Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Giacomini, Lorenza (2010) GEOLOGICAL MAPPING AND ANALYSIS OF DAEDALIA PLANUM LAVA FIELD (MARS). [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
9Mb

Abstract (inglese)

Volcanism is the most important rock-forming processes of the planetary surfaces and represents one of the main clues to investigate the chemical composition of the interior and the thermal history of a planet.
Our study has been focused on the Daedalia Planum volcanic region, located to south-west of Arsia Mons, where some of the longest lava flows on Mars were emplaced. THEMIS, MOC and HiRISE images were analyzed in order to perform a stratigraphic and morphological analysis of the area and realize a Daedalia Planum geological map where different flow units are represented.
Several features observed on the flow surface have been interpreted as related to inflation processes on the basis of several similarities with the morfologies of the inflated terrestrial Payen Matru flows (Argentina). This suggests that inflation process is quite common for the Daedalia Planum field, implying that the inflation emplacement mechanism on Martian flows could be more frequent than previously supposed and, consequently, effusion rates and rheological properties of Martian lavas more variable.
In addition, a comparative study performed between the mounds detected on Daedalia Planum and Elysium Planitia regions seems to further confirm the tumuli nature of the Daedalia Planum features and thus the presence of inflated flows in this volcanic field.
The OMEGA data reveal that Daedalia Planum lavas have a spectral response coherent with a basaltic composition. In addition the Spectral Angle Mapper (SAM) classification obtained from the OMEGA data highlights that the flows are characterized by distinctive spectral responses, which should depend on non-compositional factors, like different surface textures of flows but also different mineralogy or rock texture, such as the presence of glass, crystal size or crystal isoorientation.

Abstract (italiano)

Il vulcanismo è uno dei più importanti processi che interessano la superficie di un pianeta e rappresenta una delle chiavi per investigare la composizione chimica del suo interno nonché la sua storia termica. Il nostro studio si è focalizzato sul campo vulcanico di Daedalia Planum, a sud ovest di Arsia Mons, dove si trovano alcune delle più lunghe colate conosciute su Marte. Varie immagini di THEMIS, MOC e HiRISE sono state analizzate con l'obiettivo di studiare questa regione sia dal punto di vista stratigrafico che morfologico e di creare una mappa geologica della regione. Da questa analisi sono state individuate varie forme interpretate come collegate al processo di inflation e il confronto con le colate inflate terrestri del Payen (Argentina) sembrano confermare tale ipotesi. Ciò suggerisce che l’inflation è piuttosto comune nel capo lavico di Daedalia Planum e che, in generale, questo processo interessi più colate di Marte di quanto supposto finora. Di conseguenza i tassi di eruzione e le proprietà reologiche delle lave su Marte potrebbero essere molto più variabili.
Uno studio comparativo tra le forme a cupola individuate su Daedalia Planum ed Elysium Planitia confermerebbe ulteriormente che su Daedalia Planum vi è effettivamente la presenza di tumuli e, quindi, di colate laviche inflate.
Infine, prendendo in considerazione i dati OMEGA della regione, si è appurato che le lave presenti su Daedalia Planum hanno una risposta spettrale coerente con una composizione basaltica. Le classificazioni SAM ottenute da dati OMEGA evidenziano, inoltre, come le colate della regione siano effettivamente caratterizzate da distinte risposte spettrali, verosimilmente attribuibili a fattori non composizionali quali la diversa tessitura superficiale o la differente mineralogia e tessitura della roccia, come la presenza di vetro, la dimensione dei cristalli o la loro isoorientazione.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Massironi, Matteo
Dottorato (corsi e scuole):Ciclo 22 > Scuole per il 22simo ciclo > SCIENZE DELLA TERRA
Data di deposito della tesi:NON SPECIFICATO
Anno di Pubblicazione:28 Gennaio 2010
Parole chiave (italiano / inglese):Volcanism, Daedalia Planum, geological mapping, remote sensing
Settori scientifico-disciplinari MIUR:Area 04 - Scienze della terra > GEO/03 Geologia strutturale
Area 04 - Scienze della terra > GEO/08 Geochimica e vulcanologia
Struttura di riferimento:Dipartimenti > Dipartimento di Geoscienze
Codice ID:2678
Depositato il:29 Set 2010 11:30
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Anderson S.W., Stofan E.R., Smrekar S.E., Guest J.E. and Wood, B., 1999. Pulsed inflation of pahoehoe lava flows: implications for flood basalt emplacement. Earth and Planetary Science Letters, 168, 7-18. Cerca con Google

Arvidson R., Boyce J., Chapman M., Cintala M., Fulchignoni M., Moore H., Neukum G., Schulz P., Soderblom L., Strom R., Woronow A. and Young R., 1979. Standard Techniques for Presentation and Analysis of Crater Size–frequency Data. Icarus, 37, 467-474. Cerca con Google

Balme, M. R., Gallagher, C., 2009. An equatorial periglacial landscape on Mars. Earth and Planet. Sci. Lett.,285(1-2),1-15. Cerca con Google

Bandfield J.L., Hamilton V.E., Christensen P.R., 2000. A Global View of Martian Surface Compositions from MGS-TES. Science, 287, 1626-1629. DOI: 10.1126/science.287.5458.1626. Cerca con Google

Basaltic Volcanism Study Project, 1981. Basaltic Volcanism on the Terrestrial Planets. Pergamon Press, New York, 1286 p. Cerca con Google

Berman D. C., Hartmann W.K., 2002. Recent Fluvial, Volcanic, and Tectonic Activity on the Cerberus Plains of Mars. Icarus,159(1), 1-17. Cerca con Google

Bibring, J.-P., Combes, M., Langevin, Y., Soufflot, A., Cara, C., Drossart, P., Encrenaz, Th., Erard, S., Forni, O., Gondet, B., Ksanfomalfty, L., Lellouch, E., Masson, Ph., Moroz, V., Rocard, F., Rosenqvist, J., Sotin, C., 1989. Results from the ISM experiment. Nature 341, 591-593doi:10.1038/341591a0. Cerca con Google

Bibring, J.-P., Soufflot, A., Berthé, M., Langevin, Y., Gondet, B., Drossart, P., Bouyé, M., Combes, M., Puget, P., Semery, A. et al., 2004. OMEGA: Observatoire pour la Mineralogie, l’Eau, les Glaces et l’Activite. European Space Agency Special Publication ESA SP-1240, 37–49. Cerca con Google

Bibring, J.-P., Bibring, J-P, Langevin, Y., Gendrin, A., Gondet, B., Poulet, F., Berthé, M., Soufflot, A., Arvidson, R., Mangold, N, Mustard, J., Drossart, P., 2005. Mars Surface Diversity as Revealed by the OMEGA/Mars Express Observations. Science, 307, 1576; DOI: 10.1126/science.1108806. Cerca con Google

Brivio P.A., Lechi G., Zilioli E., 2006. Principi e metodi di telerilevamento. CittàStudi, DeAgostini editore, pp. 525. Cerca con Google

Burns, R.G., 1993. Mineralogical applications of crystal field theory. Cambridge University Press, Cambridge, pp. 551. Cerca con Google

Burr D. M., Grier J. A., McEwen A. S., Keszthelyi L. P., 2002a. Repeated Aqueous Flooding from the Cerberus Fossae: Evidence for Very Recently Extant, Deep Groundwater on Mars. Icarus, 159(1), 53-73. Cerca con Google

Burr, D. M., McEwen, A. S., Sakimoto, S. E. H., 2002b. Recent aqueous floods from the Cerberus Fossae, Mars. Geophys. Res. Lett., Volume 29, Issue (1), 13-1, DOI 10.1029/2001GL013345. Cerca con Google

Burr, D. M., Soare, R.J., Wan Bun Tseung, J., Emery, J. P., 2005. Young (late Amazonian), near-surface, ground ice features near the equator, Athabasca Valles, Mars. Icarus,178(1), 56-73. Cerca con Google

Burr, D. M., Tanaka, K. L., Yoshikawa, K., 2009. Pingos on Earth and Mars. Planetary and Space Science,57(5-6), 541-555. Cerca con Google

Caprarelli, G., Leitch, E.C., 2009. Volcanic and structural history of the rocks exposed at Pickering Crater (Daedalia Planum, Mars). Icarus, 202, 453–461. Cerca con Google

Carli C., 2009. Analisi spettroscopica nel VNIR di rocce ignee. Caratterizzazione composizionale della superficie dei pianeti terrestri. PhD Thesis, Univ. of Parma, Italy. Cerca con Google

Carr, M.H., Greeley, R., Blasius, K.R., Guest, J.E., Murray, J.B., 1977. Some Martian volcanic features as viewed from the Viking orbiters. J. Geophys. Res., 82, 3985–4015. Cerca con Google

Carr M., 2006. The Surface of Mars. Cambridge University Press, New York. Cerca con Google

Cashman K., Pinkerton H. and Stephenson J., 1998. Introduction to special section: Long lava flows. J. Geophys. Res., 103, 27281– 27289. Cerca con Google

Christensen, P.R., Bandfield, J.L., Smith, M.D., Hamilton, V.E., Clark R.N., 2000. Identification of a basaltic component on the Martian surface from Thermal Emission Spectrometer data. J. Geophys. Res., 105, E4, 9609-9621. Cerca con Google

Christensen, P. R., McSween, H. Y., Bandfield, J. L., Ruff, S. W., Rogers, A. D., Hamilton, V. E., Gorelick, N., Wyatt, M. B., Jakosky, B. M., Kieffer, H. H. et al., 2005. Evidence for magmatic evolution and diversity on Mars from infrared observations. Nature, 436 (7052), 882. Cerca con Google

Christiansen E.H., 1989. Lahars in the Elysium region of Mars. Geology, 17(3), 203-206. Cerca con Google

Cloutis, E.A., Gaffey, M.J., 1991. Pyroxene spectroscopy revisited: spectral-compositional combinations and relationships to geothermometry. J. Geophys. Res., 96, 22809-22826. Cerca con Google

Craig, M.A., Cloutis, E.A., Reddy, V., Bailey, D.T., Gaffey, M.J., 2008. The effects of grain size, <10 μm - 4.75 mm, on the reflectance spectrum of planetary analogs from 0.35-2.5 μm. Lun. Planet. Sci. XXXVIII, #1356. Cerca con Google

Crown, D.A., Pieters, C.M., 1987. Spectral properties of plagioclase and pyroxene mixtures and the interpretation of Lunar soil spectra. Icarus, 72, 492-506. Cerca con Google

de Pablo, M. Ángel, Komatsu, G., 2009. Possible pingo fields in the Utopia basin, Mars: Geological and climatical implications. Icarus, 199(1), 49-74. Cerca con Google

Dragoni M., Piombo A. and Tallarico A., 1995. A model for the formation of lava tubes by roofing over a channel. J. Geophys. Res., 100, 8435-8447. Cerca con Google

Hartmann W.K., Malin M., McEwen A., Carr M., Soderblom L., Thomas P., Danielson E., James P., Veverka J., 1999. Evidence for recent volcanism on Mars from crater counts. Nature,397 (6720), 586-589. Cerca con Google

Hartmann, W.K., Berman, D.C., 2000. Elysium Planitia lava flows: Crater count chronology and geological implications. J. Geophys Res., 105(E6), 15011-15026. Cerca con Google

Farrand, W., Folkner, W., Golombek, M., Gorevan, S., Grant, J.A., Greeley, R., Grotzinger, J., Haskin, L., Herkenhoff, K.E., Hviid, S., Johnson, J., Klingelho¨ fer, G., Knoll, A., Landis, G., Lemmon, M., Li, R., Madsen, M.B., Malin, M.C., McLennan, S.M., McSween, H.Y., Ming, D.W., Moersch, J., Morris, R.V., Parker, T., Rice Jr., J.W., Richter, L., Rieder, R., Sims, M., Smith, M., Smith, P., Soderblom, L.A., Sullivan, R., Wa¨nke, H., Wdowiak, T., Wolff, M., Yen A., 2004. The Spirit Rover’s Athena Science Investigation at Gusev Crater, Mars. Science, 305, 794-799. DOI: 10.1126/science.3050794 Cerca con Google

Fink J.H. and J.R. Zimbelman, 1986. Rheology of the 1983 Royal Garden basalt flows, Kilauea volcano, Hawaii. Bull. Volcanol., 48, 87–96. Cerca con Google

Fink J.H. and Griffiths R.W., 1990. Radial spreading of viscous-gravity currents with solidifying crust. J. Fluid Mech., 221, 485– 500. Cerca con Google

Fuller E.R. and Head J.W., 2002. Evidence from MOC and MOLA for Pre-aureole Olympus Mons Volcanism. American Geophysical Union. Abstract P32A-07. Cerca con Google

Garry W.B., Zimbelman J.R. and Gregg T.K.P., 2007. Morphology and emplacement of a long channeled lava flow near Ascraeus Mons Volcano, Mars. J. Geophys. Res., 112, E08007. Cerca con Google

Germa A., Quidelleur X., Gillot P.Y. and Tchilinguirian P., 2007. Volcanic evolution of the back-arc complex of Payun Matru (Argentina) and its geodynamic implications for caldera-forming eruption in a complex slab geometry setting. IUGG 2007, Perugia, Italy. Abstract 10028. Cerca con Google

Giacomini, L., Massironi, M., Martellato, E., Pasquarè, G., Frigeri, A., Cremonese, G., 2009. Inflated flows on Daedalia Planum (Mars)? Clues from a comparative analysis with the Payen volcanic complex (Argentina). Placet. Space Sci., 57(5-6), 556-570. Cerca con Google

Glaze L.S., Baloga S. and Stofan E.R., 2003. A methodology for constraining lava flow rheologies with MOLA. Icarus, 165, 26– 33. Cerca con Google

Glaze L. S., Anderson S. W., Stofan E. R., Baloga S., Smrekar S. E., 2005. Statistical distribution of tumuli on pahoehoe flow surfaces: Analysis of examples in Hawaii and Iceland and potential applications to lava flows on Mars. JGR, 110(B8), CiteID B08202. Cerca con Google

Glaze L.S., Baloga S.M., Garry W. B., Fagents S. A., Parcheta C., 2009. A hybrid model for leveed lava flows: Implications for eruption styles on Mars. JGR,114(E7), CiteID E07001. Cerca con Google

Gonzáles Díaz E.F., 1972. Descripción Geológica de la Hoja 30 d (Payún-Matru), Provincia de Mendoza. Dirección Nacional de Geología y Minería. Bol. 130. Buenos Aires. Cerca con Google

Gregg T.K.P. and Fink J.H., 1996. Quantification of extraterrestrial lava flow effusion rates through laboratory simulations, J. Geophys. Res., 101, 16891– 16900. Cerca con Google

Gregg T.K.P. and. Zimbelman J.P, 2000. Volcanic vestiges: Pulling it together, in Environmental Effects on Volcanic Eruptions: From Deep Oceans to Deep Space, edited by J.R. Zimbelman and T.K.P. Gregg, pp. 243–251, Springer, New York. Cerca con Google

Griffes J. L., Arvidson R. E., Poulet F., and Gendrin A.; 2007. Geologic and spectral mapping of etched terrain deposits in northern Meridiani Planum. J. Geophys. Res., 112, E08S09, doi:10.1029/2006JE002811. Cerca con Google

Hartmann W.K., Malin M., McEwen A., Carr M., Soderblomk L., Thomas P., Danielson E., James P.and Veverka J., 1999. Evidence for recent volcanism on Mars from crater counts. Nature, 397, 586-589. Cerca con Google

Hartmann W.K., 1999. Martian cratering VI: Crater count isochrones and evidence for recent volcanism from Mars Global Surveyor. Meteoritics & Planetary Science, 34, 167−177. Cerca con Google

Hartmann, W.K., Berman, D.C., 2000. Elysium Planitia lava flows: Crater count chronology and geological implications. J. Geophys Res., 105(E6), 15011-15026. Cerca con Google

Hartmann, W.K., 2005. Martian cratering. 8. Isochron refinement and the chronology of Mars. Icarus, 174, 294–320. Cerca con Google

Head J.W. and Marchant D.R., 2003. Cold-based mountain glaciers on Mars: Western Arsia Mons. Geology, 31, 641-644. Cerca con Google

Hiesinger H., Head J.W. and Neukum G., 2007. Young lava flows on the eastern flank of Ascraeus Mons: Rheological properties derived from High Resolution Stereo Camera (HRSC) images and Mars Orbiter Laser Altimeter (MOLA) data. J. Geophys. Res., 112, CiteID E05011. Cerca con Google

Hon K., Kauahikaua J., Denlinger R. and Mackay K., 1994. Emplacement and inflation of pahoehoe sheet flows; observations and measurements of active lava flows on Kilauea Volcano, Hawaii. GSA Bulletin, 106, 351-370. Cerca con Google

Hulme G., 1974. The interpretation of lava flow morphology. Geophys. J. R. Astron. Soc., 39361– 39383. Cerca con Google

Hulme G., 1976. The determination of the rheological properties and effusion rate of an Olympus Mons lava. Icarus, 27, 207–213. Cerca con Google

Inbar M. and Risso C., 2001. A morphological and morphometric analysis of a high density cinder cone volcanic field-Payun Matru, south-central Andes, Argentina. Z. Geomorph. N.F., 45, 321-343. Cerca con Google

Keszthelyi, L.P., 1995. A preliminary thermal budget for lava tubes on the Earth and planets. J. Geophys. Res., 100, 20411 – 20420. Cerca con Google

Keszthelyi L.P. and Self S., 1998. Some physical requirements for the emplacement of long basaltic lava flows. J. Geophys. Res., 103, 27447–27464. Cerca con Google

Keszthelyi L., McEwen A.S. and Thordarson T., 2000. Terrestrial analogs and thermal models for Martian flood lavas. J. Geophys. Res., 105, 15027-15050. Cerca con Google

Keszthelyi L., Thordarson T., McEwen A., Haack H., Guibaud N., Self S., Rossi M.J., 2004. Icelandic analogs to Martian flood lavas. Geochem. Geophys. Geosyst, 5, Q11014, doi:10.1029/2004GC00758. Cerca con Google

Keszthelyi L.P and McEwen A., 2007. Comparison of flood lavas on Earth and Mars. In: “The Geology of Mars: evidence from earth based analogues”. M. Chapman (Ed.), 126-150. Cerca con Google

Keszthelyi L., Jaeger W., McEwen A., Tornabene L., Beyer R.A., Dundas C. and Milazzo M., 2008. High Resolution Imaging Science Experiment (HiRISE) images of volcanic terrains from the first 6 months of the Mars Reconnaissance Orbiter Primary Science Phase. J. Geophys. Res., 113, CiteID E04005. Cerca con Google

Kilburn C.J. and Lopes R.M.C., 1991.General patterns of flow field growth: Aa and blocky lavas. J. Geophys. Res., 96, 19721– 19732. Cerca con Google

Knudsen J.G. and Katz D.L., 1958. Fluid Dynamics: Heat Transfer, McGraw-Hill, New York, 81– 82. Cerca con Google

Kruse, F.A., Lefkoff, A.B., Boardman, J.B., Heidebrecht, K.B., Shapiro, A.T., Barloon, P.J., Goetz, A.F.H., 1993. The Spectral Image Processing System (SIPS) - Interactive Visualization and Analysis of Imaging spectrometer Data. Remote Sensing of the Environment, 44,. 145-163. Cerca con Google

Lawson D.E., 1982. Mobilization, Movement and Deposition of Active Subaerial Sediment Flows, Matanuska Glacier, Alaska. Journal of Geology, 90, 279-300. Cerca con Google

Llambías E.J., 1966. Geología y petrografía del volcán Payún Matrú. Acta Geológica Lilloana, 8, 265-310. Cerca con Google

Malin, M. C. (1976). Age of Martian channels. J. Geophys. Res., 81(26), 1976, pp. 4825-4845. Cerca con Google

Mangold, N., Gendrin, A., Gondet, B., LeMouelic, S., Quantin, C., Ansan, V., Bibring, J.-P., Langevin, Y., Masson, Ph., Neukum, G., 2008. Spectral and geological study of the sulfate-rich region of West Candor Chasma, Mars. Icarus 194, 519–543. Cerca con Google

McBirney A.R. and Mursae T., 1984. Rheologic properties of magmas. Annu. Rev. Earth Planet. Sci., 12337–12357. Cerca con Google

McEwen A.S., Preblich B.S., Turtle E.P., Artemieva N.A., Golombek M.P., Hurst M., Kirk R.L., Burr D.M. and Christensen P.R., 2005. The rayed Crater Zunil and interpretations of small impact craters on Mars. Icarus, 176, 351–381. Cerca con Google

McSween Jr., H.Y., Taylor, G.J., Wyatt, M.B., 2009. Elemental Composition of the Martian Crust. Science 324, 736-739. DOI: 10.1126/science.1165871 Cerca con Google

Melchor R. and Casadío S., 1999. Hoja Geológica 3766-III La Reforma, provincia de La Pampa. Secretaría de Minería de la Nación, SEGEMAR, Boletín Nº 295, 63p. Buenos Aires. Cerca con Google

Melosh H.J., 1989. Impact Cratering: A Geologic Process. Oxford Univ. Press. Cerca con Google

Moore H.J., Arthur D.W.G. and Schaber G.G., 1978. Yield Strengths of Flows on the Earth, Moon, and Mars. Proc. Lunar Planet. Sci. Conf., 9th, 3351-3378. Cerca con Google

Moore H.J., 1987. Preliminary estimates of the rheological properties of 1984 Mauna Loa lava, in Volcanism in Hawaii. Edited by R.W. Decker, T.L. Wright, and P.H. Stauffer, U.S. Geol. Surv. Prof. Pap., 2, 1569– 1588. Cerca con Google

Mouginis-Mark P. J., Wilson L., Head J. W., Brown S. H., Hall J. L., Sullivan K. D., 1984. Elysium Planitia, Mars - Regional geology, volcanology, and evidence for volcano-ground ice interactions. Earth, Moon, and Planets, 30, 149-173. Cerca con Google

Mouginis-Mark P., Tatsumura Yoshioka M., 1998. The long lava flows of Elysium Planita, Mars. JGR, 103(E8), 19389-19400. Cerca con Google

Murase T. and McBirney A.R., 1973. Properties of Some Common Igneous Rocks and Their Melts at High Temperatures. Geol. Soc. Amer. Bull, 84, 3563-3592. Cerca con Google

Murray J.B., Muller J., Neukum G.,Werner S.C., van Gasselt S., Hauber E., Markiewicz W.J.,Head III J.W., Foing B.H., Page D, Mitchell K.L., Portyankina G. and The HRSC Co-Investigator Team, 2005. Evidence from the Mars Express High Resolution Stereo Camera for a frozen sea close to Mars' equator. Nature, 434, 352 – 356. Cerca con Google

Murray, J.B., van Wyk de Vries B., Marquez A., Williams D. A., Byrne P., Muller J., Kim J., 2009. Late-stage water eruptions from Ascraeus Mons volcano, Mars: Implications for its structure and history. Earth and Placet. Sci. Lett., In Press. Cerca con Google

Mustard, J.F., Poulet, F., Gendrin, A., Birbring, J.B., Langevin, Y., Gondet, B., Mangold, N., Bellucci, G., Altieri, F., 2005. Olivine and Pyroxene diversity in the crust of Mars. Science, 307, 1594- 1597. Cerca con Google

Mustard, J.F., Murchie, S.L., Pelkey, S.M., Ehlmann, B.L., Milliken, R.E., Grant, J.A., Bibring, J.P., Poulet, F., Bishop, J., Dobrea, E.N., Roach, L., Seelos, F., Arvidson, R.E., Wiseman, S., Green, R., Hash, C., Humm, D., Malaret, E., McGovern, J.A., Seelos, K., Clancy, T., Clark, R., Des Marais, D., Izenberg, N., Knudson, A., Langevin, Y., Martin, T., McGuire, P., Morris, R., Robinson, M., Roush, T., Smith, M., Swayze, G., Taylor, H., Wolff, T.T.M., 2008. Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument. Letters Nature, ,305-309. doi:10.1038/nature07097. Cerca con Google

Neukum G., Ivanov B.A. and Hartmann W.K., 2001. Cratering Records in the Inner Solar System in Relation to the Lunar Reference System. Space Science Reviews, 96, p. 55-86. Cerca con Google

Neukum G., Jaumann R., Hoffmann H., Hauber E., Head J.W., Basilevsky A.T., Ivanov B.A., Werner S.C., Van Gasselt S., Murray J.B. and Mccord T., 2004. Recent and episodic volcanic and glacial activity on Mars revealed by the High Resolution stereo camera. Nature, 432, 971-979. Cerca con Google

Oberst J., Schwarz G., Behnke T., Hoffmann H., Matz K.–D., Flohrer J., Hirsch H., Roatsch T., Scholten F., Hauber E., Brinkmann B., Jaumann R., Williams D., Kirk R., Duxbury T., Leu C. and Neukum G., 2008. The imaging performance of the SRC on Mars Express. Planetary and Space Science, 56, 473–491. Cerca con Google

Orowan E., 1949. Remark from joint meeting of British Glaciological Society, British Rheologists’ Club, and Institute of Metals, J. Glaciol., 1, 231. Cerca con Google

Page, D. P., Murray, J. B., 2006. Stratigraphical and morphological evidence for pingo genesis in the Cerberus plains. Icarus, 183(1), 46-54. Cerca con Google

Page, D.P., 2007. Recent low-latitude freeze thaw on Mars. Icarus, 189(1), 83-117. Cerca con Google

Pasquarè G., Bistacchi A. and Mottana A., 2005. Gigantic individual lava flows in the Andean foothills near Malargüe (Mendoza, Argentina). Rendiconti dell’Accademia dei Lincei, 9, 127-135. Cerca con Google

Pasquarè G., Bistacchi A., Francalanci L. Bertotto G.W., Boari E., Massironi M. and Rossetti A., 2008. A very long pahoehoe inflated basaltic lava flow in the Payenia volcanic province (Mendoza, Argentina). Revistas de la Asociaciòn Geologica Argentina, 63, 131-149. Cerca con Google

Peitersen M.N., Crown D.A., 1999. Downflow width behaviour of Martian and terrestrial lava flows. Journal of Geophysical Research, 104, 8473-8488. Cerca con Google

Peitersen M.N., Crown D.A., 2000. Correlation between topography and intraflow width in Martian and terrestrial lava flows. Journal of Geophysical Research, 105 (E2), 4123-4134. Cerca con Google

Pinkerton H. and Wilson L., 1994. Factors controlling the lengths of channel-fed lava flows. Bull. Volcanol., 56, 108– 120. Cerca con Google

Plescia, J. B., 2003. Cerberus Fossae, Elysium, Mars: a source for lava and water. Icarus,164(1), 79-95. Cerca con Google

Plescia J. B., 2004. Morphometric properties of Martian volcanoes. JGR, 109(E3), CiteID E03003. Cerca con Google

Pompilio, L., Pedrazzi, G., Craig, M.A., Sgavetti, M., Cloutis, E.A., 2008. Spectral Modeling of Planetary Analogues, Preliminary Results. Lun. Planet. Sci. XXXIX, #1550. Cerca con Google

Poulet, F., Gomez, C., Bibring J.P., Langevin, Y., Gondet, B., Pinet, P., Belluci, G., Mustard, J.F., 2007. Martian surface mineralogy from Observatoire pour la Mine´ralogie, l’Eau, les Glaces et l’Activite´ on board the Mars Express spacecraft (OMEGA/MEx): Global mineral maps. J. Geophys. Res., 112, E08S02, doi:10.1029/2006JE002840 Cerca con Google

Poulet, F.,. Bibring, J.P, Langevin, Y., Mustard, J.F., Mangold, N., Vincendon, M., Gondet, B., Pinet, P.,. Bardintzeff, J.M, Platevoet, B., 2009a. Quantitative compositional analysis of martian mafic regions using the MEX/OMEGA reflectance data 1. Methodology, uncertainties and examples of application. Icarus, 201, 1, 69-83. Cerca con Google

Poulet F.,, Mangold, N., Platevoet, B., Bardintzeff, J.M., Sautter, V., Mustard, J.F., Bibring J.P., Pinet, P., Langevin, Y., Gondet, B., Aléon-Toppani, A., 2009b. Quantitative compositional analysis of martian mafic regions using the MEx/OMEGA reflectance data: 2. Petrological implications. Icarus, 201, 1, 84-101. Cerca con Google

Quantin C., Mangold N., Hartmann W., Allemand P., 2007. Possible long-term decline in impact rates: 1. Martian geological data. Icarus, 186, 1-10. Cerca con Google

Rossi M.J. and Gudmundsson A., 1996. The morphology and formation of flow-lobe tumuli on Icelandic shield volcanoes. J. Volc. Geotherm. Res., 72, 291-308. Cerca con Google

Rowland S.K. and Walker, G.P.L. 1988. Mafic-crystal distributions, viscosities and lava structures of some Hawaiian lava flows. J. Volc. Geotherm. Res., 35, 55-66. Cerca con Google

Rowland, S.K., and Walker G.P.L., 1990. Pahoehoe and aa in Hawaii: Volumetric flow rate controls the lava structure. Bull. Volcanol., 52, 615–628. Cerca con Google

Ruff, S.W., Christensen, P.R., 2002. Bright and dark regions on Mars: Particle size and mineralogical characteristics based on Thermal Emission Spectrometer data. J. Geophys. Res., 107, E12, 5127. doi: 10.1029/2001JE001580 Cerca con Google

Sakimoto S.E.H., Crisp J. and Baloga S.M., 1997. Eruption constraints on tube-fed planetary lava flows, J. Geophys. Res., 102, 6597– 6613. Cerca con Google

Sakimoto S.E.H. and Zuber M.T., 1998. Flow and convection cooling in lava tubes. J. Geophys. Res., 103, 27465–27487. Cerca con Google

Sawabe Y., Matsunaga T. and Rokugawa S., 2006. Automated detection and classification of lunar craters using multiple approaches. Advances in Space Research, 37, 21–27. Cerca con Google

Schaber G.G., Horstman K.C. and Dial A.L., 1978. Lava flow materials in the Tharsis region of Mars. Lunar Planet. Sci. Conf., 9th, 3433-3458. Cerca con Google

Schneeberger D.M., Pieri D. C., 2001. Geomorphology and stratigraphy of Alba Patera, Mars. JGR, 96, 1991, 1907-1930. Cerca con Google

Scott D.H. and Tanaka K.L., 1981. Mars: Paleostratigraphic restoration of buried surfaces in the Tharsis Montes area, Mars. Icarus, 45, 304-319. Cerca con Google

Scott D.H. and Tanaka K.L., 1986. Geologic map of the western equatorial region of Mars, scale 1:15,000,000. U.S. Geol. Surv. Misc. Invest. Ser., Map I-1802-A. Cerca con Google

Self S., Thordarson Th., Keszthelyi L., Walker G.P.L., Hon K., Murphy M.T., Long P. and Finnemore S., 1996. A new model for the emplacement of Columbia River basalts as large, inflated pahoehoe lava flow fields. Geophys. Res. Lett., 23, 2689-2692. Cerca con Google

Self S., Thordarson T. and Keszthelyi L., 1997. Emplacement of continental flood Basalt lava flows. In Large igneous provinces: continental, oceanic, and planetary flood volcanism. Geophysical monograph, 100, 381-410. Cerca con Google

Self S., Keszthelyi L., Thordarson Th., 1998. The Importance of Pahoehoe. Annual Review of Earth and Planetary Sciences, 26, 81-110. Cerca con Google

Shaw H.R., Wright T.L., Pech D.L. and Okamura R., 1968. The viscosity of basaltic magma: an analysis of field measurements in Makaopuhi lava lake, Hawaii. American Journal of Science, 266, 225-264. Cerca con Google

Smith D.E. et al., 1999. The global topography of Mars and implications for surface evolution. Science, 284, 1495-1503. Cerca con Google

Squyres, S.W., Arvidson, R.E., Bell III, J.F., et al., 2004. The Spirit Rover's Athena Science Investigation at Gusev Crater, Mars. Science, 305(5685), 794-800. Cerca con Google

Sunshine, J.M., Pieters, C.M., Pratt, S.F., 1990. Deconvolution of mineral absorption bands: an improved approach. J. Geophys. Res., 95, 6955-6966. Cerca con Google

Sunshine, J.M., Pieters, C.M., 1990. Extraction of compositional information from olivine reflectance spectra: a New Capability for Lunar Exploration. Lun. Planet. Sci., XXI, #1223. Cerca con Google

Sunshine, J.M., Pieters, C.M., 1998. Determining the composition of olivine from reflectance spectroscopy. J. Geophys. Res., 103, 13675-13688. Cerca con Google

Thorarinsson S., 1966. The Surtsey Eruption, Course of Events and the Development of Surtsey and other New Islands. Surtsey Res. Prog. Rep. 2. The Surtsey Research Society, Reykjavík, 117–125. Cerca con Google

Thordarson T. and Self S., 1998. The Roza Member, Columbia River Basalt Group: A gigantic pahoehoe lava flow field formed by endogenous processes?. J. Geophys. Res., 103, 27411– 27445. Cerca con Google

Vaucher J., Baratoux D., Toplis M. J., Pinet P., Mangold N., Kurita K., 2009. The morphologies of volcanic landforms at Central Elysium Planitia: Evidence for recent and fluid lavas on Mars. Icarus, 200(1), 39-51. Cerca con Google

Walker G.P.L., 1973. Lengths of lava flows. Phil. Trans. R. Soc. London, Ser. A, 274, 107– 118. Cerca con Google

Walker G.P.L., 1991. Structure and origin by injection of lava under surface crust, of tumuli, "lava rises", "lava-rise pits", and "lava-inflation clefts" in Hawaii. Bull. Volcanol., 53, 546-558. Cerca con Google

Warner N.H. and Gregg T.K.P., 2003. Evolved lavas on Mars? Observations from southwest Arsia Mons and Sabancaya volcano. J. Geophys. Res., 108, 5112-5127. Cerca con Google

Werner S.C., Harris A.W., Neukum G. and Ivanov B.A., 2002. The Near−Earth Asteroid Size−Frequency Distribution. Icarus, 156, 287−290. Cerca con Google

Wilson, L., and Head J.W., 1983. A comparison of volcanic eruption processes on Earth, Moon, Mars, Io, and Venus. Nature, 302, 663– 669. Cerca con Google

Wilson L. and Head J.W., 1994. Mars: Review and analysis of volcanic eruption theory and relationships to observed landforms. Rev. Geophys., 32, 221– 263. Cerca con Google

Wyatt, M.B., Hamilton V.E., McSween Jr. H.Y., Christensen P.R., Taylor L.A, 2001. Analysis of terrestrial and Martian volcanic compositions using thermal emission spectroscopy: 1. Determination of mineralogy, chemistry, and classification strategies. J. Geophys Res., 106, 14,711–14,732. Cerca con Google

Wyatt, M.B., McSween Jr., H.Y., 2002. Spectral evidence for weathered basalt as an alternative to andesite in the northern lowlands of Mars. Nature, 417, 263–266. Cerca con Google

Zimbelman J.R., 1985a. Estimates of rheological properties for flows on the Martian volcano Ascraeus Mons. Proc. Lunar Planet. Sci. Conf. 16th, Part 1, J. Geophys. Res., 90(suppl.), D157– D162. Cerca con Google

Zimbelman J.R., 1985b. Estimates of Rheologic Properties for Six Martian Lava Flows. Lunar and Planetary Science, 16, 932-933. Abstract. Cerca con Google

Zimbelman J.R., 1998. Emplacement of long lava flows on planetary surfaces. J. Geophys. Res., 103, 27503 – 27516. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record