Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Caduco, Martina (2010) STUDIO DEI MECCANISMI MOLECOLARI ALLA BASE DEL COINVOLGIMENTO DEI MULTIVESICULAR BODY NEL CICLO REPLICATIVO DEL CITOMEGALOVIRUS UMANO. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
5Mb

Abstract (inglese)

The eucaryotic endosomal system is a complex network of vesicles and organelles surrounded by membranes which coordinates protein transport between the plasma membrane, the trans-Golgi network (TGN) and the lysosomes. A central role at this level is played by an organelle named multivesicular body (MVB). Several proteins involved in the MVB biogenesis are essential for budding of RNA-enveloped viruses, like retroviruses (Göttlinger et al., 1991), rhabdoviruses, filoviruses (Strack et al., 2000), arenaviruses and paramyxovirus (Strack et al., 2003). More recently it has been clarified that also some DNA-enveloped viruses, and in particular Herpes simplex virus type 1 (HSV-1) (Calistri et al., 2007; Crump et al., 2007), Hepatitis B Virus (HBV) (Lambert et al., 2007; Watanabe et al., 2007), Human Herpes Virus type 6 (HHV-6) (Mori et al., 2008) and Human Cytomegalovirus (HCMV) (Tandom et al., 2009), exploit the MVB membranes for their assembly and budding. The more accredited view concerning herpesviruses envelopment and budding is the ‘double envelopment theory’, envisioning that virion acquires at the level of the inner leaflet of the nuclear membrane a primary envelope, that it is lost by budding from the outer nuclear membrane. Finally, virions acquire the secondary and final envelope at the level of intracytoplasmic membranous organelles. HCMV morphogenesis is completed in a virally induced perinuclear compartment, referred as ´assembly compartment’ or ‘assembly complex’ (AC).
This project moves from the data obtained in our laboratory regarding HSV-1 gB as one of the protein linking the virus to the MVB pathway. Indeed, the glycoprotein colocalizes with well-known MVB markers and its intracellular trafficking and maturation require the correct biogenesis of these organelles. Furthermore, gB is ubiquitinated in the C-terminal tail at the level of residues involved in endocytosis and trafficking between endosomes, TGN and lysosomes (Calistri et al., 2007).
The aim of this work was to contribute to elucidate whether other viruses of the Herpesviridae family hijack the same cellular pathway and whether the HSV-1 gB behaviour is conserved among some glycoprotein homologs. In particulare, we decided to focalized our attention on HCMV gB (UL55). By immunofluorescence assays (IF) we observed that the MVB block results in the gB accumulation both in the cytoplasm and in membrane compartments and in the gB relocalization at the level of intracytoplasmic enlarged vesicles positive for the endosomial marker EEA-1, while in infected cells the glycoprotein recruitment to the AC is impaired. Therefore, these data suggest that, like for HSV-1 gB, also UL55 intracellular trafficking requires a functional MVB biogenesis. Moreover, in support to a role for MVBs/lysosomes in gB fate, we were able to show that, in transfected cells, the glycoprotein accumulates in the presence of the lysosome inhibitor bafilomycin. UL55 contains a PPxY domain, that matches the consensus sequence for ligands recognized by the E3 ubiquitin ligases of the Nedd4 family. Our results show that UL55, but not UL75 (gH), is ubiquitinated both in infected and transfected cells and that the Nedd4-like ubiquitin ligases specifically interact with HCMV gB through its PPSY motif and are involved in its ubiquitination and lysosomial degradation.
We also analyzed the AMSH and UBPY role in UL55 deubiquitination. Consistently to the model reported in literature (Welchman et al., 2005), our results suggest that AMSH causes the UL55 deubiquitination for its recycling, while UBPY deubiquitinates it to permit its MVB incorporation.
As a further evidence of the MVB involvement in the UL55 intracellular fate the HCMV glycoprotein, but not HSV-1 gB nor the Pseudorabies Virus gB (UL27), interacts also with another protein essential for the MVB biogenesis, Tsg101. From the literature it is known that proteins interacting with this MVB component contain a P(T/S)AP L-domain. Since UL55 does not contain such a consensus sequence, we investigated the possible mechanism for this interaction. We excluded that the binding could be mediated by the ubiquitin ligases Nedd4-like or other adaptor proteins recruiting at the endosomes or at the TGN ubiquitinated cargoes addressed to the MVBs (Hrs, GGAs, Toms). Moreover, we clarified that the interaction between UL55 and Tsg101 depends on the glycoprotein cytoplasmic tail and the N-terminal UEV (ubiquitin E2 variant) domain of Tsg101. On the other hand, Tsg101 mutants in the UEV that do not interact with the ubiquitin nor with the P(T/S)AP L-domain of HIV-1 Gag p6 domain, continue to co-immunoprecipitate with UL55. Finally, confocal miscroscopy highlighted that Tsg101 is recruited to the AC during the infection. Further experiments will shed light on the molecular mechanism needed for this interaction.
To move our UL55 characterization toward a functional and biological analysis, we built, by employing BAC mutagenesis, recombinant viruses carrying gB specific mutations or lacking the glycoprotein coding sequence. The analysis of these mutants in terms of viral growth, protein localization (analyzed by IF) and virion maturation and egress (analyzed by electron microscopy assays) will clarify the role of the interactions between UL55 and MVB proteins for the HCMV life cycle.
Overall, our data point out to HCMV gB, in a simil way to HSV-1 gB, as the key protein that links HCMV envelopment-egress to the MVB pathway.

Abstract (italiano)

Il sistema endosomiale delle cellule eucariotiche è una complessa rete di compartimenti membranosi che coordinano il trasporto delle proteine tra la membrana plasmatica, il trans-Golgi network (TGN) ed i lisosomi. Un ruolo centrale a questo livello è svolto da un organello identificato con il termine multivesicular body (MVB). Numerose proteine coinvolte nella biogenesi di questo pathway sono essenziali per la gemmazione di virus ad RNA dotati di envelope come retrovirus (Göttlinger et al., 1991), rhabdovirus, filovirus (Strack et al., 2000), arenavirus e paramyxovirus (Strack et al., 2003). Più recentemente è stato chiarito che anche alcuni virus a DNA dotati di envelope, ed in particolare l’herpes simplex virus di tipo 1 (HSV-1) (Calistri et al., 2007; Crump et al., 2007), il virus dell’epatite B (HBV) (Lambert et al., 2007; Watanabe et al., 2007), l’herpes virus umano di tipo 6 (HHV-6) (Mori et al., 2008) ed il citomegalovirus umano (HCMV) (Tandom et al., 2009), sfruttano le membrane dei MVB per assemblaggio e gemmazione. La teoria attualmente più accreditata riguardo al processo di acquisizione del pericapside ed al meccanismo di gemmazione degli herpesvirus è la teoria del doppio envelopment in base alla quale il virione acquisisce a livello della membrana nucleare interna un envelope primario, che viene perso per gemmazione dalla membrana nucleare esterna. Il virione acquisce, infine, l’envelope secondario e definitivo a livello di organelli intracitoplasmatici di natura membranosa. La morfogenesi di HCMV è completata in un compartimento perinucleare che il virus forma durante l’infezione noto come assembly complex o assembly compartment (AC).
Questo progetto nasce dalle evidenze messe in luce nel nostro gruppo di ricerca che dimostrano come la glicoproteina gB di HSV-1 svolga un ruolo centrale nel permettere al virus di sfruttare il pathway dei MVB durante le fasi finali del proprio ciclo replicativo. La glicoproteina, infatti, colocalizza con noti marcatori dei MVB ed il suo traffico intracellulare e maturazione richiedono la corretta biogenesi di questi organelli. Inoltre, gB è ubiquitinata a livello della coda C-terminale dove si localizzano i residui coinvolti in endocitosi e trafficking intracellulare (Calistri et al., 2007).
Partendo dal presupposto che gB è una delle glicoproteine più conservate tra gli herpesvirus, lo scopo di questo lavoro di tesi è stato quello di analizzare se anche nel caso di altri virus appartenenti alla famiglia Herpesviridae, che sembrano utilizzare i MVB per la propria maturazione e/o gemmazione, questa glicoproteina rappresenti uno degli anelli di congiunzione tra virus e pathway cellulare. In particolare, abbiamo focalizzato la nostra attenzione sulla gB di HCMV (UL55), essendo le evidenze a sostegno del ruolo dei MVB nel ciclo replicativo di questo virus ancora contraddittorie (Fraile-Ramos et al., 2007; Tandom et al., 2009). Mentre normalmente questa glicoproteina localizza a livello dell’AC (Sanchez at al., 2000), abbiamo dimostrato attraverso saggi di immunofluorescenza (IF) che, in cellule nelle quali la biogenesi dei MVB viene bloccata, gB rimane dispersa nel citoplasma delle cellule infettate. In cellule trasfettate, invece, il blocco della biogenesi di questo pathway ne determina l’accumulo sia a livello intracellulare sia in compartimenti membranosi e la rilocalizzazione a livello di siti positivi per EEA-1 (early endosomal antigen-1), un marcatore degli endosomi precoci. Questi dati suggeriscono il coinvolgimento dei MVB e la necessità della loro corretta biogenesi nel trafficking anche della gB di HCMV.
Inoltre, i nostri dati mostrano che UL55, ma non altre glicoproteine di HCMV, quali UL75 (gH), è ubiquitinata sia in cellule infettate sia in cellule trasfettate con costrutti che mediano la sua espressione. Significativamente, abbiamo osservato che UL55 presenta un sequenza PPSY, reminiscente del motivo PPxY, sequenza consenso che media l’interazione con proteine caratterizzate da domini WW, quali le ubiquitino ligasi E3 della famiglia Nedd4 (Strack et al., 2000). Infatti, siamo stati in grado di dimostrare che le ubiquitino ligasi di questa famiglia, che sono implicate nella biogenesi dei MVB (Staub et al., 1997), interagiscono fisicamente con UL55, proprio attraverso il motivo PPSY, e sono coinvolte nella sua ubiquitinazione e nella sua degradazione lisosomiale, almeno in condizioni di over-espressione. In particolare abbiamo osservato che: i) quando sovraespresse le ubiquitino ligasi portano ad una significativa riduzione dei livelli di UL55 in cellule co-trasfettate con il costrutto esprimente la glicoproteina virale; ii) almeno in condizioni di sovraspressione, UL55 si accumula nelle cellule in presenza dell’inibitore dei lisosomi bafilomicina.
Il complesso ruolo giocato dall’ubiquitinazione nel trafficking di UL55 è stato ulteriormente dimostrato indagando la funzione svolta, a questo livello, dalle due de-ubiquitinasi AMSH e UBPY, entrambe attive a livello dei MVB (Clague and Urbè, 2006). Coerentemente al modello prevalente in letteratura (Welchman et al., 2005), i nostri risultati suggeriscono che AMSH sia coinvolta nella deubiquitinazione di UL55 al fine di favorire il suo reciclo, mentre UBPY la deubiquitini per permetterne l’incorporazione nei MVB.
A dimostrazione ulteriore del coinvolgimento dei MVB nel destino intracellulare di UL55, quest’ultima, ma non gB di HSV-1 nè gB del virus della pseudorabbia (UL27), interagisce anche con Tsg101, un’altra proteina fondamentale per la biogenesi dell’organello cellulare. È noto che le proteine che interagicono con tale componente dei MVB contengono un dominio aminoacidico ricco in proline di tipo P(T/S)AP. UL55 non contiene sequenze consenso sovrapponibili a tale motivo e i nostri dati permettono di escludere che il legame sia mediato dalle ubiquitino ligasi Nedd4 o da alcune proteine adattatrici, che reclutano a livello endosomiale e del TGN proteine ubiquitinate destinate ai MVB (Hrs, GGA, Tom). Abbiamo, invece, dimostrato che il legame tra UL55 e Tsg101 è mediato dalla coda citoplasmatica della glicoproteina e dal dominio N-terminale UEV (ubiquitin E2 variant) di Tsg101. Mutanti di Tsg101 a livello del dominio UEV che non legano più l’ubiquitina o L-domain di tipo P(T/S)AP, invece, continuano ad interagire con UL55. Infine saggi di IF in cellule infettate hanno messo in luce che la proteina Tsg101 è reclutata all’AC. Ulteriori esperimenti chiariranno il meccanismo molecolare alla base di questa interazione.
Consapevoli che i dati ottenuti, pur indicando un ruolo chiaro per i MVB nel trafficking della gB di HCMV, erano stati ottenuti principalmente in cellule trasfettate, abbiamo voluto analizzare la rilevanza funzionale e biologica dei nostri risultati ottenendo, mediante mutagenesi basate sulla strategia BAC (bacterial artificial chromosome), virus ricombinanti caratterizzati da specifiche mutazioni a livello di UL55 o dalla sua completa delezione. L'analisi di questi mutanti in termini di crescita, localizzazione intracellulare di specifiche proteine virali e/o cellulari (saggi di IF) e maturazione/gemmazione dei virioni (saggi di microscopia elettronica) chiariranno il ruolo delle interazioni tra UL55 e le proteine dei MVB nel ciclo replicativo di HCMV.
Nel complesso fino a questo momento i nostri dati mostrano che UL55, come la gB di HSV-1, è una delle proteine chiave che associa envelopment e gemmazione virali al pathway dei MVB.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Calistri, Arianna
Dottorato (corsi e scuole):Ciclo 22 > Corsi per il 22simo ciclo > VIROLOGIA E BIOTECNOLOGIE MICROBICHE
Data di deposito della tesi:NON SPECIFICATO
Anno di Pubblicazione:28 Gennaio 2010
Parole chiave (italiano / inglese):citomegalovirus umano multivesicular body glycoprotein B assemblaggio e gemmazione virali
Settori scientifico-disciplinari MIUR:Area 06 - Scienze mediche > MED/07 Microbiologia e microbiologia clinica
Struttura di riferimento:Dipartimenti > Dipartimento di Istologia, Microbiologia e Biotecnologie Mediche
Codice ID:2709
Depositato il:04 Nov 2010 11:24
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

AuCoin D.P., Smith G.B., Meiering C.D. and Mocarski E.S. (2006) Betaherpesvirus conserved cytomegalovirus tegument protein pUL32 (pp150) controls cytoplasmic events during virion maturation. J. Virol. 80 (16): 8199–8210 Cerca con Google

Babst M., Wendland B., Estepa E.J. and Emr S.D. (1998) The Vps4p AAA ATPase regulates membrane association of a Vps protein complex required for normal endosome function. EMBO J. 17 (11): 2982–2993 Cerca con Google

Babst M., Katzmann D.J., Estepa-Sabal E.J., Meerloo T. and Emr S.D. 2002. ESCRT-III, an endosome-associated heterooligomeric protein complex required for MVB sorting. Dev.Cell. 3: 271-82 Cerca con Google

Babst M., Katzmann D.J., Snyder W.B., Wendland B. and Emr S.D. 2002. Endosome-associated complex, ESCRT-II, recruits transport machinery for protein sorting at the multivesicular body. Dev. Cell; 3: 283-89. Cerca con Google

Babst M. 2005. A Protein’s Final ESCRT. Traffic; 6: 2 Cerca con Google

Baumeister J., Klupp B.G. and Mettenleiter T.C. 1995. Pseudorabies virus and equine herpesvirus 1 share a nonessential gene which is absent in other herpesviruses and located adjacent to a highly conserved gene cluster. J. Virol. 69 (9): 5560–5567 Cerca con Google

Baxter M.K. and Gibson W. 2001. Cytomegalovirus basic phosphoprotein (UL32) binds to capsids in vitro through its amino one-third. J. Virol. 75 (15): 6865–6873 Cerca con Google

Bechtel J.T. and Shenk T. 2002. Human cytomegalovirus UL47 tegument protein functions after entry and before immediate-early gene expression. J Virol. 76: 1043-1050 Cerca con Google

Blot V., Perugi F., Gay B., Prevost M.C., Briant L., Tangy F., Abriel H., Staub O., Dokhelar M.C. and Pique C. 2004. Nedd4.1-mediated ubiquitination and subsequent recruitment of Tsg101 ensure HTLV-1 Gag trafficking towards the multivesicular body pathway prior to virus budding. J. Cell Sci. 117: 2357–2367. Cerca con Google

Bodaghi B., Slobbe–van Drunen M.E.P., Topilko A., Perret E., Vossen R.C.R.M., van Dam–Mieras M.C.E., Zipeto D., Virelizier J.L., LeHoang P., Bruggeman C.A. and Michelson S. 1999. Entry of human cytomegalovirus into retinal pigment epithelial and endothelial cells by endocytosis. Investig. Ophthalmol. Vis. Sci. 40 (11): 2598-2607 Cerca con Google

Borst E.M., Hahn G., Koszinowski U.H. and Messerle M. 1999. Cloning of the human cytomegalovirus (HCMV) genome as an infectious bacterial artificial chromosome in Escherichia coli: a new approach for construction of HCMV mutants. J. Virol. 73 (10): 8320–8329 Cerca con Google

Bouamr, F., Houck-Loomis, B. R., De Los Santos, M., Casaday, R. J., Johson, M. C. and Goff, S. P. 2006. The C-Terminal Portion of the Hrs Protein Interacts with Tsg101 and Interferes with Human Immunodeficiency Virus Type 1 Gag Particle Production. J. Virol. 81: 2909-2922. Cerca con Google

Bowzard J.B., Visalli R.J., Wilson C.B., Loomis J.S., Callahan E.M., Courtney R.J. and Wills J.W. 2000. Membrane targeting properties of a herpesvirus tegument protein-retrovirus Gag chimera. J Virol. 74(18): 8692-9. Cerca con Google

Calistri A., Salata C., Parolin C. and Palù G. 2008 Role of multivesicular bodies and their components in the egress of enveloped RNA viruses. Rev. Med. Virol. Vl. 19: 31-45. Cerca con Google

Calistri A., Sette P., Salata C., Cancellotti E., Forghieri C., Comin A., Göttlinger H., Campadelli-Fiume G., Palù G. and Parolin C. 2007. Intracellular trafficking and maturation of herpes simplex virus type 1 gB and virus egress require functional biogenesis of multivesicular bodies. J.Virol. 81: 11468-11478 Cerca con Google

Camapdelli-Fiume G. and Roizman B. 2006. The egress of herpesviruses from cells: the unanswered questions. J Virol. 80(13): 6716-7 Cerca con Google

Camus G., Segura-Morales C., Molle D., Lopez-Vergés S., Begon-Pescia C., Cazevieille C., Schu P., Bertrand E., Berlioz-Torrent C. and Basyuk E. 2007. The clathrin adaptor complex AP-1 binds HIV-1 and MLV Gag and facilitates their budding. Mol. Biol. Cell. 18: 3193–3203 Cerca con Google

Capeda V., Esteban M. and Fraile-Ramos A. 2009. Human cytomegalovirus final envelopment on membranes containing both Trans-golgi network and endosomal marker. Cell Microbiol. Cerca con Google

Chevillotte M., Landwehr S., Linta L., Frascaroli G., Lüske A., Buser C., Mertens T. And von Einem J. 2009. The major tegument protein pp65 of human cytomegalovirus is required for incorporation of UL69 and UL97 into the virus particle and for viral growth in macrophages. J. Virol. 83: 2480-2490 Cerca con Google

Chung H-Y., Morita E., von Schwedler U., Muller B., Krausslich H-G. and Sundquist W.I. 2008. NEDD4L Overexpression Rescues the Release and Infectivity of Human Immunodeficiency Virus Type 1 Constructs Lacking PTAP and YPXL Late Domains. J.Virol. 82: 4884-4897 Cerca con Google

Clague M. J. and Urbe S. 2006 Endocytosis: the DUB version. Trends Cell. Biol. 16(11): 551-559 Cerca con Google

Compton T., Nepomuceno R.R. and Nowlin D.M. 1992. Human cytomegalovirus penetrates host cells by pH-independent fusion at the cell surface. Virology 191 (1): 387-95 Cerca con Google

Compton T., Nowlin D.M., Cooper N.R. 1993. Initiation of human cytomegalovirus infection requires initial interaction with cell surface heparan sulfate. Virology 193: 834-841 Cerca con Google

Compton T., 2004. Receptors and immune sensors: the complex entry path of human cytomegalovirus. TRENDS in Cell Biol. 14: 5-8 Cerca con Google

Crump C.M., Hung, C., Thomas, L., Wan, L. and Thomas, G. 2003. Role of PACS-1 in trafficking of Human Cytomegalovirus Glycoprotein B and Virus Production. J. Virol. 77: 11105-11113 Cerca con Google

Crump C. M., Yates C. and T. Minson. 2007. Herpes simplex virus type 1 cytoplasmic envelopment requires functional Vps4. J. Virol. 81: 7380-7387 Cerca con Google

Daikoku T., Ikenoya K., Yamada H., Goshima F. and Nishiyama Y. 1998. Identification and characterization of the herpes simplex virus type 1 UL51 gene product. J. Gen. Virol. 79: 3027–3031 Cerca con Google

Das S., Vasanji A. and Pellett P.E. 2007. Three-dimensional structure of the human cytomegalovirus cytoplasmic virion assembly complex includes a reoriented secretory apparatus. J. Virol. 81 (21): 11861–11869 Cerca con Google

Dunn W., Chou C., Li H., Hai R., Patterson D., Stolc V., Zhu H. and Liu F. 2003. Functional profiling of a human cytomegalovirus genome. PNAS 100: 14223–14228 Cerca con Google

Demirov, D. G., Ono, A., Orenstein, J. M. And Freed, E. O. 2001. Overexpression of the N-terminal domain of TSG101 inhibits HIV-1 budding by blocking late domain function. Proc. Natl. Acad. Sci. USA 99: 955-960 Cerca con Google

Demirov D.G. and Freed E.O. 2004. Retrovirus budding. Virus Research; 106: 87-102 Cerca con Google

Desai P.J. 2000. A null mutation in the UL36 gene of herpes simplex virus type 1 results in accumulation of unenveloped DNA-filled capsids in the cytoplasm of infected cells. J Virol. 74(24): 11608-18 Cerca con Google

Doray B. and Kornfeld S. 2001. γ Subunit of the AP-1 adaptor complex binds clathrin: implications for cooperative binding in coated vesicle assembly. Mol. Biol. Cell. 12: 1925–1935 Cerca con Google

Dunn W., Chou C., Li H., Hai R., Patterson D., Stolc V., Zhu H. and Liu F. 2003. Functional profiling of a human cytomegalovirus genome. PNAS 100: 14223–14228 Cerca con Google

Eggers M., Bogner E., Agricola B., Kern H.F. and Radsak K. 1992. Inhibition of human cytomegalovirus maturation by brefeldin A. J. Gen. Virol. 73: 2679-2692 Cerca con Google

Feire A.L., Koss H. and Compton T. 2004. Cellular integrins function as entry receptors for human cytomegalovirus via a highly conserved disintegrin-like domain. PNAS 101: 15470–15475 Cerca con Google

Fish, K. N., Soderberg-Naucler, C. and Nelson, A. J. 1998. Steady-state plasma membrane expression of Human Cytomegalovirus gB is determined by the phosphorylation state of Ser900. J Virol. 72: 6657-6664 Cerca con Google

Fisher, R. D., Chung, H.Y., Zhai, Q., Robinson, H., Sundquist, W.I. and Hill, C.P. 2007. Structural and Biochemical Studies of Alix/AIP1 and its Role in Retrovirus Budding. Cell 128:841-852. Cerca con Google

Fraile-Ramos A., Pelchen-Matthews A., Kledal T.N., Browne H., Schwartz T.W and Marsh M. 2002 Localization of HCMV UL33 and US27 in Endocytic Compartments and Viral Membranes. Traffic 3: 218-232 Cerca con Google

Fraile-Ramos A., Kohout T.A.., Waldhoer M. and Marsh M. 2003. Endocytosis of the Viral Chemokine Receptor US28 Does Not Require Beta-Arrestins But Is Dependent on the Clathrin-Mediated Pathway. Traffic 4: 243–253 Cerca con Google

Fraile-Ramos A., Pelchen-Matthews A., Risco C., Rejas M.T., Emery V.C., Hassan-Walker A.F., Esteban M. and Marsh M. 2007. The ESCRT machinery is not required for human cytomegalovirus envelopment. Cell. Microbiol. 9 (12): 2955–2967 Cerca con Google

Freed, E. O. 2002. Viral late domain. J. Virol 76: 4679-4687 Cerca con Google

Garrus J.E., von Schwedler U.K., Pornillos O.W., Morham S.G. and Zavitz K.H. 2001. Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell. 107: 55-65 Cerca con Google

Ghosh-Choudhury N., Butcher M., Reid E. and Ghosh H.P. 1994. Effect of tunicamycin and monensin on the trasport to the cell surface and secretion of a viral membrane glycoprotein containing both N- and O- linked sugars. Biochem.Cell.Biol. 72: 20-25 Cerca con Google

Gianni T., Forghieri C. and Campadelli-Fiume G. 2006. The herpesvirus glycoproteins B and H.L are sequentially recruited to the receptor-bound gD to effect membrane fusion at virus entry. Proc Natl Acad Sci U S A. 104(9): 3668. Cerca con Google

Göttlinger H.G., Dorfman T., Sodroski J.G. and Haseltine W.A. 1991. Effect of mutations affecting the p6 gag protein on human immunodeficiency virus particle release. Proc. Natl. Acad. Sci. USA 88: 3195-3199 Cerca con Google

Göttlinger H.G. 2001. The HIV-1 assembly machine. Aids 15: S13-20 Cerca con Google

Granzow H., Klupp B.G., Fuchs W., Veits J., Osterrieder N. and Mettenleiter T.C. 2001. Egress of alphaherpesviruses: comparative ultrastructural study. J Virol. 75(8): 3675-84 Cerca con Google

Heldwein E.E., Lou H., Bender F.C., Cohen G.H., Eisenberg R.J. and Harrison S.C. 2006. Crystal structure of glycoprotein B from herpes simplex virus 1. Science 313(5784): 217-20. Cerca con Google

Homman-Loudiyi M., Hultenby K., Britt W. And Soderberg-Naucler C. 2003. Envelopment of human cytomegalovirus occurs by budding into Golgi-derived vacuole compartments positive for gB, Rab 3, trans-Golgi network 46, and mannosidase II. J. Virol. 77(5): 3191–3203 Cerca con Google

Hutchinson L., Browne H., Wargent V., Davis-Poynter N., Primorac S., Goldsmith K., Minson A.C. and Johnson D.C. 1992. A novel herpes simplex virus glycoprotein, gL, forms a complex with glycoprotein H (gH) and affects normal folding and surface expression of gH.. J Virol. 66(4): 2240-50 Cerca con Google

Isaacson M.K., Feire A.L. and Compton T. 2007. Epidermal growth factor receptor is not required for human cytomegalovirus entry or signaling. J. Virol. 81(12): 6241–6247 Cerca con Google

Isaacson, M. K. and Compton, T. 2009. Human Cytomegalovirus Glycoprotein B Is required for Virus Entry and cell-to-Cell Spread but Not for Virion Attachment, Assembly, or Egress. J.Virol. 83 :3891-3903. Cerca con Google

Irie T., Shimazu Y., Yoshida T. and Sakaguchi T. 2007. YLDL Sequence within Sendai Virus M protein is Critical for Budding of Virus-Like Particles and Interacts with Alix/AIP1 Independently of C protein. J Virol. 81(5): 2263-73. Cerca con Google

Jahn, G., Harthus H.P., Broker M., Borisch B., Platzer B., and Plachter B. 1990. Generation and application of a monoclonal antibody raised against a recombinant cytomegalovirus-specific polypeptide. Klin. Wochenschr. 68: 1003-1007 Cerca con Google

Johannsen E., Luftig M., Chase M.R., Weicksel S., Cahir-McFarland E., Illanes D., Sarracino D. and Kieff E. 2004. Proteins of purified Epstein–Barr virus. PNAS 16: 16286–16291 Cerca con Google

Johnson D.C. and Spear P.G. 1982. Monensin inhibits the processing of herpes simplex virus glycoproteins, their transport to the cell surface, and the egress of virions from infected cells. J Virol. 43(3):1102-12 Cerca con Google

Johnson D.C. and Huber M.T. 2002. Directed egress of animal viruses promotes cell-to-cell spread. J Virol. 76(1):1-8 Cerca con Google

Johnson, M. C., Spidel, J. L., Ako-Adjei, D., Wills, J. W. and Vogt, V. M. 2004. the C-Terminal Half of TSG101 Blocks Rous Sarcoma Virus Budding and Sequesters Gag into Unique Nonendosomal Structures. J. Virol 79: 3775-3786 Cerca con Google

Kalejta R.F. 2008. Tegument proteins of human cytomegalovirus. Microbiol Mol Biol. Rev. 72(2): 249-65 Cerca con Google

Kamil J.P. and Coen D.M. 2007. Human cytomegalovirus protein kinase UL97 forms a complex with the tegument phosphoprotein pp65. J Virol 81: 10659-10668 Cerca con Google

Kattenhorn L.M., Korbel G.A., Kessler B.M., Spooner E. and Ploegh H.L. 2005. A deubiquitinating enzyme encoded by HSV-1 belongs to a family of cysteine proteases that is conserved across the family Herpesviridae. Mol Cell. 19(4):547-57. Cerca con Google

Katzmann D.J., Odorizzi G. and Emr S.D. 2002. Receptor downregulation and multivesicular body sorting. Na. Rev. Mol. Cell Biol. 3: 893-905 Cerca con Google

Kinzler E.R. and Compton T. 2005. Characterization of human cytomegalovirus glycoprotein-induced cell-cell fusion. J. Virol. 79(12) :7827-7837 Cerca con Google

Klupp B.G., Nixdorf R. and Mettenleiter T.C. 2000. Pseudorabies virus glycoprotein M inhibits membrane fusion. J Virol. 74(15): 6760-8 Cerca con Google

Kopp M., Granzow H., Fuchs W., Klupp B.G., Mundt E., Karger A. and Mettenleiter T.C. 2003. The pseudorabies virus UL11 protein is a virion component involved in secondary envelopment in the cytoplasm. J Virol. 77(9): 5339-51 Cerca con Google

Krzyzaniak M., Mach M. and Britt W.J. 2007 The Cytoplasmic Tail of Glycoprotein M (gUL100) Expresses Trafficking Signals Required for Human Cytomegalovirus Assembly and Replication. J.Virol. 81(19):10316-28. Cerca con Google

Laquerre S., Argnani R., Anderson D.B., Zucchini S., Manservigi R. and Glorioso J.C. 1998. Heparan sulfate proteoglycan binding by herpes simplex virus type 1 glycoproteins B and C, which differ in their contributions to virus attachment, penetration, and cell-to-cell spread. J Virol. 72(7): 6119-30 Cerca con Google

Lambert C., Döring T. and Prange R. 2007. Hepatitis B virus maturation is sensitive to functional inhibition of ESCRT-III, Vps4, and γ2-Adaptin. J. Virol. 81 (17): 9050–9060 Cerca con Google

LaFemina R.L. and Hayward G.S. 1983. Replicative forms of human cytomegalovirus DNA with joined termini are found in permissively infected human cells but not in nonpermissive Balb/c-3T3 mouse cells. J. Gen. Virol. 64: 373-389 Cerca con Google

Lambert C., Döring T. and Prange R. 2007. Hepatitis B virus maturation is sensitive to functional inhibition of ESCRT-III, Vps4, and gamma 2-adaptin. J. Virol. 81(17):9050-60. Cerca con Google

Lenk M., Visser N. and Mettenleiter T.C. 1997. The Pseudorabies virus UL51 gene product is a 30-Kilodalton virion component. J. Virol. 71(7): 5635–5638 Cerca con Google

Liu B. and Stinski M.F. 1992. Human cytomegalovirus contains a tegument protein that enhances transcription from promoters with upstream ATF and AP-1 cis-acting elements. J. Virol. 66(7): 4434-4444 Cerca con Google

Lopper M. and Compton T. 2002. Disulfide bond configuration of human cytomegalovirus glycoprotein B. J. Virol. 76(12): 6073–6082 Cerca con Google

Lu L., Tai G. and Hong W. 2004. Autoantigen Golgin-97, an effector of Arl1 GTPase, participates in traffic from the endosome to the trans-Golgi network. Mol. Biol. Cell. 15: 4426–4443 Cerca con Google

Ma, Y. M., Boucrot, E., Villén, J., Affar, el B., Gygi, S. P., Göttlinger, H. G. and Kirchhausen, T. 2007. Targeting of AMSH to endosomes is required for epidermal growth factor receptor degradation.. J Biol Chem. 282: 9805-12 Cerca con Google

Martin-Serrano, J. 2007. The Role of Ubiquitin in Retroviral Egress. Traffic 8: 1297-1303 Cerca con Google

Martin-Serrano, J., Eastman, S.W., Chung, W. and Bieniasz., P.D. 2005. HECT ubiquitin ligases link viral and cellular PPXY motifs to the vacuolar protein-sorting pathway. J. Cell. Biol. 168(1): 89–101 Cerca con Google

Martin-Serrano, J., Zang, T. and P.D. Bieniasz. 2001. HIV-1 and Ebola virus encode small peptide motifs that recruit Tsg101 to sites of particle assembly to facilitate egress. Nat. Med. 7: 1313–1319 Cerca con Google

Martin-Serrano, J., Zang, T. and P.D. Bieniasz. 2003. Role of ESCRT-I in retroviral budding. J. Virol. 77: 4794–4804 Cerca con Google

Martin-Serrano J., Perez-Caballero D. and Bieniasz P.D. 2004. Context dependent effects of L-domains and ubiquitination on viral budding. J. Virol. 78: 5554-63 Cerca con Google

McCullough J., Fisher R.D., Whitby F.G., Sundquist W.I. and Hill C. P. 2008. ALIX-CHMP4 interactions in the human ESCRT pathway. PNAS 105: 7687-7691 Cerca con Google

McCullough J., Clague M.J. and Urbé S. 2004. AMSH is an endosome-associated ubiquitin isopeptidase. J. Cell Bio. 166: 434 Cerca con Google

Menotti L., Casadio R., Bertucci C., Lopez M. and Campadelli-Fiume G. 2002. Substitution in the murine nectin1 receptor of a single conserved amino acid at a position distal from the herpes simplex virus gD binding site confers high-affinity binding to gD. J. Virol. 76(11): 5463-71 Cerca con Google

Mercorelli B., Sinigalia E., Loregian A. and Palu G. 2008. Human cytomegalovirus DNA replication: antiviral targets and drugs. Rev. Med. Virol. 18: 177-210 Cerca con Google

Mettenleiter T.C., Zsak L., Zuckermann F., Sugg N., Kern H. and Ben-Porat T. 1990. Interaction of glycoprotein gIII with a cellular heparin like substance mediates adsorption of pseudorabies virus. J Virol. 64(1): 278-86 Cerca con Google

Mettenleiter T.C. 2002. herpesvirus assembly and egress. J Virol. 76(4): 1537-47 Cerca con Google

Mettenleiter T.C. 2004. Budding events in herpesvirus morphogenesis. Virus Res. 106(2): 167-80 Cerca con Google

Mettenleiter T.C., Klupp B.G. and Granzow H. 2006. herpesvirus assembly: a tale of two membranes. Curr Opin Microbiol. 9(4): 423-9 Cerca con Google

Mettenleiter T.C. and Minson T. 2006. Egress of alphaherpesviruses. J Virol. 80(3):1610-1 Cerca con Google

Mettenleiter T.C. 2006. Intriguing interplay between viral proteins during herpesvirus assembly or: the herpesvirus assembly puzzle. Vet Microbiol.113(3-4): 163-9 Cerca con Google

Milne R.S.B., Paterson D.A. and Booth J.C. 1998. Human cytomegalovirus glycoprotein H/glycoprotein L complex modulates fusion-from-without. J. Gen. Virol. 79: 855–865 Cerca con Google

Mocarski E.S. and Courcelle C.T. 2001. Cytomegaloviruses and their replication. In Fields:Virology Fourth Edition, Volume 2, Chapter 76: 2629-2675; Fields BN, Knipe DM, Howley PM. Lippincott-Raven, Philadelphia - New York Cerca con Google

Mori Y., Koike M., Moriishi E. and Kawabata A. 2008. Human herpesvirus-6 Induces MVB Formation, and Virus Egress Occurs by an Exosomal Release Pathway Traffic. 9: 1728–1742 Cerca con Google

Moorman N.J., Sharon-Frilin R., Shenk T. and Cristea I.M. 2009. A targeted spatial-temporal proteomic approachimplicates multiple cellular trafficking pathways in human cytomegalovirus virion maturation. Mol and Cell. Proteom. Cerca con Google

Morita E. and Sundquist W.I. 2004. Retrovirus budding. Annu. Rev. Cell Dev. Biol. 20: 395-425 Cerca con Google

Morrison E.E, Wang Y.F. and Meredith D.M. 1998. Phosphorylation of structural components promotes dissociation of the herpes simplex virus type 1 tegument. J Virol. 72(9): 7108-14. Cerca con Google

Nii S. 1992. Electron microscopic study on the development of herpesviruses. J Electron Microsc. 41(6): 414-23 Cerca con Google

Nixdorf R., Klupp B.G., Karger A., and Mettenleiter T.C. 2000. Effects of Truncation of the Carboxy Terminus of Pseudorabies Virus Glycoprotein B on Infectivity. J.Virol. 74: 157137-7145 Cerca con Google

Nowak B., Gmeiner A., Sarnow P., Levine A.J. and Fleckenstein B. 1984. Physical mapping of human cytomegalovirus genes: identification of DNA sequences coding for a virion phosphoprotein of 71 kDa and a viral 65-kDa polypeptide. Virology 134: 91-102 Cerca con Google

Nozawa N., Daikoku T., Koshizuka T.,Yamauchi Y., Yoshikawa T. and Nishiyama Y. 2003. Subcellular localization of herpes simplex virus type 1 UL51 protein and role of palmitoylation in Golgi apparatus targeting. J. Virol. 77(5): 3204–3216 Cerca con Google

Nozawa N., Daikoku T., Koshizuka T.,Yamauchi Y., Yoshikawa T. and Nishiyama Y. 2003. Subcellular localization of herpes simplex virus type 1 UL51 protein and role of palmitoylation in Golgi apparatus targeting. J. Virol. 77(5): 3204–3216 Cerca con Google

Ogawa-Goto K., Tanaka K., Gibson W., Moriishi E., Miura Y., Kurata T., Irie S. and Sata1 T. 2002. Microtubule network facilitates nuclear targeting of human cytomegalovirus capsid. J.Virol. 77(15): 8541–8547 Cerca con Google

Pass R.F. 2001. Cytomegalovirus. In Fields: Virology Fourth Edition Volume 2, Chapter 77: 2675-2707. Fields BN, Knipe DM, Howley PM. Lippincott-Raven, Philadelphia - New York Cerca con Google

Pawliczek T. And Crump C.M. 2009. Herpes simplex virus type 1 production requires a functional ESCRT-III complex but is independent of TSG101 and ALIX expression. J.Virol. 83(21):11254-64 Cerca con Google

Pellett P.E. and Roizman B. 2007. The family: Herpesviridae A brief introduction. In: Knipe DM, Griffin MD, Lamb RA, Straus SE, Howley PM, Martin MA, Roizman B (Eds.) Fields Virology, Vol. 2, 5th Edition, Wolters Kluwer Lippincott Williams & Wilkins, Philadelphia Baltimore New York, pp. 2479-2500 Cerca con Google

Pertel P.E., Fridberg A., Parish M.L. and Spear P.G. 2001. Cell fusion induced by herpes simplex virus glycoproteins gB, gD, and gH-gL requires a gD receptor but not necessarily heparan sulfate. Virology. 279(1): 313-24 Cerca con Google

Piper, R.C. and Katzmann D.J. 2007. Biogenesis and function of multivesicular bodies. Annu. Rev. Cell. Dev. Biol. 23: 519-547 Cerca con Google

Pornillos O., Higginson D.S., Stray K.M., Fisher R.D., Garrus J.E., Payne M., He G.P., Wang H.E., Morham S.G. and Sundquist W.I. 2003. HIV Gag mimics the Tsg101-recruiting activity of the human Hrs protein. J. Cell. Biol. 162: 425-434 Cerca con Google

Pornillos O., Alam S.L., Rich R.L., Myszka D.G., Davis D.R. and Sundquist, W. I. 2002. Structure and functional interactions of the Tsg101 UEV domain. EMBO 21: 2397-2406 Cerca con Google

Reddehase M.J. 2006. Cytomegaloviruses: Molecular biology and immunology. Caister Academic Press Cerca con Google

Roizman B., Carmichael L.E., Deinhardt F., de-The G., Nahmias A., J., Plowright W., Rapp F., Sheldrick P., Takahashi M. and Wolf K. 1981. Herpesviridae. Definition, provisional nomenclature, and taxonomy. The herpesvirus Study Group, the International Committee on Taxonomy of Viruses. Intervirology. 16: 201-217. Cerca con Google

Roizman B. 1996. The function of the herpes simplex virus gene: a primer for genetic engineering of novel vectors. Proc. Natl. Acad. Sci. USA. 93: 11307-11312. Cerca con Google

Roizman B. and Knipe D. 2001. Herpes simplex viruses and their replication, p. 2399-2460. In D. Knipe and P. M. Howley (ed.), Fields virology, 4th ed. Lippincott, Williams and Wilkins, Philadelphia, Pa Cerca con Google

Roizman B. and Pellett P. 2001. The Family Herpesviridae: A brief introduction. In Fields:Virology Fourth Edition Volume 2, Fields BN, Knipe DM, Howley PM. Lippincott-Raven, Philadelphia-New York, Chapter 71: 2381-2397 Cerca con Google

Rost M., Mann S., Lambert C., Döring T., Thomé N. and Prange R. 2006. γ2-Adaptin, a novel ubiquitin-interacting adaptor, and Nedd4 ubiquitin ligase control Hepatitis B virus maturation. J. Biol. Chem. 281(39): 29297–29308 Cerca con Google

Ryckman B.J., Jarvis M.A., Drummond D.D., Nelson J.A., Johnson D.C. 2005. Human cytomegalovirus entry into epithelial and endothelial cells depends on genes UL128 to UL150 and occurs by endocytosis and low-pH fusion. J. Virol. 80(2): 710–722 Cerca con Google

Rüger B., Klages S., Walla B., Albrecht J., Fleckenstein B., Tomlinson P., Barrell B. 1987. Primary structure and transcription of the genes coding for the two virion phosphoproteins pp65 and pp7l of human cytomegalovirus. J. Virol. 61(2): 446-453 Cerca con Google

Rupp B., Zsolt R., Sacher T. and Koszinowski U.H. 2005. Conditional Cytomegalovirus Replication In Vitro and In Vivo. J.Virol. 79: 486–494 Cerca con Google

Sambrook, J., Frieske, J., F. and Maniatis, T. 1989 In: Molecular cloning: a laboratory manual. Second edition, Cold Spring Harbor. Extraction and purification of plasmid Laboratory Press, Vol.I, Section 1.25-1.33 Cerca con Google

Sanchez V., Greis K.D., Sztul E. and Britt W.J. 2000. Accumulation of virion tegument and envelope proteins in a stable cytoplasmic compartment during human cytomegalovirus replication: characterization of a potential site of virus assembly. J. Virol. 74(2): 975–986 Cerca con Google

Sanchez V. and Spector D.H. 2006. Cyclin-dependent kinase activity is required for efficient expression and posttranslational modification of human cytomegalovirus proteins and for production of extracellular particles. J. Virol. 80(12): 5886–5896 Cerca con Google

Sanger F., Nicklen S. and Coulson A. R. 1977. DNA sequencing with chain-terminating inhibitors, Proc. Natl. Acad. Sci.USA. 74: 5463-5467 Cerca con Google

Schlieker C., Korbel G.A., Kattenhorn L.M. and Ploegh H.L. 2005. A deubiquitinating activity is conserved in the large tegument protein of the herpesviridae. J Virol. 79(24): 15582-5 Cerca con Google

Seo J.Y. and Britt W.J. 2006. Sequence requirements for localisation of human cytomegalvirus tegument protein pp28 to the virus assembly compartment and for assembly of infectious virus. J. Virol. 80: 5611-5626 Cerca con Google

Shiem M.T., WuDunn D., Montgomery R.I., Esko Y.D. and Spear P.G.1992. Cell surface receptors for herpes simplex virus are heparan sulfate proteoglycans. J. Cell. Biol. 116: 1273-1281 Cerca con Google

Shukla D., Liu J., Blaiklock P., Shworak N.W., Bai X., Esko J.D., Cohen G.H., Eisenberg R.J., Rosenberg R.D. and Spear P.G. 1999. A novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry. Cell. 99(1): 13-22 Cerca con Google

Shim S., Kimpler L.A. and Hanson P.I. 2007. Structure/function analysis of four core ESCRT-III proteins reveals common regulatory role for extreme c-terminal domain. Traffic 8: 1068-1079 Cerca con Google

Sinzger C., Hahn G., Dige M., Katona R., Sampaio K.L., Messerle M., Hengel H., Koszinowski U., Brune W. And Adler B. 2008. Coning and sequencinq of a highly productive, endotheliotropic virus strain derived from human cytomegalovirus TB40/E. J. Gen. Virol. 89: 359-368 Cerca con Google

Skepper J.N., Whiteley A., Browne H. and Minson A. 2001. Herpes simplex virus nucleocapsids mature to progeny virions by an envelopment --> deenvelopment --> reenvelopment pathway. J Virol. 75(12): 5697-702 Cerca con Google

Spaete R.R., Saxena A., Scott P., Song G.J., Probert W.S., Britt W.J., Gibson W., Rasmussen L. and Pachel C. 1990. Sequence requirements for proteolytic processing of glycoprotein B of human cytomegalovirus strain Towne. J Virol. 64: 2922-2931 Cerca con Google

Strack B., Calistri A., Accola M.A., Palu G. and Göttlinger H.G. 2000. A role for ubiquitin ligase recruitment in retrovirus release. Proc. Natl. Acad. Sci. USA 97: 13063-68. Cerca con Google

Strack B., Calistri A. and Göttlinger H.G. 2002. Late assembly domain function can exhibit context dependence and involves ubiquitin residues implicated in endocytosis. J. Virol. 77: 10700-5 Cerca con Google

Strack B., Calistri A., Craig S., Popola E. and Göttlinger H.G. 2003. AIP1/ALIX is a binding partner for HIV-1 p6 and EIAV p9 functioning in virus budding. Cell. 114: 689-699 Cerca con Google

Tandon R., AuCoin D.P. and Mocarski E.S. 2009. Human cytomegalovirus exploits ESCRT machinery in the process of virion maturation. J Virol. 83(20):10797-807 Cerca con Google

Tischer, B. K., von, Einem J., Kaufer, B. and Osterrieder, N. 2006. Two-step Red-mediated recombination for versatile high-efficiency markerless DNA manipulation in Escherichia coli. BioTechniques 40:191-19 Cerca con Google

Tugizov S., Maidji E., Xiao J. and Pereira, L. 1999. An acidic cluster in the cytosolic domain of human cytomegalovirus glycoprotein B is a signal for endocytosis from the plasma membrane. Journal of Virology 73, 8677-8688 Cerca con Google

Usami Y., Popov S., Popova E. and Göttlinger H.G. 2008. Efficient and Specific Rescue of Human Immunodeficiency virus 1 Budding Defects by a Nedd4-like Ubiquitin Ligase. J. Virol. 82: 4898-4907 Cerca con Google

Varnum S.M., Streblow D.N., Monroe M.E., Smith P., Auberry K.J., Pasa-Tolic L., Wang D., Camp D.G., Rodland K., Wiley S., Britt W.J., Shenk T., Smith R.D., Nelson J.A. 2004. Identification of proteins in human cytomegalovirus (HCMV) particles: the HCMV proteome. J. Virol. 78: 10960-10966 Cerca con Google

Wang F.Z., Akula S.M., Sharma-Walia N., Zeng L. and Chandran B. 2003. Human herpesvirus 8 envelope glycoprotein B mediates cell adhesion via its RGD sequence. J Virol. 77: 3131-47 Cerca con Google

Wang X., Huang D.Y., Huong S.M. and Huang E.S. 2005. Integrin αvβ3 is a coreceptor for human cytomegalovirus infection. Nat. Med. 11(5): 515–521 Cerca con Google

Wang X., Huong S.M., Chiu M.L., Raab-Traub N. and Huang E.S. 2003. Epidermal growth factor receptor is a cellular receptor for human cytomegalovirus. Nature 424: 456-461 Cerca con Google

Watanabe T., Sorensen E.M., Naito A., Schott M., Kim S. and Ahlquist P. 2007. Involvement of host cellular multivesicular body functions in hepatitis B virus budding. PNAS 104(24): 10205-10210 Cerca con Google

Welchman R. L., Gordon C. and Mayer R. J. 2005. Ubiquitin and Ubiquitin-like Proteins as Multifunctional Signals. Nature Rev. Mol. Cell Biol. 6: 599-609 Cerca con Google

White E.A., Del Rosario C.J., Sanders R.L. and Spector D.H. 2007. The IE2 60-kilodalton and 40-kilodalton proteins are dispensable for human cytomegalovirus replication but are required for efficient delayed early and late gene expression and production of infectious virus. J. Virol. 81(6): 2573–2583 Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record