Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

BAKIU, RIGERS (2010) EVOLUZIONE MOLECOLARE DELLE METALLOTIONEINE NEI NOTOTHENIOIDEI ANTARTICI. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF (Tesi di Dottorato di Ricerca)
2373Kb

Abstract (inglese)

Metallothioneins (MTs) are low-molecular weight (6-18 kDa) and sulphur-rich proteins. These proteins have been identified in animals, plants and in both eukaryotic and prokaryotic microorganisms. MTs are involved in the homeostasis of essential metals as well as in the detoxification of the non essential ones. Furthermore they act as scavengers of reactive oxygen species (ROS).
This work is part of wider studies on evolutionary aspects of MTs in teleosts. The molecular evolution of MTs in the Antarctic Notothenioid has been investigated. MT cDNA sequences of some members of Nototheniidae, Bathydraconidae, Artedidraconidae and Channichthyidae families have been characterised and evolutionary aspects have been inferred. Maximum likelihood (ML) and Bayesian methods were applied to the coding and UTR sequences. The results indicate the presence of two MT groups, each containing one of the two isoforms, MT-1 and MT-2. Likelihood tests (LH) results support the hypothesis that molecular evolution of notothenioid MTs is based on relaxed clock model. Several discrepancies (mismatches) were observed between MT gene genealogy and species phylogeny. On the basis of these mismatches analyses have been preformed in order to evaluate if positive selection could have been acted. The data indicate the absence of positive selection and suggest the presence of a strong purifying selection operating at the amino acidic level. In addition, phylogenetic analyses on UTRs indicate that 5' UTRs could have been evolved differently from 3' UTRs. Only the 3'UTR of both Notothenia coriiceps MT-1 and Cygnodraco mawsoni MT-2 could have been undergone to convergence events. Furthermore, some MT introns and promoter sequences were characterised. The phylogenetic analyses, based on these sequences, suggest they could be more useful than cDNAs in the study of molecular evolution of notothenioids MTs.
These results showed that introns could be generally utilised in evolutionary analyses of nuclear genes.

Abstract (italiano)

Le metallotioniene (MT) sono proteine dal basso peso molecolare (6-18 kDa) caratterizzate da un elevato contenuto in cisteine. Esse sono state identificate in animali, piante e microorganismi eucarioti e procarioti. Le MT sono coinvolte nell’omeostasi dei metalli essenziali e nella detossificazione di quelli non essenziali, agiscono inoltre da scavengers delle specie reattive dell'ossigeno (ROS).
Questo lavoro si inserisce nell’ambito degli studi sugli aspetti evolutivi di queste proteine nei teleostei. E’ stata quindi analizzata l’evoluzione molecolare delle MT nel subordine Notothenioidei. Sono state caratterizzati i cDNA delle MT di membri delle famiglie Nototheniidae, Bathydraconidae, Artedidraconidae e Channichthyidae. Le analisi filogenetiche sono state condotte sulle sequenze della regione codificante e delle UTR mediante metodi stocastici di maximum likelihood (ML) e baesiani. I risultati indicano che le MT clusterizzano in due gruppi, ognuno dei quali contiene una delle due isoforme, MT-1 e MT-2. I risultati del test di likelihood dimostrano che l'evoluzione molecolare delle MT dei Notothenioidei si baserebbe sul modello dell'orologio molecolare rilassato. Alcune discrepanze (mismatches) sono state osservate nel confronto tra la genealogia dei geni delle MT e la filogenesi delle specie. Sulla base di tali mismatches sono state altresì condotte analisi allo scopo di valutare se su queste MT abbia agito o meno la selezione positiva. Dai risultati ottenuti si può ipotizzare l'assenza di selezione positiva, ma la presenza di una forte selezione purificante che avrebbe operato a livello aminoacidico. Le analisi filogenetiche basate sulle UTR indicano che le 5' UTR si sarebbero evolute diversamente rispetto alle 3' UTR. Inoltre solo le 3' UTR di MT-1 di Nototthenia coriiceps e MT-2 di Cygnodraco mawsoni sarebbero andate incontro a fenomeni di convergenza. Successivamente sono state caratterizzate le sequenze di introni e di promotori di MT per alcuni dei Notothenioidei analizzati. Le analisi filogenetiche basate sulle sequenze introniche e dei promotori suggeriscono che, per lo studio dell'evoluzione molecolare delle MT nei Notothenioidei, tali sequenze sono più informative rispetto alle sequenze codificanti. Tali risultati fanno ipotizzare che le sequenze introniche possono essere proficuamente utilizzate negli studi sull’evoluzione di geni nucleari.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:PICCINNI, ESTER
Correlatore:IRATO, PAOLA
Dottorato (corsi e scuole):Ciclo 22 > Scuole per il 22simo ciclo > BIOSCIENZE > BIOLOGIA EVOLUZIONISTICA
Data di deposito della tesi:NON SPECIFICATO
Anno di Pubblicazione:27 Gennaio 2010
Parole chiave (italiano / inglese):METALLOTIONEINE, NOTOTHENIOIDEI, EVOLUZIONE MOLECOLARE, OROLOGIO MOLECOLARE,cDNA, UTR, ESONI, INTRONI, PROMOTORI E MRE
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/05 Zoologia
Struttura di riferimento:Dipartimenti > Dipartimento di Biologia
Codice ID:2673
Depositato il:20 Set 2010 13:41
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Abascal F, Zardoya R, Posada D (2005) ProtTest: Selection of best-fit models of protein evolution. Bioinformatics. 21(9): 2104-2105 Cerca con Google

Anderson ME (1994) Systematics and osteology of the Zoarcidae (Teleostei: Perciformes). JLB Smith Inst Ichthyol Ichthyol Bull 60: 1–120 Cerca con Google

Anderson JB (1999) Antarctic Marine Geology. Cambridge, New York, Melbourne: Cambridge University Press. 298 p. Cerca con Google

Andrews GK (2000) Regulation of metallothionein gene expression by oxidative stress and metal ions. Biochem Pharmacol 59: 95-104 Cerca con Google

Andrews GK, Lee DK, Ravindra R, Lichtlen P, Sirito M, Sawadogo M and Schaffner W (2001) EMBO J. 20: pp. 1114–1122 Cerca con Google

Andrews GK, Fernando LP, Moore KL, Dalton TP, Sobieski RJ (1996) Avian metallothioneins: Structure, regulation and evolution. J Nutr 126: 1317S–1323S Cerca con Google

Andriashev AP (1965) A general review of the antarctic fish fauna. Biogeography and Ecology in Antarctica. pp. 491-550 Cerca con Google

Andriashev AP (1991) Possible pathways of Paraliparis (Pisces: Liparidae) and some other North Pacific secondarily deep-sea fishes to North Atlantic and Arctic depth. Polar Biology. 11: 213 Cerca con Google

Auf der MA, Belser T, Elgar G, Georgiev O and Schaffner W (1999) Biol. Chem. 380:pp. 175–185 Cerca con Google

Bakiu R (2006) Superossido dismutasi a rame e zinco e metallotioneine del teleosteo antartico Trematomus newnesi: caratterizzazione delle sequenze del cDNA ed espressione tessutale dell’mRNA. Tesi della laurea specialistica in Biologia Molecolare. Cerca con Google

Balushkin AV (1992) Classification, phylogenetic relationships, and origins of the families of the suborder Notothenioidei (Perciformes). J. Ichthyol. 32 (7): 90–110 Cerca con Google

Balushkin, AV (2000) Morphology, classification, and evolution of notothenioid fishes of the Southern Ocean (Notothenioidei, Perciformes). J. Ichthyol. 40: S74–S109 Cerca con Google

Bargelloni L, Marcato S, Zane L, Patarnello T (2000) Mitochondrial phylogeny of notothenioids: a molecular approach to Antarctic fish evolution and biogeography. Syst Biol. 49(1): 114-29 Cerca con Google

Bargelloni L, Ritchie PA, Patarnello T, Battaglia B, Lambert DM, Meyer A. (1994) Molecular evolution at subzero temperatures: mitochondrial and nuclear phylogenies of fishes from Antarctica (suborder Notothenioidei), and the evolution of antifreeze glycopeptides. Mol Biol Evol. 11(6): 854-63 Cerca con Google

Bargelloni L, Scudiero R, Parisi E, Carginale V, Capasso C, Patarnello T (1999) Metallothioneins in antarctic fish: evidence for independent duplication and gene conversion. Mol Biol Evol. 16(7): 885-97 Cerca con Google

Barsyte D, White KN, Lovejoy DA (1999) Cloning and characterization of metallothionein cDNAs in the mussel Mytilus edulis L. digestive gland. Comp Biochem Physiol 122C: 287-296 Cerca con Google

Bell S. G. and Vallee B. L. (2009) The Metallothionein/Thionein System: An Oxidoreductive Metabolic Zinc Link. ChemBioChem 10: 55–62 Cerca con Google

Binz PA (2003) Metallothionein homepage. http://www.unizh.ch/~mtpage/MT.html Vai! Cerca con Google

Binz PA, Kägi JHR (1999) Metallothioneins: molecular evolution and classification. In Klaasen CD (ed) Metallothionein IV. Birkhäuser Verlag, Basel, pp 7-13. Cerca con Google

Bittel D, Dalton T, Samson S, Gedamu L, Andrews GK (1998) The DNA binding activity of metal response element-binding transcription factor-1 is activated in vivo and in vitro by zinc, but not by other transition metals. J Biol Chem 273: 7127-7133 Cerca con Google

Blanc G, Hokamp K, Wolfe KH (2003) A recent polyploidy superimposed on older large-scale duplications in the Arabidopsis genome. Genome Res. 13: 137–144 Cerca con Google

Blindauer C, Harrison MD, Robinson AK, Parkinson JA, Bowness PW, Sadler PJ, Robinson NJ (2002) Multiple bacteria encode metallothioneins and SmtA-like zinc finger. Molec Microb 45: 1421-1432 Cerca con Google

Buchmann K, Pedersen K (1994) A study on teleost phylogeny using specific antisera. The Fisheries Society of the British Isles. Journal of Fish Biology. Volume 45, Issue 5 , Pages 901-903 Cerca con Google

Buckley BA, Place SP, Hofmann GE (2004) Regulation of heat shock genes in isolated hepatocytes from an Antarctic fish, Trematomus bernacchii. J. Exp. Biol. 207:3649–3656 Cerca con Google

Burchett C (1983) At last--the hearing conservation standard. Occup Health Saf. 52(4): 45-6 Cerca con Google

Capasso C, Abugo O, Tanfani F, Scire A, Carginale V, Scudiero R, Parisi E, D’Auria S (2002) Stability and conformational dynamics of metallothioneins from the Antarctic fish Notothenia coriiceps and mouse. Proteins 46: 259–267 Cerca con Google

Capasso C, Carginale V, Crescenzi O, Di Maro D, Parisi E, Spadaccini R, Temussi PA (2003) Solution structure of MT_nc, a novel metallothionein from the Antarctic fish Notothenia coriiceps. Structure 11: 435–443 Cerca con Google

Chan KM (1994) PCR-cloning of goldfish and tilapia metallothionein complementary DNAs. Biochem. Biophys. Res. Commun. 205: 368–374 Cerca con Google

Chan WK, Devlin RH (1993) Polymerase chain reaction amplification and functional characterization of sockeye salmon histone H3, metallothionein-B and protamine promoters. Mol. Mar. Biol. Biotechnol. 2: 308–318 Cerca con Google

Chen WY, John JAC, Lin CH and Chang CY (2002) Biochem. Biophys. Res. Commun. 291: pp. 798–805 Cerca con Google

Chen W-Y, John JAC, Lin C-H, Lin H-F, Wu S-C, Lin C-H, Chang C-Y (2004) Expression of metallothionein gene during embryonic and early larval development in zebrafish. Aquat. Toxicol. 69: 215–227 Cerca con Google

Cheng CHC, Chen LB, Near TJ, Jin YM (2003) Functional antifreeze glycoprotein genes in temperate-water New Zealand nototheniid fish infer an antarctic evolutionary origin. Mol. Biol. Evol. 20: 1897–1908 Cerca con Google

Cherian MG (1994) The significance of the nuclear and cytoplasmatic localization of metallothionein in human liver and tumor cells. Environ Health Persp 102: 131-135 Cerca con Google

Cheung PLA, Kwok LLV, Chan KM (2005) Tilapia metallothionein genes: PCR-cloning and gene expression studies. Biochim. Biophys. Acta 1731: 191–201. Cerca con Google

Clark AG (1994) Invasion and maintenance of a gene duplication. Proc Natl Cerca con Google

Acad Sci USA. 91: 2950-2954 Cerca con Google

Coyle P, Philcox JC, Carey LC, Rofe AM (2002) Metallothionein: the multipurpose protein. Cell Mol Life Sci 59: 627-647 Cerca con Google

Culotta VC, Howard WR, Liu XF (1994) CRS5 encodes a metallothionein-like protein in S. cerevisiae. J Biol Chem 269: 26295-26302 Cerca con Google

Curatola AM, Nadal MS, Schneider RJ (1995) Rapid degradation of AU-rich element (ARE) mRNAs is activated by ribosome transit and blocked by secondary structure at any position 5Ј to the ARE. Molecular AND Cellular Biology. Vol. 15, No. 11, p. 6331–6340 Cerca con Google

D’Auria S, Carginale V, Scudiero R, Crescenzi O, Di Maro D, Temussi PA, et al. (2001) Structural characterization and thermal stability of Notothenia coriiceps metallothionein. Biochem J 354: 291–299 Cerca con Google

Dallinger R, Berger B, Hunziker P, Kägi JHR (1997) Metallothionein in snail Cd and Cu metabolism. Nature 388: 237-238 Cerca con Google

Dalton TP, Solis WA, Nebert DW, Carvan MJ (2000) Characterization of the MTF-1 transcription factor from zebrafish and trout cells. Comp Biochem. Physiol: B Biochem. Mol. Biol. 126: 325–335 Cerca con Google

Dan Graur and Wen-Hsiung Li (1999) Fundamentals of Molecular Evolution. Sinauer Associates Inc.,U.S. p. 439 Cerca con Google

Dayhoff MO, Schwartz RM and Orcutt BC (1978) A model of evolutionary change in proteins. In: Dayhoff, M. O. (ed.) Atlas of Protein Sequence Structur, Vol. 5, Suppl. 3. National Biomedical Research Foundation, Washington DC, pp. 345-352 Cerca con Google

DeSalle R, Freedman T, Prager EM, Wilson AC (1987) Tempo and mode of sequence evolution in mitochondrial DNA of Hawaiian Drosophila. J Mol Evol. 26(1-2): 157-64 Cerca con Google

Detrich III HW, Johnson KA, Marchese-Ragona SP (1989) Polymerization of Antarctic fish tubulins at low temperatures: energetic aspects. Biochemistry. 28: 10 085–10 093 Cerca con Google

Detrich III HW, Parker SK, Williams RCJ, Nogales E, Downing KH (2000) Cold adaptation of microtubule assembly and dynamics. Structural interpretation of primary sequence changes present in the alpha- and beta-tubulins of Antarctic fishes. J. Biol. Chem. 275: 37 038–37 047 Cerca con Google

DeVries AL and Eastman JT (1978) Lipid sacs as a buoyancy adaptation in an Antarctic fish. Nature, 271: 352-353 Cerca con Google

DeWitt HH (1971) Coastal and deep-water benthic fishes of the Antarctic. In: Bushnell VC (ed) Antarctic map folio series, folio 15. American Geographical Society, New York, pp 1–10 Cerca con Google

DeWitt HH (1985) Reports on fishes of the University of Southern California Antarctic Research Program, 1962–1968. 1. A review of the genus Bathydraco Gunther (Family Bathydraconidae). Cybium 9: 295-314 Cerca con Google

Drummond AJ, Ho SYW, Phillips MJ, Rambaut A (2006) Relaxed Phylogenetics and Dating with Confidence. PLoS Biol 4(5): e88. Cerca con Google

Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7: 214 Cerca con Google

Eakin RR (1990) Artedidraconidae. In: Gon O, Heemstra PC (eds) Fishes of the Southern Ocean. J.L.B. Smith Institute of Ichthyology, Grahamstown, South Africa, pp 332-356 Cerca con Google

Eastman JT (1993) Antarctic Fish Biology: Evolution in A Unique Environment. Academic Press, San Diego, CA, USA Cerca con Google

Eastman JT (2005) The nature of the diversity of Antarctic fishes. Polar Biol. 28: 94–107 Cerca con Google

Eastman JT, McCune AR (2000) Fishes on the Antarctic continental shelf: evolution of a marine species flock? J. Fish Biol. 57(Suppl. A): 84–102 Cerca con Google

Eastman JT and DeVries AL (1981) Buoyancy adaptations in a swim-bladderless Antarctic fish.  Journal of Morphology, 167: 91-102 Cerca con Google

Eastman JT and DeVries AL (1982) Buoyancy studies of notothenioid fishes in McMurdo Sound, Antarctica. 2: 385-393 Cerca con Google

Eastman JT (1999) Aspects of the biology of the icefish Dacodraco hunteri (Notothenioidei, Channichthyidae) in the Ross Sea, Antarctica. Polar Biology, 21: 194-196 Cerca con Google

Edwards SV, Kingan SB, Calkins JD, Balakrishnan CN, Jennings WB, Swanson WJ and Sorenson MD (2005) Speciation in birds: genes, geography, and sexual selection. Proc. Natl. Acad. Sci. USA 102: 6550–6557 Cerca con Google

Egli D, Selvaraj A, Yepiskoposyan H, Zhang B, Hafen E, Georgiev O, Schaffner W (2003) Knockout of 'metal-responsive transcription factor' MTF-1 in Drosophila by homologous recombination reveals its central role in heavy metal homeostasis. EMBO J 22: 100-108 Cerca con Google

Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution 17: 368-376 Cerca con Google

Foster BA and Montgomery JC (1993) Planktivory in benthic nototheniid fish in McMurdo Sound, Antarctica. Environ. Biol. Fish. 36: 313-318 Cerca con Google

Fowler BA, Hildebrand CE, Kojima Y, Webb M (1987) Nomenclature of metallothonein. In: Kägi J. H. R., Kojima Y., eds. Metallothionein II. Experientia Supplememtum. Basel: Birkhäuser Verlag; pp. 19-22 Cerca con Google

Freedman JH, Slice LW, Dixon D, Fire A, Rubin CS (1993) The novel metallothionein genes of Caenorabdtis elegans. Structural organization and inducible, cell-specific expression. J Biol Chem 268: 2554-2564 Cerca con Google

Funk DJ and Omland KE (2003) Species-level paraphyly and polyphyly: frequency, causes and consequences with insights from animal mitochondrial DNA. Annu. Rev. Ecol. Syst. 34: 397–423 Cerca con Google

Ghoshal K, Jacob ST (2001) Regulation of metallothionein gene expression. Prog Nucleic Acid Res Mol Biol 66: 357-84 Cerca con Google

Gon O (1990) Bathydraconidae. p. 364-380. In O. Gon and P.C. Heemstra (eds.) Fishes of the Southern Ocean. J.L.B. Smith Institute of Ichthyology, Grahamstown, South Africa. 462 p. Cerca con Google

Gutiérrez JC, Amaro F and Martin-Gonzales A (2009) From heavy metal-binders to biosensors: Ciliate metallothioneins discussed. BioEssays 1-12 Cerca con Google

Hamer DH (1986) Metallothionein. Ann Rev Biochem 55: 913-951 Cerca con Google

Hasegawa M, Kishino H and Yano T (1985) J. Mol. Evol. 22: 160-174 Cerca con Google

Haygood R, Fedrigo O, Hanson B, Yokoyama1 KD, Wray GA (2007) Promoter regions of many neural- and nutrition-related genes have experienced positive selection during human evolution. Nature Genetics 39: 1140-144 Cerca con Google

He P, Xu M, Ren H (2007) Cloning and functional characterization of 5-upstream region of metallothionein-I gene from crucian carp (Carassius cuvieri). Int. J. Biochem. Cell Biol. 39: 832–841 Cerca con Google

Hess J, Angel P, Schorpp-Kistner M (2004) AP-1 subunits: quarrel and harmony among siblings. J. Cell. Sci. 117 (Pt 25): 5965–73 Cerca con Google

Heuchel R, Radtke F, Georgiev O, Stark G, Aguet M, Schaffner W (1994) The trascription factor MTF-1 is essential for basal and haevy metal-induced metallothionein gene expression. EMBO J 13: 2870-2875 Cerca con Google

Hofmann GE, Buckley BA, Airaksinen S, Keen J, Somero GN (2000) The Antarctic fish Trematomus bernacchii lacks heat-inducible heat shock protein synthesis. J. Exp. Biol. 203: 2331–2339 Cerca con Google

Hureau JC (1990) Harpagiferidae. p. 357-363. In O. Gon and P.C. Heemstra (eds.) Fishes of the Southern Ocean. J.L.B. Smith Institute of Ichthyology, Grahamstown, South Africa. 462 p Cerca con Google

Iwami T (1985) Osteology and relationships of the family Channichthyidae. Memoirs of National Institute of Polar Research, Tokyo, E36: 1–69 Cerca con Google

Iwami T and Kock KH (1990) Channichthyidae. p. 381-389. In O. Gon and P.C. Heemstra (eds.) Fishes of the Southern Ocean. J.L.B. Smith Institute of Ichthyology, Grahamstown, South Africa. 462 p Cerca con Google

Jeffares DC, Penkett CJ and Bahler J (2008) Rapidly regulated genes are intron poor. TIG 24: 375-378 Cerca con Google

Jones DT, Taylor WR and Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. CABIOS 8. 3: 275-282 Cerca con Google

Kägi JHR (1991) Overview of metallothionein. Methods Enzymol 205: 613-626 Cerca con Google

Kägi JHR (1993) Evolution, structure and chemical activity of class I metallothioneins: and overview. In Suzuki KT, Imura N, Kimura M (eds) Metallothionein III. Birkhäuser Verlag, Basel, pp 29-55 Cerca con Google

Kägi JHR, Kojima Y, Kissling MM, Learch K (1980) Metallothionein: an exceptional metal thiolate protein. Excrepta medica 72: 223-237 Cerca con Google

Karin M (1985) Metallothioneins: proteins in search of function. Cell 41: 9-10 Cerca con Google

Karin M, Haslinger A, Holtgreve H, Richards RI, Krauter P, Westphal HM, Beato M (1984) Characterization of DNA sequences through which cadmium and glucocorticoid hormones induce human metallothionein-IIA gene. Nature 308: 513-519 Cerca con Google

Katoh K, Misawa K, Kuma K and MiyataT. (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acid Res., 30:3059-3066 Cerca con Google

Kennett JP (1977) Cenozoic evolution of Antarctic glaciation, the circum-Antarctic Ocean, and their impact on global paleoceanography. J. Geophys. Res. 82: 3843–3860 Cerca con Google

Kennett JP, Thunell RC (1977) On Explosive Cenozoic Volcanism and Climatic Implications. Science. 196(4295): 1231-1234 Cerca con Google

Kille P, Hemmings A, Lunney EA (1994) Memories of metallothionein. Biochim Biophys Acta 1205: 151-161 Cerca con Google

Kille P, Kay J, Sweeney GE (1993) Analysis of regulatory elements flanking metallothionein genes in Cd-tolerant fish (pike and stone loach). Biochim. Biophys. Acta 1216: 55–64. Cerca con Google

Kim SK et al. (2005) Transcriptional divergence of the duplicated oxidative stress-responsive genes in the Arabidopsis genome. Plant J. 41: 212–220 Cerca con Google

Kiss AJ, Mirarefi AY, Ramakrishnan S, Zukoski C, DeVries AL, Cheng C-HC (2004) Cold stable eye lens crystallins of the Antarctic nototheniid toothfish Dissostichus mawsoni (Norman). J. Exp. Biol. 207: 4633–4649 Cerca con Google

Klaassen CD, Liu JE Choudhuri S (1999) Metallothionein: an intracellular protein against cadmium toxicity. Ann Rev Pharmacol Toxicol 39: 267-294 Cerca con Google

Klaassen CD, Liu JE Choudhuri S (1999) Metallothionein: an intracellular protein against cadmium toxicity. Ann Rev Pharmacol Toxicol 39: 267-294 Cerca con Google

Klingenberg CP and Ekau W 1996 A combined morphometric and phylogenetic analysis of an ecomorphological trend: pelagization in Antarctic fishes (Perciformes: Nototheniidae). Biol. J. of the Linnean Society 59: 143-177 Cerca con Google

Kojima Y, Binz PA, Kägi JHR (1999) Metallothionein nomenclature and structure. In: Metallothionein IV, Klaassen CD (ed.), Birkhäuser Verlag, Basel, pp. 3-6 Cerca con Google

Kojima Y, Binz PA, Kägi JHR (1999) Metallothionein nomenclature and structure. In: Metallothionein IV, Klaassen CD (ed.), Birkhäuser Verlag, Basel, pp. 3-6 Cerca con Google

Konrad S., Darren P. M. and Cathal S. (2006) Robust inference of positive selection from recombining coding sequences. Bioinformatics. 22(20): 2493-2499 Cerca con Google

Kornegay JR, Schilling JW and Wilson AC (1994) Molecular adaptation of a leaf-eating bird: Stomach lysozyme of the hoatzin. Mol. Biol. Evol. 11: 921-928 Cerca con Google

Kruskal JB (1983) An overview of sequence comparison. In D. Sankoff and J. B. Kruskal, (ed.), Time warps, string edits and macromolecules: the theory and practice of sequence comparison, pp. 1-44 Addison Wesley Cerca con Google

Laity JH, Andrews GK (2007) Understanding the mechanisms of zinc-sensing by metal-response element binding transcription factor-1 (MTF-1). Arch Bochem Biophys. 463(2): 201-10 Cerca con Google

Laws (1984) Antarctic ecology. Accademy Press – London, 855 pp Cerca con Google

Leunissen JA, Van den Hooven HW, and de Jong WW (1990) Extreme differences in charge changes during protein evolution, J. Mol. Evol. 31: 33-39 Cerca con Google

Livermore R, Nankivell A, Eagles G, Morris P (2005) Paleogene opening of Drake Passage. Earth Planet. Sci. Lett. 236: 459–470 Cerca con Google

Logue J.A, DeVries A.L, Fodor E, Cossins A.R (2000) Lipid compositional correlates of temperature-adaptive interspecific differences in membrane structure. J. Exp. Biol. 230: 2105–2113 Cerca con Google

Losos J and Schluter D (2000) Analysis of an evolutionary species-area relationship. Nature 408: 847-850 Cerca con Google

Machado CA and Hey J (2003) The causes of phylogenetic conflict in a classic Drosophila species group. Proc. R Soc. Lond. B. 270: 1193–1202 Cerca con Google

Markert CL (1964) Cellular differentiation – an expression of differential gene function. In Congenital Malformations, pp. 163–174 International Medical Congress Cerca con Google

Maroni G, Otto E, Lastowski-Perry D (1986) Molecular and cytogenetic characterization of a metallothionein gene of Drosophila. Genetics 112: 493-504 Cerca con Google

Matys V, Kel-Margoulis OV, Fricke E, Liebich I, Land S, Barre-Dirrie A et al. (2006) TRANSFAC(R) and its module TRANSCompel(R): Transcriptional gene regulation in eukaryotes. Nucleic Acids Res. 34(Suppl. 1): D108–D110 Cerca con Google

Mayden RL (1992) An emerging revolution in comparative biology and the evolution of North American freshwater fishes In: Systematics, Historical Ecology, and North American Freshwater Fishes. RL. Mayden (ed.). Stanford University Press. p. 864-890 Cerca con Google

McLennan DA, Brooks DR (1991) Parasites and sexual selection: a macroevolutionary perspective. Q Rev Biol. 66(3): 255-86 Cerca con Google

Meera A, Rangarajan L, Bhat S (2009) Computational approach towards finding evolutionary distance and gene order using promoter sequences of central metabolic pathway. Interdiscip Sci Comput Life Sci 1: 128–132 Cerca con Google

Mehra RK, Gaery JR, Butt TR, Gray WR, Winge DR (1989) Candida glabrata metallothioneins. Cloning and sequence of the genes and characterization of proteins. J Biol Chem 264: 19747-19753 Cerca con Google

Mertz W (1981) The essential trace elements. Science 213: 1332-1338 Cerca con Google

Miles AT, Hawksworth GM, Beattie JH, Rodilla V (2000) Induction, regulation, degradation, and biological significance of mammalian metallothioneins. Crit Rev Biochem Mol Biol 35: 35-70 Cerca con Google

Münger K, German UA, Lerch K (1987) The Neuspora crassa metallothionein gene. Regulation of expression and chromosomal location. J Biol Chem 25: 7363-7367 Cerca con Google

Murphy A, Taiz L (1995) Comparison of metallothionein gene expression and nonprotein thiols in ten Arabidopsis ecotypes: Correlation with copper tolerance. Plant Physiol 109: 945-954 Cerca con Google

Murphy A, Taiz L (1997) Correlation between long term K+ leakage and copper tolerance in ten Arabidopsis ecotypes. New Phytol 136: 211-222 Cerca con Google

Murphy A, Zhou J, Goldsbrough BP, Taiz L (1997) Purification and immunological identification of metallothionein 1 and 2 from Arabidopsis thaliana. Plant Physiol 113: 1293-1301 Cerca con Google

Near TJ, Kassler TW, Koppelman JB, Dillman CB, Philipp DP (2003) Speciation in North American black basses, Micropterus (Actinopterygii: Centrarchidae). Evolution. 57(7): 1610-21 Cerca con Google

Near TJ, James JP, Chi-Hing CC (2004) Phylogenetic investigations of Antarctic notothenioid fishes (Perciformes: Notothenioidei) using complete gene sequences of the mitochondrial encoded 16S rRNA. Molecular Phylogenetics and Evolution. 32: 881–891 Cerca con Google

Nelson JS (1984) Fishes of the world. 2nd edition. John Wiley & Sons, Inc., New York. 523 p Cerca con Google

Nelson JS (1994) Fishes of the world, 3rd edn. Wiley, New York Cerca con Google

Ohno S (1970) Evolution by Gene Duplication. New York: Springer Cerca con Google

Olsson PE, Kling P, Erkell LJ, Kille P (1995) Structural and functional analysis of the rainbow trout (Oncorhyncus mykiss) metallothionein-A gene. Eur. J. Biochem. 230: 344–349. Cerca con Google

Ostbye TK, Wetten OF, Tooming-Klunderud A, Jakobsen KS, Yafe A, Etzioni S, Moen T, Andersen O (2007) Myostatin (MSTN) gene duplications in Atlantic salmon (Salmo salar): evidence for different selective pressure on teleost MSTN-1 and -2. Gene. 403(1-2): 159-69 Cerca con Google

Otsuka F, Iwamatsu A, Suzuki K, Ohsawa M, Hamer DH and Koizumi S (1994) J. Biol. Chem. 269: pp. 23700–23707 Cerca con Google

Otsuka F, Ohno S, Suzuki K, Takahashi K, Ohsawa M, Koizumi S (2007) Mechanism of metallothionein gene activation mediated by heavy-metal dependent transcription factor MTF-1. Yakugaku Zasshi. 127(4): 675-84 Cerca con Google

Palmiter R D (1994) Regulation of metallothionein genes by heavy metals appears to be mediated by a sensitive inhibitor that interacts with a costitutively active transcription factor, MTF 1. Proc Natl Acad Sci USA 91: 1219-1223 Cerca con Google

Palmiter RD (1998) The elusive function of metallothioneins. Proc Natl Acad Sci USA 95: 8428-8430 Cerca con Google

Paluh JL, Killilea AN, Detrich III HW, Downing KH (2004) Meiosis-specific failure of cell cycle progression in fission yeast by mutation of a conserved β-tubulin residue. Mol. Biol. Cell. 15: 1160–1171 Cerca con Google

Peña MA, Koch KA, Thiele DJ (1998) Dynamic regulation of copper uptake and detoxification in Saccharomices cerevisiae. Mol Cell Biol 18: 2514-2523 Cerca con Google

Pollard DA, Iyer VN, Moses AM and Eisen MB (2006) Widespread discordance of gene trees with species tree in Drosophila: evidence for incomplete lineage sorting. PLoS Genet. 2: e173 Cerca con Google

Poncelet AC, Schnaper HW (2001) Sp1 and Smad proteins cooperate to mediate transforming growth factor-beta 1-induced alpha 2(I) collagen expression in human glomerular mesangial cells. J. Biol. Chem. (United States) 276 (10): 6983–92 Cerca con Google

Pond SK, Muse SV (2005) Site-to-site variation of synonymous substitution rates. Mol Biol Evol. 22(12): 2375-85 Cerca con Google

Pond SL, Frost SD, Muse SV (2005) HyPhy: hypothesis testing using phylogenies. Bioinformatics. 21(5): 676-9 Cerca con Google

Posada D and Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14 (9): 817-818 Cerca con Google

Powell JR, Caccone A (1989) Intraspecific and interspecific genetic variation in Drosophila. Genome 31(1): 233-8 Cerca con Google

Prirodina VP (2000) On the systematic position of littoral and deep-water species of the genus Harpagifer (Harpagiferidae, Notothenioidei) from Macquarie Island with a description of two new species. J. Ichthyol. 40: 488-494 Cerca con Google

Prirodina VP (2002) Redescription of littoral and deep-sea species of the genus Harpagifer (Harpagiferidae, Notothenioidei) off islands of the Indian Ocean Sector of the Southern Ocean with the description of a new species. J. Ichthyol. 42: 701-712 Cerca con Google

Prirodina VP (2004) Harpagifer crozetensis sp. nova (Harpagiferidae, Notothenioidei), a new species from the littoral of the Crozet Islands (Indian Ocean Sector of the Antarctic). J. Ichthyol. 44: 395-399 Cerca con Google

Radtke F, Heuchel R, Georgiev O, Hergersberg M, Gariglio M, Dembic Z, Schaffner W (1993) Cloned transcription factor MTF-1 activates the mouse metallothionein I promoter. EMBO J 12: 1355-1362 Cerca con Google

Rambaut A (2000) Estimating the rate of molecular evolution: Incorporating non-contemporaneous sequences into maximum likelihood phylogenies. Bioinformatics 16: 395–399 Cerca con Google

Rambaut A, Drummond AJ (2003) Tracer version 1.2 [computer program]. Available: http://evolve.zoo.ox.ac.uk. Accessed 31 January 2006 Vai! Cerca con Google

Ren H, Xu M, He P, Muto N, Itoh N, Tanaka K, Xing J, Chu M (2006) Cloning of crucian carp (Carassius cuvieri) metallothionein-II gene and characterization of its gene promoter region. Biochemical and Biophysical Research Communications 342: 1297–1304 Cerca con Google

Robert EC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Research 32(5): 1792-97 Cerca con Google

Rodriguez F, Oliver JF, Marin A and Medina JR (1990) The general stochastic model of nucleotide substitutions. J. Theor. Biol. 142: 485-501 Cerca con Google

Roesijadi G (1996) Metallothionein and its role in toxic metal regulation. Comp Biochem Physiol 113: 117-123 Cerca con Google

Römisch K, Collie N, Soto N, Logue J, Lindsay M, Scheper W, Cheng C-HC (2003) Protein translocation across the endoplasmic reticulum membrane in cold-adapted organisms. J. Cell Sci. 116: 2875–2883 Cerca con Google

Ronquist F and Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572-1574 Cerca con Google

Rozen S and Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics Methods and Protocols: Methods in Molecular Biology. Humana Press, Totowa, NJ, pp 365-386 Cerca con Google

Sadhu C, Gedamu L (1988) Regulation of human metallothionein (MT) genes. Differential expression of MT-1F, MT-1G e MT-2A genes in the hepatoblastoma cell line (HepG2). J Biol Chem 263: 2679-2684 Cerca con Google

Samson SLA, Gedamu L (1998) Molecular analyses of metallothionein gene regulation. Progr Nucleic Acid Res 59: 257-288 Cerca con Google

Saydam N, Adams TK, Steiner F, Schaffner W, Freedman JH (2002) Regulation of metallothionein transcription by the metal-responsive transcription factor MTF-1: identification of signal transduction cascades that control metal-inducible transcription.. J Biol Chem 277: 20438-20445 Cerca con Google

Saydam N, Georgiev O, Nakano MY, Greber UF, Schaffner W. (2001) Nucleo-cytoplasmic trafficking of metal-regulatory transcription factor 1 is regulated by diverse stress signals. J Biol Chem 276: 25487-2595 Cerca con Google

Scudiero R, Capasso C, Carginale V, Riggio M, Capasso A, Ciaramella M, et al. (1997a) PCR amplification and cloning of metallothionein complementary DNAs in temperate and Antarctic sea urchin characterized by a large difference in egg metallothionein content. Cell Mol Life Sci 53: 472–477 Cerca con Google

Scudiero R, Carginale V, Capasso C, Riggio M, Filosa S, Parisi E (2001) Structural and functional analysis of metal regulatory elements in the promoter region of genes encoding metallothionein isoforms in the Antarctic fish Chionodraco hamatus (icefish). Gene 274: 199–208 Cerca con Google

Scudiero R, Carginale V, Riggio M, Capasso C, Capasso A, Kille P, et al. (1997b) Difference in hepatic metallothionein content in Antarctic red-blooded and haemoglobinless fish: Undetectable metallothionein levels in haemoglobinless fish is accompanied by accumulation of untranslated metallothionein mRNA. Biochem J 322: 207–211 Cerca con Google

Scudiero R, Temussib PA, Parisi E (2005) Fish and mammalian metallothioneins: a comparative study. Gene 345: 21–26 Cerca con Google

Shaw KL (1998) Species and the diversity of natural groups. Pp. 44–56 in D. J. Howard, and S. H. Berlocher, eds. Endless forms: species and speciation. Oxford Univ. Press, Oxford, England Cerca con Google

Shug J, Overton GC (1997) Tess: Transcription element search software on the www. University of Pennsylvania, PA Cerca con Google

Silar P, Theodore L, Mokdad R, Erraiss NE, Cadic A, Wegnez M (1990) Metallothionein Mto gene of Drosophila melanogaster: structure and regulation. J Mol Biol 215: 217-224 Cerca con Google

Smirnova IV, Bittel DC, Ravindra R, Jiang H, Andrews GK (2000) Zinc and cadmium can promote rapid nuclear translocation of metal response element-binding transcription factor-1. J Biol Chem 275: 9377-9384 Cerca con Google

Somero GN, DeVries AL (1967) Temperature tolerance of some Antarctic fishes. Science. 156: 257–258 Cerca con Google

Stürzenbaum SR, Kille P, Morgan AJ (1998) The identification, cloning and characterization of earthworm metallothionein. FEBS Lett 431: 437-442 Cerca con Google

Swofford DL (2003) PAUP*: Phylogenetic analysis using parsimony (and other methods), version 4 [computer program]. Sunderland (Massachusetts): Sinauer Associates Cerca con Google

Syring RA, Brouwer TH, Brouwer M (2000) Cloning and sequencing of cDNAs encoding for a novel copper-specific metallothionein and two cadmium-inducible metallothioneins from the blue crab Callinectes sapidus. Comp Biochem Physiol 125C: 325-332 Cerca con Google

Templeton AR (2001) Using phylogeographic analyses of gene trees to test species status and processes. Mol. Ecol. 10: 779–791 Cerca con Google

Thornalley PJ, Vašák M (1985) Possible role for metallothionein in protection against radiation-induced oxidative stress. Kinetics and mechanism of its reaction with superoxide and hydroxyl radicals. Biochim Biophys Acta 827: 36-44 Cerca con Google

Thorne JL, Kishino H, Painter IS (1998) Estimating the rate of evolution of the rate of molecular evolution. Mol Biol Evol 15: 1647–1657 Cerca con Google

Tian B, Hu J, Zhang H, Lutz CS (2005) A large-scale analysis of mRNA polyadenylation of human and mouse genes. Nucleic Acids Res. 33(1): 201-12 Cerca con Google

Uchida Y, Takio K, Titani K, Ihara Y, Tomonaga M (1991) The growth inhibitory factor that is deficient in the Alzheimer’s disease brain is a 68 amino acid metallothionein-like protein. Neuron 7: 337-347 Cerca con Google

Vallee BL (1987) Implications and inferences of metallothionein structure. Experientia Suppl 52: 5-16 Cerca con Google

Wheelan SJ., Church DM, Ostell JM (2001) Spidey: A tool for mRNA-to-Genomic Alignment. Genome Research. 11: 1952–1957 Cerca con Google

Wilgenbusch JC, Warren DL, Swofford DL (2004) AWTY: A system for graphical exploration of MCMC convergence in Bayesian phylogenetic inference Cerca con Google

Williams RC, Correia JJ, DeVries AL (1985) Formation of microtubules at low temperature by tubulin from Antarctic fishes. Biochem. 24: 2790–2798 Cerca con Google

Winge DR (1998) Copper-regulatory domain involved in gene expression. Prog Nucleic Acid Res Mol Biol 58: 165-195 Cerca con Google

Wray GA, Hahn MW, Abouheif E, Balhoff JP, Pizer M (2003) The evolution of transcriptional regulation in eukaryotes. Mol Biol Evol 20: 1377–1419 Cerca con Google

Yan CH, Chan KM (2002) Characterization of zebrafish metallothionein gene promoter in a zebrafish caudal fin cell-line, SJD. 1. Mar. Environ. Res. 54: 335–339 Cerca con Google

Yan CH, Chan KM (2004) Cloning of zebrafish metallothionein gene and characterization of its gene promoter region in HepG2 cell line. Biochim. Biophys. Acta 1679: 47–58 Cerca con Google

Yang Z (2007) PAML 4: a program package for phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution 24: 1586-1591 Cerca con Google

Yang Z, Nielsen R, Goldman N and Pedersen A-MK (2000b) Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 155: 431-449 Cerca con Google

Yang Z, Rannala B (1997) Bayesian phylogenetic inference using DNA sequences: A Markov Chain Monte Carlo Method. Mol Biol Evol 14: 717–724 Cerca con Google

Zafarullah M, Bonham K, Gedamu L (1988) Structure of the rainbow trout metallothionein B gene and characterization of its metal–responsive region. Mol. Cell Biol. 8: 4469–4476 Cerca con Google

Zhang B, Egli D, Georgiev O, Schaffner W (2001) The Drosophila homolog of mammalian zinc finger factor MTF-1 activates transcription in response to heavy metals. Mol Cell Biol 21: 4505-4514 Cerca con Google

Zuckerkandl E (1976) Evolutionary processes and evolutionary noise at the molecular level. I. Functional density in proteins. J Mol Evol. 7(3): 167-83 Cerca con Google

Zuckerkandl E, Pauling L (1962) Molecular disease, evolution and genic heterogeneity. In: Kasha M, Pullman B, editors. Horizons in biochemistry. New York: Academic Press. pp. 189–225 Cerca con Google

Zwickl DJ (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Ph.D. dissertation, The University of Texas at Austin Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record