Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Vedovato, Marco (2008) Analisi funzionale e comparata delle Longine VAMP7 e Ykt6. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
727Kb

Abstract (inglese)

Longins are proteins characterized by a conserved N-terminal extension of 120-140 amino acids, named longin domain (LD). They belong to SNARE that are crucial proteins for subcellular trafficking control, and they are divided into three main families: VAMP7, Sec22 and Ykt6. The research activity performed during this PhD is linked to a project (funded by CA.RI.PA.RO. Fondation) that aims at studying functional modulation and interactions of VAMP7 and Ykt6 LDs. Therefore the distribution of LD and longin proteins in eukaryots has been studied, by means of a bioinformatic screening on proteomes and genomes. This allowed for highlighting differencial roles of Ykt6 and VAMP7 longin families. In addition, Phytolongins have been discovered: they are representing the first example of non-SNARE longins family, showing a variable central region that replaced the SNARE motif. By means of phylogenetic trees, longins evolution between and inside the families has been analyzed and has shown interesting data, particularly as regards the relationships between Ykt6, VAMP7 and Phytolongins. We performed tridimensional models of LDs in order to infer functional insights from the conservation or divergence of surface specific patches, and also to unravel key amino acids for the interactions with other vesicular proteins. A hydrophobic surface of ? helix 1 seems to mediate the autoinhibitory mechanism in yeast Ykt6 LD, but our data on conserved hydrophobic or polar surfaces in ?1 indicate that this mechanism is family-specific and not always dependent on hydrophobicity. We have performed site-directed mutagenesis of particular residues that are conserved in Ykt6 and VAMP7, in order to obtain indications about their value in future two-hybrid assays.


Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Filippini, Francesco
Dottorato (corsi e scuole):Ciclo 20 > Scuole per il 20simo ciclo > BIOCHIMICA E BIOTECNOLOGIE > BIOTECNOLOGIE
Data di deposito della tesi:31 Gennaio 2008
Anno di Pubblicazione:31 Gennaio 2008
Parole chiave (italiano / inglese):Snare; Longine; Dominio longinico; Traffico subcellulare
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/11 Biologia molecolare
Struttura di riferimento:Dipartimenti > pre 2012 Dipartimento di Chimica Biologica
Codice ID:274
Depositato il:22 Set 2008
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Abascal, F.; Zardoya, R. & Posada, D. (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21: 2104-2105. Cerca con Google

2. Adl, S. M.; Simpson, A. G. B.; Farmer, M. A.; Andersen, R. A.; Anderson, O. R.; Barta, J. R.; Bowser, S. S.; Brugerolle, G.; Fensome, R. A.; Fredericq, S.; James, T. Y.; Karpov, S.; Kugrens, P.; Krug, J.; Lane, C. E.; Lewis, L. A.; Lodge, J.; Lynn, D. H.; Mann, D. G.; McCourt, R. M.; Mendoza, L.; Moestrup, O.; Mozley-Standridge, S. E.; Nerad, T. A.; Shearer, C. A.; Smirnov, A. V.; Spiegel, F. W. & Taylor, M. F. J. R. (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J. Eukaryot. Microbiol. 52: 399-451. Cerca con Google

3. Advani, R. J.; Bae, H. R.; Bock, J. B.; Chao, D. S.; Doung, Y. C.; Prekeris, R.; Yoo, J. S. & Scheller, R. H. (1998) Seven novel mammalian SNARE proteins localize to distinct membrane compartments. J. Biol. Chem. 273: 10317-10324. Cerca con Google

4. Advani, R. J.; Yang, B.; Prekeris, R.; Lee, K. C.; Klumperman, J. & Scheller, R. H. (1999) VAMP-7 mediates vesicular transport from endosomes to lysosomes. J. Cell. Biol. 146: 765-776. Cerca con Google

5. Agatep R., Kirkpatrick R.D., Parchaliuk D.L., Woods R.A. & Gietz R.D. (1998) Trasformation of Saccharomyces cerevisiae by the lithium acetate/ single-stranded carrier DNA/polyethylene glycol (LiAc/ssDNA/PEG) protocol. Technical Tips Online (http://www.trends.com.). Vai! Cerca con Google

6. Altschul, S. F.; Madden, T. L.; Schaffer, A. A.; Zhang, J.; Zhang, Z.; Miller W. & Lipman, D. J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997: 25:3389-3402. Cerca con Google

7. Antonin, W.; Fasshauer, D.; Becker, S.; Jahn, R. & Schneider, T. R. (2002) Crystal structure of the endosomal SNARE complex reveals common structural principles of all SNAREs. Nat. Struct. Bio. 9: 107-111. Cerca con Google

8. Balch, W. E.; Dunphy, W. G.; Braell, W. A. & Rothman, J. E. (1984) Reconstitution of the transport of protein between successive compartments of the Golgi measured by the coupled incorporation of N-acetylglucosamine. Cell 39: 405-416. Cerca con Google

9. Barlowe, C.; Orci, L.; Yeung, T.; Hosobuchi, M.; Hamamoto, S.; Salama, N.; Rexach, M.F.; Ravazzola; M., Amherdt, M. & Schekman,R. (1994) COPII: a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell 77: 895-907. Cerca con Google

10. Bennett-Lovsey, R.M.; Herbert, A.D.; Sternberg, M.J.E. & Kelley L.A. (2008) Proteins: Structure, Function. Bioinformatics 70: 611-625. Cerca con Google

11. Bock, J. B.; Matern, H. T.; Peden, A. A. & Scheller, R. H. (2001) A genomic perspective on membrane compartment organization. Nature. 409: 839-841. Cerca con Google

12. Bonifacino, J. S. & Glick, B. S. (2004) The mechanisms of vesicle budding and fusion. Cell 116: 153-166. Cerca con Google

13. Bretscher M., Munro S. (1993) Cholesterol and the Golgi apparatus, Science 261: 1280-1281. Cerca con Google

14. Brunger, A. T. Structure and function of SNARE and SNARE-interacting proteins. (2005) Q. Rev. Biophys. 38:1-47. Cerca con Google

15. Burri, L.; Varlamov, O.; Doege, C. A.; Hofmann, K.; Beilharz, T.; Rothman, J. E.; Söllner, T. H. & Lithgow, T. (2003) A SNARE required for retrograde transport to the endoplasmic reticulum. Proc. Natl. Acad. Sci. U S A 100: 9873-9877. Cerca con Google

16. Chen, Y.; Shin, Y. & Bassham, D. C. (2005) YKT6 is a core constituent of membrane fusion machineries at the Arabidopsis trans-Golgi network. J. Mol. Biol. 350: 92-101. Cerca con Google

17. Clary D.O.; Griff I.C. & Rothman J.E. (1990) SNAPs, a family of NSF attachment proteins involved in intracellular membrane fusion in animals and yeast. Cell 61: 709-721. Cerca con Google

18. Clary D.O. & Rothman J.E. (1990) Purification of three related peripheral membrane proteins needed for vesicular transport. J. Biol. Chem. 265: 10109-10117. Cerca con Google

19. Coco, S.; Raposo, G.; Martinez, S.; Fontaine, J. J.; Takamori, S.; Zahraoui, A.; Jahn, R.; Matteoli, M.; Louvard, D. & Galli, T. (1999) Subcellular localization of tetanus neurotoxin-insensitive vesicle-associated membrane protein (VAMP)/VAMP7 in neuronal cells: evidence for a novel membrane compartment. J. Neurosci. 19: 9803-9812. Cerca con Google

20. Combet, C.; Jambon, M.; Deléage, G. & Geourjon C. (2002) Geno3D: Automatic comparative molecular modelling of protein. Bioinformatics. 18: 213-214. Cerca con Google

21. Dacks, J. B. & Field, M. C. (2007) Evolution of the eukaryotic membrane-trafficking system: origin, tempo and mode. J. Cell Sci. 120: 2977-2985. Cerca con Google

22. DeLano, W.L. (2002) The PyMOL Molecular Graphics System http://www.pymol.org. Vai! Cerca con Google

23. Damen, E.; Krieger, E.; Nielsen, J. E.; Eygensteyn, J. & van Leeuwen, J. E. M. (2006) The human Vps29 retromer component is a metallo-phosphoesterase for a cation-independent mannose 6-phosphate receptor substrate peptide. Biochem. J. 398: 399-409. Cerca con Google

24. Dennison, S. M.; Bowen, M. E.; Brunger, A. T. & Lentz, B. R. (2006) Neuronal SNAREs do not trigger fusion between synthetic membranes but do promote PEG-mediated membrane fusion. Biophys. J. 90: 1661-1675. Cerca con Google

25. D'Esposito, M.; Ciccodicola, A.; Gianfrancesco, F.; Esposito, T.; Flagiello, L.; Mazzarella, R.; Schlessinger, D. & D'Urso, M. (1996) A synaptobrevin-like gene in the Xq28 pseudoautosomal region undergoes X inactivation. Nat. Genet. 13: 227-229. Cerca con Google

26. Dilcher M., Kohler B. & von Mollard G.F. (2001) Genetic interactions with the yeast Q-SNARE VTI1 reveal novel functions for the R-SNARE YKT6. J. Biol. Chem. 276: 34537-34544. Cerca con Google

27. Dietrich, L. E. P.; Gurezka, R.; Veit, M. & Ungermann, C. (2004) The SNARE Ykt6 mediates protein palmitoylation during an early stage of homotypic vacuole fusion. EMBO J. 23: 45-53. Cerca con Google

28. Dulubova, I.; Sugita, S.; Hill, S.; Hosaka, M.; Fernandez, I.; Südhof, T. C. & Rizo, J. (1999) A conformational switch in syntaxin during exocytosis: role of munc18.EMBO J. 18: 4372-4382. Cerca con Google

29. Fasshauer, D.; Sutton, R. B.; Brunger, A. T. & Jahn, R. (1998) Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs. Proc. Natl. Acad. Sci. U S A 95: 15781-15786. Cerca con Google

30. Fasshauer, D. (2003) Structural insights into the SNARE mechanism. Biochim Biophys. Acta 1641: 87-97. Cerca con Google

31. Fernandez, I.; Ubach, J.; Dulubova, I.; Zhang, X.; Südhof, T. C. & Rizo, J. (1998) Three-dimensional structure of an evolutionarily conserved N-terminal domain of syntaxin 1A. Cell 94: 841-849. Cerca con Google

32. Filippini, F.; Rossi, V.; Galli, T.; Budillon, A.; D'Urso, M. & D'Esposito, M. (2001) Longins: a new evolutionary conserved VAMP family sharing a novel SNARE domain. Trends Biochem. Sci. 26: 407-409. Cerca con Google

33. Fuerst, J. A. (2005) Intracellular compartmentation in planctomycetes. Annu. Rev. Microbiol. 59: 299-328. Cerca con Google

34. Fukasawa, M.; Varlamov, O.; Eng, W. S.; Söllner, T. H. & Rothman, J. E. (2004) Localization and activity of the SNARE Ykt6 determined by its regulatory domain and palmitoylation. Proc. Natl. Acad. Sci. U S A 101: 4815-4820. Cerca con Google

35. Futerman A.H. & Banker G.A. (1996) The economics of neurite outgrowth: the addition of new membrane to growing axons. Trends Neurosci. 19: 144-149. Cerca con Google

36. Galli, T.; Zahraoui, A.; Vaidyanathan, V. V.; Raposo, G.; Tian, J. M.; Karin, M.; Niemann, H. & Louvard, D. (1998) A novel tetanus neurotoxin-insensitive vesicle-associated membrane protein in SNARE complexes of the apical plasma membrane of epithelial cells. Mol. Biol. Cell. 9: 1437-1448. Cerca con Google

37. Gonzalez, L. C.; Weis, W. I. & Scheller, R. H. (2001) A novel snare N-terminal domain revealed by the crystal structure of Sec22b. J. Biol. Chem. 276: 24203-24211. Cerca con Google

38. Guindon, S. & Gascuel, O. (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52: 696-704. Cerca con Google

39. Hasegawa, H.; Zinsser, S.; Rhee, Y.; Vik-Mo, E. O.; Davanger, S. & Hay, J. C. (2003) Mammalian ykt6 is a neuronal SNARE targeted to a specialized compartment by its profilin-like amino terminal domain. Mol. Biol. Cell. 14: 698-720. Cerca con Google

40. Hasegawa, H.; Yang, Z.; Oltedal, L.; Davanger, S. & Hay, J. C. (2004) Intramolecular protein-protein and protein-lipid interactions control the conformation and subcellular targeting of neuronal Ykt6. J. Cell. Sci. 117: 4495-4508. Cerca con Google

41. Hay J.C., Hirling H. & Scheller R.H. (1996) Mammalian vesicle trafficking proteins of the endoplasmic reticulum and Golgi apparatus. J. Biol. Chem. 271: 5671-5679. Cerca con Google

42. Hay, J. C.; Chao, D. S.; Kuo, C. S. & Scheller, R. H. (1997) Protein interactions regulating vesicle transport between the endoplasmic reticulum and Golgi apparatus in mammalian cells. Cell 89: 149-158. Cerca con Google

43. Hay J.C., Klumperman J., Oorschot V., Steegmaier M., Kuo C.S. & Scheller R.H. (1998) Localization, dynamics, and protein interactions reveal distinct roles for ER and Golgi SNAREs. J. Cell. Biol. 141: 1489-1502. Cerca con Google

44. Hay J.C. (2001) SNARE complex structure and function. Exp. Cell. Res. 271: 10-21. Cerca con Google

45. Higuchi R.; Krummel B.; & Saiki R.K. (1988) A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res. 16: 7351-7367. Cerca con Google

46. Ho, S.N,; Hunt H.D.; Horton R.M. & Pullen J.K. (1989) and Pease LR. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77: 51-59. Cerca con Google

47. Jahn, R. & Scheller, R. H. (2006) SNAREs - engines for membrane fusion. Nat. Rev. Mol. Cell. Biol. 7: 631-643. Cerca con Google

48. Jang, S. B.; Kim, Y.; Cho, Y.; Suh, P.; Kim, K. & Oh, B. (2002) Crystal structure of SEDL and its implications for a genetic disease spondyloepiphyseal dysplasia tarda. J. Biol. Chem. 277: 49863-49869. Cerca con Google

49. Kinch, L. N. & Grishin, N. V. (2006) Longin-like folds identified in CHiPS and DUF254 proteins: Vesicle trafficking complexes conserved in eukaryotic evolution. Protein Sci. 15: 2669-2674. Cerca con Google

50. Kurzbauer, R.; Teis, D.; de Araujo, M. E. G.; Maurer-Stroh, S.; Eisenhaber, F.; Bourenkov, G. P.; Bartunik, H. D.; Hekman, M.; Rapp, U. R.; Huber, L. A. & Clausen, T. (2004) Crystal structure of the p14/MP1 scaffolding complex: how a twin couple attaches mitogen-activated protein kinase signaling to late endosomes. Proc. Natl. Acad. Sci. U S A 101: 10984-10989. Cerca con Google

51. Kweon, Y.; Rothe, A.; Conibear, E. & Stevens, T. H. (2003) Ykt6p is a multifunctional yeast R-SNARE that is required for multiple membrane transport pathways to the vacuole. Mol. Biol. Cell. 14: 1868-1881. Cerca con Google

52. Lafont, F.; Verkade, P.; Galli, T.; Wimmer, C.; Louvard, D. & Simons, K. (1999) Raft association of SNAP receptors acting in apical trafficking in Madin-Darby canine kidney cells. Proc. Natl. Acad. Sci. U S A 96: 3734-3738. Cerca con Google

53. Lederkremer, G.Z., Cheng, Y., Petre, B.M., Vogan, E., Springer, S., Schekman, R., Walz, T., and Kirchhausen, T. (2001) Structure of the Sec23p/24p and Sec13p/31p complexes of COPII. Proc. Natl. Acad. Sci. USA 98: 10704-10709. Cerca con Google

54. Letourneur, F.; Gaynor, E.C.; Hennecke, S.; Demolliere, C.; Duden,R.; Emr, S.D.; Riezman, H. & Cosson, P. (1994) Coatomer isessential for retrieval of dilysine-tagged proteins to the endoplasmicreticulum. Cell 79: 1199-1207. Cerca con Google

55. Lippincott-Schwartz, J. (1993) Bidirectional membrane traffic between the endoplasmic reticulum and Golgi apparatus. Trends Cell. Biol. 3: 81-88. Cerca con Google

56. López-Garcí­a, P. & Moreira, D. (2006) Selective forces for the origin of the eukaryotic nucleus. Bioessay 28: 525-533. Cerca con Google

57. Lu, J.; Garcia, J.; Dulubova, I.; Südhof, T. C. & Rizo, J. (2002) Solution structure of the Vam7p PX domain. Biochemistry 41: 5956-5962. Cerca con Google

58. Lunin, V. V.; Munger, C.; Wagner, J.; Ye, Z.; Cygler, M. & Sacher, M. (2004) The structure of the MAPK scaffold, MP1, bound to its partner, p14. A complex with a critical role in endosomal map kinase signaling. J. Biol. Chem. 279: 23422-23430. Cerca con Google

59. Mancias, J. D. & Goldberg, J. (2007) The transport signal on Sec22 for packaging into COPII-coated vesicles is a conformational epitope. Mol. Cell. 26: 403-414. Cerca con Google

60. Margittai, M.; Fasshauer, D.; Pabst, S.; Jahn, R. & Langen, R. (2001) Homo- and heterooligomeric SNARE complexes studied by site-directed spin labeling. J. Biol. Chem. 276: 13169-13177. Cerca con Google

61. Margittai, M.; Fasshauer, D.; Jahn, R. & Langen, R. (2003) The Habc domain and the SNARE core complex are connected by a highly flexible linker. Biochemistry 42: 4009-4014. Cerca con Google

62. Martin, W. (2005) Archaebacteria (Archaea) and the origin of the eukaryotic nucleus. Curr. Opin. Microbiol. 8: 630-637. Cerca con Google

63. Martinez-Arca S., Alberts P., Zahraoui A., Louvard D. & Galli T. (2000) Role of tetanus neurotoxin insensitive vesicle-associated membrane protein (TI-VAMP) in vesicular transport mediating neurite outgrowth. J. Cell. Biol. 149: 889-900. Cerca con Google

64. Martinez-Arca, S.; Rudge, R.; Vacca, M.; Raposo, G.; Camonis, J.; Proux Gillardeaux, V.; Daviet, L.; Formstecher, E.; Hamburger, A.; Filippini, F.; D'Esposito, M. & Galli, T. (2003) A dual mechanism controlling the localization and function of exocytic vSNAREs. Proc. Natl. Acad. Sci. U S A 100: 9011-9016. Cerca con Google

65. McNew, J. A.; Sogaard, M.; Lampen, N. M.; Machida, S.; Ye, R. R.; Lacomis, L.; Tempst, P.; Rothman, J. E. & Söllner, T. H. (1997) Ykt6p, a prenylated SNARE essential for endoplasmic reticulum-Golgi transport. J. Biol. Chem. 272: 17776-17783. Cerca con Google

66. McNew, J. A.; Parlati, F.; Fukuda, R.; Johnston, R. J.; Paz, K.; Paumet, F.; Söllner, T. H. & Rothman, J. E. (2000) Compartmental specificity of cellular membrane fusion encoded in SNARE proteins. Nature 407: 153-159. Cerca con Google

67. Misura, K. M.; Scheller, R. H. & Weis, W. I. (2001a) Self-association of the H3 region of syntaxin 1A. Implications for intermediates in SNARE complex assembly. J. Biol. Chem. 276: 13273-13282. Cerca con Google

68. Misura, K. M.; Gonzalez, L. C.; May, A. P.; Scheller, R. H. & Weis, W. I. (2001b) Crystal structure and biophysical properties of a complex between the N-terminal SNARE region of SNAP25 and syntaxin 1a. J. Biol. Chem. 276: 41301-41309. Cerca con Google

69. Newman, A. P.; Shim, J. & Ferro-Novick, S. (1990) BET1, BOS1, and SEC22 are members of a group of interacting yeast genes required for transport from the endoplasmic reticulum to the Golgi complex. Mol. Cell. Biol. 10: 3405-3414. Cerca con Google

70. Novick, P.; Field, C. & Schekman, R. (1980) Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 21:205-215. Cerca con Google

71. Paek I., Orci L., Ravazzola M., Erdjument-Bromage H., Amherdt M., Tempst P., Sollner T.H. & Rothman J.E. (1997) ERS-24, a mammalian v-SNARE implicated in vesicle traffic between the ER and the Golgi. J. Cell. Biol. 137: 1017-1028. Cerca con Google

72. Page, R. D. M. (1996). TREEVIEW: An application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences 12: 357-358. Cerca con Google

73. Palade G. (1975) Intracellular aspects of the process of protein synthesis. Science 189: 347-358. Cerca con Google

74. Pearse, B.M. (1975). Coated vesicles from pig brain: purification and biochemical characterization. J. Mol. Biol. 97: 93-98. Cerca con Google

75. Prochiantz A. (1995) Neuronal polarity: giving neurons heads and tails. Neuron 15: 743-746. Cerca con Google

76. Proux-Gillardeaux, V.; Raposo, G.; Irinopoulou, T. & Galli, T. (2007) Expression of the Longin domain of TI-VAMP impairs lysosomal secretion and epithelial cell migration. Biol. Cell. 13: 177-186. Cerca con Google

77. Rachel, R.; Wyschkony, I.; Riehl, S. & Huber, H. (2002) The ultrastructure of Ignicoccus: evidence for a novel outer membrane and for intracellular vesicle budding in an archaeon. Archaea 1: 9-18. Cerca con Google

78. Ranea, J. A. G.; Sillero, A.; Thornton, J. M. & Orengo, C. A. (2006) Protein superfamily evolution and the last universal common ancestor (LUCA). J. Mol. Evol. 63: 513-525. Cerca con Google

79. Ronquist, F. & Huelsenbeck, J. P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572-1574. Cerca con Google

80. Rossi, V.; Banfield, D. K.; Vacca, M.; Dietrich, L. E. P.; Ungermann, C.; D'Esposito, M.; Galli, T. & Filippini, F. (2004) Longins and their longin domains: regulated SNAREs and multifunctional SNARE regulators. Trends Biochem. Sci. 29: 682-688. Cerca con Google

81. Sacher, M.; Stone, S. & Ferro-Novick, S. (1997) The synaptobrevin-related domains of Bos1p and Sec22p bind to the syntaxin-like region of Sed5p. J. Biol. Chem. 272: 17134-17138. Cerca con Google

82. Sambrook J., Russel D.W. (2001a) Preparation of plasmid DNA by alkaline lysis with SDS: Minipreparation. In "Molecular Cloning: a laboratory manual", third edition, Irvin, N Editor, Cold Spring Harbor Laboratory Press Publisher, vol 1, section 1.32. Cerca con Google

83. Sambrook J., Russel D.W. (2001b).Preparation and transformation of competent E. coli using Calcium Chloride. In "Molecular Cloning: a laboratory manual", third edition, Irvin, N Editor, Cold Spring Harbor Laboratory Press Publisher, vol 1, section 1.116. Cerca con Google

84. Saraste, J. & Kuismanen, E. (1992) Pathways of protein sorting and membrane traffic between the rough endoplasmic reticulum and the Golgi complex. Semin. Cell. Biol. 3: 343-355. Cerca con Google

85. Saraste, J. & Goud, B. (2007) Functional symmetry of endomembranes. Mol. Biol. Cell. 18: 1430-1436. Cerca con Google

86. Schekman, R & Novick, P. (2004) 23 genes, 23 years later. Cell 116: S13-5, 1 p following S19. Cerca con Google

87. Schlenker, O.; Hendricks, A.; Sinning, I. & Wild, K. (2006) The structure of the mammalian signal recognition particle (SRP) receptor as prototype for the interaction of small GTPases with Longin domains. J. Biol. Chem. 281: 8898-8906. Cerca con Google

88. Schiestl R.H. & Gietz R.D. (1989) High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr. Genet. 16: 339-346. Cerca con Google

89. Serafini, T.; Orci, L.; Amherdt, M.; Brunner, M.; Kahn, R.A. & Rothman, J.E. (1991) ADP-ribosylation factor is a subunit of the coat of Golgi-derived COP-coated vesicles: a novel role for a GTP-binding protein. Cell, 67: 239-253. Cerca con Google

90. Siddiqi, S. A., Gorelick, F. S., Mahan, J. T. and Mansbach, C. M., II. (2003). In vitro budding of pre-chylomicron transport vesicles from the endoplasmic reticulum is COPII protein independent. J. Cell. Sci. 116: 415-427. Cerca con Google

91. Siddiqi, S. A.; Mahan, J.; Siddiqi, S.; Gorelick, F. S. & Mansbach, C. M. (2006) Vesicle-associated membrane protein 7 is expressed in intestinal ER. J Cell. Sci. 119: 943-950. Cerca con Google

92. Söllner, T.; Bennett, M. K.; Whiteheart, S. W.; Scheller, R. H. & Rothman, J. E. (1993) A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 75: 409-418. Cerca con Google

93. Søgaard, M.; Tani, K.; Ye, R. R.; Geromanos, S.; Tempst, P.; Kirchhausen, T.; Rothman, J. E. & Söllner, T. (1994) A rab protein is required for the assembly of SNARE complexes in the docking of transport vesicles. Cell 78: 937-948. Cerca con Google

94. Spang A. & Schekman R. (1998) Reconstitution of retrograde transport from the Golgi to the ER in vitro. J. Cell. Biol. 143: 589-599. Cerca con Google

95. Stamatakis, A. (2006) RAxML-VI-HPC: Maximum Likelihood-based Phylogenetic Analyses with Thousands of Taxa and Mixed Models. Bioinformatics 22: 2688 2690. Cerca con Google

96. Sutton R.B.; Fasshauer D.; Jahn R. & Brunger A.T. (1998) Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 395: 347-353. Cerca con Google

97. Tagaya M.; Wilson D.W.; Brunner M.; Arango N. & Rothman J.E. (1993) Domain structure of an N-ethylmaleimide-sensitive fusion protein involved in vesicular transport. J. Biol. Chem. 268: 2662-2666. Cerca con Google

98. Thompson, J. D.; Gibson, T. J.; Plewniak, F.; Jeanmougin, F. & Higgins, D. G. (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic. Acids. Res. 25: 4876-4882. Cerca con Google

99. Tochio, H.; Tsui, M. M.; Banfield, D. K. & Zhang, M. (2001) An autoinhibitory mechanism for nonsyntaxin SNARE proteins revealed by the structure of Ykt6p. Science 293: 698-702. Cerca con Google

100. Toonen, R. F. G. & Verhage, M. (2003) Vesicle trafficking: pleasure and pain from SM genes. Trends. Cell. Biol. 13: 177-186. Cerca con Google

101. Tsui, M. M.; Tai, W. C. & Banfield, D. K. (2001) Selective formation of Sed5p-containing SNARE complexes is mediated by combinatorial binding interactions. Mol. Biol. Cell. 12: 521-538. Cerca con Google

102. Tusnády, G. E. & Simon, I. (2001) The HMMTOP transmembrane topology prediction server. Bioinformatics 17: 849-850. Cerca con Google

103. Uemura, T.; Sato, M. H. & Takeyasu, K. (2005) The longin domain regulates subcellular targeting of VAMP7 in Arabidopsis thaliana. FEBS Lett. 579: 2842-2846. Cerca con Google

104. Ungermann C., von Mollard G.F., Jensen O.N., Margolis N., Stevens T.H. & Wickner W. (1999) Three v-SNAREs and two t-SNAREs, present in a pentameric cis-SNARE complex on isolated vacuoles, are essential for homotypic fusion. J. Cell. Biol. 145: 1435-1442. Cerca con Google

105. Valdez-Taubas, J. & Pelham, H. (2005) Swf1-dependent palmitoylation of the SNARE Tlg1 prevents its ubiquitination and degradation. EMBO J. 24: 2524-2532. Cerca con Google

106. van der Giezen, M.; Tovar, J. & Clark, C. G. (2005) Mitochondrion-derived organelles in protists and fungi. Int. Rev. Cytol. 244: 175-225. Cerca con Google

107. Veit, M. (2004) The human SNARE protein Ykt6 mediates its own palmitoylation at C-terminal cysteine residues. Biochem. J. 384: 233-237. Cerca con Google

108. Ward, D. M.; Pevsner, J.; Scullion, M. A.; Vaughn, M. & Kaplan, J. (2000) Syntaxin 7 and VAMP-7 are soluble N-ethylmaleimide-sensitive factor attachment protein receptors required for late endosome-lysosome and homotypic lysosome fusion in alveolar macrophages. Mol. Biol. Cell. 11: 2327-2333. Cerca con Google

109. Weimbs, T.; Low, S. H.; Chapin, S. J.; Mostov, K. E.; Bucher, P. & Hofmann, K. (1997) A conserved domain is present in different families of vesicular fusion proteins: a new superfamily. Proc. Natl. Acad. Sci. U S A 94: 3046-3051. Cerca con Google

110. Wen, W.; Chen, L.; Wu, H.; Sun, X.; Zhang, M. & Banfield, D. K. (2006) Identification of the Yeast R-SNARE Nyv1p as a Novel Longin Domain containing Protein. Mol. Biol. Cell. 17: 4282-4299. Cerca con Google

111. Weninger, K.; Bowen, M. E.; Chu, S. & Brunger, A. T. (2003) Single-molecule studies of SNARE complex assembly reveal parallel and antiparallel configurations. Proc. Natl. Acad. Sci. U S A 100: 14800-14805. Cerca con Google

112. Whelan, S. & Goldman, N. (2001) A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol. Biol. Evol. 18: 691-699. Cerca con Google

113. Wilson D.W.; Wilcox C.A., Flynn G.C.; Chen E.; Kuang W.J.; Henzel W.J.; Block M.R.; Ullrich A. & Rothman J.E. (1989) A fusion protein required for vesicle-mediated transport in both mammalian cells and yeast. Nature 339: 355-359. Cerca con Google

114. Xu, Y.; Martin, S.; James, D. E. & Hong, W. (2002) GS15 forms a SNARE complex with syntaxin 5, GS28, and Ykt6 and is implicated in traffic in the early cisternae of the Golgi apparatus. Mol. Biol. Cell. 13: 3493-3507. Cerca con Google

115. Xu, D., Joglekar, A. P., Williams, A. L., and Hay, J. C. (2000) Subunit Structure of a Mammalian ER/Golgi SNARE Complex J. Biol. Chem. 275, 39631-39639. Cerca con Google

116. Zhang, F.; Chen, Y.; Kweon, D.; Kim, C. S. & Shin, Y. (2002) The four-helix bundle of the neuronal target membrane SNARE complex is neither disordered in the middle nor uncoiled at the C-terminal region. J. Biol. Chem. 277: 24294-24298. Cerca con Google

117. Zhang T. & Hong W. (2001) Ykt6 forms a SNARE complex with syntaxin 5, GS28, and Bet1 and participates in a late stage in endoplasmic reticulum-Golgi transport. J. Biol. Chem. 276: 27480-27487. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record