulations, and analytical modeling are presented to show the complex mixture of parameters at play, most of them strongly dependent on the technological features of the devices.

Abstract (italiano)

Le memorie a semiconduttore che operano al livello del mare sono costantemente bombardate dalla radiazione ionizzante. Particelle alfa, emesse dai contaminanti radioattivi che sono inevitabilmente presenti nei materiali dei componenti e delle saldature, possono raggiungere le aree sensibili dei chip e generare cambiamenti indesiderati dello stato logico dei bit di memoria. Inoltre, una continua pioggia di neutroni causata dalle interazioni dei raggi cosmici con gli strati esterni dell’atmosfera costituisce una seria minaccia per il corretto funzionamento dell’elettronica in ambiente terrestre. L'elettronica che opera nello spazio deve funzionare in un ambiente ancora più critico dal punto di vista delle radiazioni ionizzanti, data la presenza massiccia di protoni, elettroni e ioni pesanti.
Le memorie Flash sono sensibili agli effetti di radiazione. Essendo componenti sfaccettati, con blocchi funzionali eterogenei, la loro risposta alle radiazioni ionizzanti è variegata e talvolta la sua interpretazione può risultare complessa. Le SRAM, dal canto loro, sono il benchmark più comune per valutare la sensibilità al soft error di una data generazione tecnologica CMOS, nonchè dispositivi presenti virtualmente in tutti i circuiti integrati, non da ultimo nel page buffer delle memorie Flash.
Questo lavoro di tesi contiene dei contributi originali nel campo degli effetti delle radiazioni sulle memorie Flash e SRAM. E’ stato effettuato uno studio completo, sperimentale e teorico, di memorie Flash commerciali, usando raggi x, ioni pesanti e neutroni, per simulare sia l’ambiente spaziale che quello terrestre.
Per quanto riguarda gli effetti di dose totale, si studiano le diverse dosi di fallimento della matrice di celle Floating Gate, delle pompe di carica e del decoder di riga, irraggiando selettivamente i vari blocchi funzionali del dispositivo, in contrasto con la metodologia più comune di esporre alla radiazione l’intero chip.
Nel Capitolo 3, dedicato agli effetti da evento singolo, si chiarisce il ruolo del page buffer nel determinare la sensibilità a ioni pesanti di una memoria NAND, studiando anche la dipendenza dei diversi tipi di errori (page buffer vs celle Floating Gate) dalle condizioni operative del dispositivo. Si propone quindi una ‘sezione d’urto efficace’ allo scopo di tenere conto di questi parametri.
Negli ultimi anni sono stati discussi gli effetti di annealing post-irraggiamento degli errori osservati nelle celle Floating Gate, ma, apparentemente, le spiegazioni fornite collidevano con le teorie di perdita di carica dal Floating Gate. In questo lavoro di tesi si presentano risultati nuovi su questo fronte (Capitolo 4), che dimostrano come le teorie di perdita e intrappolamento di carica nel Floating Gate possano in realtà coesistere e spiegare in modo efficace i dati sperimentali.
Il Capitolo 5 mostra, per la prima volta, che i neutroni atmosferici sono in grado di indurre errori in memorie Flash avanzate, cosa che fino a poco fa si riteneva possibile solo per memorie SRAM e DRAM. Questi risultati rivelano l’importanza di una nuova tematica connessa all’uso questi dispositivi in ambito terrestre.
Infine, il Capitolo 6 illustra i fattori principali che determinano la dipendenza dalla temperatura del tasso di soft error in una memoria SRAM. Si presentano i risultati sperimentali, di simulazioni SPICE e modellizzazione analitica, per evidenziare la complessa miscela di parametri in gioco, molti dei quali fortemente dipendenti dalle caratteristiche tecnologiche del dispositivo.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Paccagnella, Alessandro
Dottorato (corsi e scuole):Ciclo 22 > Scuole per il 22simo ciclo > INGEGNERIA DELL'INFORMAZIONE > SCIENZA E TECNOLOGIA DELL'INFORMAZIONE
Data di deposito della tesi:NON SPECIFICATO
Anno di Pubblicazione:28 Gennaio 2010
Parole chiave (italiano / inglese):Flash memories - Radiation - Space - Heavy ions - Neutrons
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-INF/01 Elettronica
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria dell'Informazione
Codice ID:2672
Depositato il:21 Set 2010 12:33
Simple Metadata
Full Metadata
EndNote Format

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record