Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

[Ph.D. thesis]

Full text disponibile come:

PDF Document (tesi di dottorato) - Other

Abstract (english)

In this thesis, a melt and fluid inclusion study was performed to investigate both anatectic melt and fluid phase during anatexis of metapelitic rocks, by studying samples from two different geological settings, the khondalites of the Kerala Khondalite Belt, India, and the granulitic enclaves from El Hoyazo, Neogene Volcanic Province, Spain.
In khondalites (garnet-sillimanite-cordierite granulite/gneiss), melt inclusions (MI), interpreted as containing anatectic melt, were found for the first time in peritectic minerals from classic regionally metamorphosed metapelitic migmatites, partially melted at T~900°C and 6-8 kbar. A detailed study was carried out to characterize the petrographic features of MI, their chemical composition and the structures of the crystallized phases within the inclusions, by microscope observation, FESEM imaging in BSE mode, X-ray elemental mapping, EMP and Micro-Raman analyses. Peritectic garnets contain irregular clusters of hundreds of MI, from totally crystallized (nanogranites) to totally glassy, often negative-crystal in shape. Nanogranites are 5-25 μm across and contain a cryptocrystalline aggregate of Bt+Kfs+Pl+Qtz±Ap, along with trapped phases (apatite, zircon, rutile, Zn-bearing spinel and rarely ilmenite) that are likely to have favoured the entrapment of the anatectic melt during the host growth.. The grain size of crystals in nanogranite is variable, from few tens of nanometer to several microns. Partially crystallized inclusions contain a differentiated melt that occupies 60 to 20% of the inclusion area, along with Qtz, Kfs and Bt. Glassy inclusions are usually smaller (2.5–17.5 µm) than nanogranites and represent about 15% of the total amount of MI in the clusters. They contain an amorphous phase, along with the same trapped phases found in nanogranites. EMP analysis of the glass provides an ultrapotassic and rhyolitic composition, with K2O >> Na2O. The EMP totals suggest a H2O content (calculated by difference to 100%) <3 wt%. The occurrence of preserved glassy MI is an unprecedented finding, and since the mean diameter (8 μm) of glassy inclusions is smaller than those of nanogranites (13 μm), we propose that this difference in size was influential to the crystallization of melt droplets, so that most of the smaller inclusions remained glassy because of inhibited nucleation. Nanogranites were homogenized using a heating stage at controlled atmosphere, and then analyzed, to obtain a consistent set of compositional data on their bulk composition. EMP analyses on homogenized inclusions show a compositional homogeneity of the melt from all the nanogranites, with strong similarity to those of preserved glassy inclusions. Melt composition is Na-poor, and plots very far from the “minimum melt” of the haplogranitic system in the Q-Ab-Or diagram, commonly accepted as the composition of the anatectic melt produced by partial melting of metapelites. The retrieved composition, although uncommon for anatectic melts, is reported for natural rhyolites and for experimental products, and accounts for partial melting conditions with T in excess of 850°C, in agreement with the inferred PT conditions of partial melting for these rocks. Moreover, it testifies that assuming a minimum melt composition as representative of the anatectic melt is not correct in the present case study and should not be considered a general rule. The consistency of the compositional data and the careful microstructural investigation of the samples, coupled with the use of the correct techniques of MI homogenization, microchemical analyses and data correction, support for the interpretation of these data as representative of the phase trapped in MI, and the conclusion that MI in garnet from khondalites contain droplets of anatectic melt. This novel result represents therefore an important contribution to the knowledge of anatectic melt in natural rocks.

In the second part of the research the granulitic enclaves of El Hoyazo are studied. These partially melted metapelites, ripped off from the basement when anatexis was still an on-going process, contain abundant rhyolitic glass both as layers and pockets, and as glassy inclusions in almost all the minerals of the assemblage. Unlike regionally, slowly cooled rocks, in this case the anatectic conditions were frozen by the rapid ascent of the samples in a uprising magma. MI-bearing garnet is the first peritectic phase produced by partial melting at ~700°C and 5-7 kbar, and contains abundant FI with no visible evidence of post-entrapment modifications, trapped in conditions of fluid-melt immiscibility. A FI study was performed on garnets from Spl-Crd and Bt-Grt-Sil enclaves by microscope investigation, microthermometric studies, Micro-Raman analyses, mass balance calculation and TEM investigation. In Spl-Crd enclaves FI are two-phase (L+V), spherical to tubular, and often contain graphite as trapped phase. Trapped fluid is a mixture of H2O+CO2+N2±H2S±CH4, with water up to 95 mol%, while in Bt-Grt-Sil enclaves FI in garnet are one phase, and contain a CO2+N2 mixtures. In both samples FI have densities that are not consistent with the inferred trapping conditions, and suggest that despite of their primary-looking features, FI re-equilibrated during uprising. TEM investigation on Bt-Grt-Sil samples showed partially healed cracks at sub-μm scale, possible escape pathways for the leakage of fluids out of the inclusions. In Spl-Crd enclaves microchemical data acquired on MI and biotite inclusions, that occur in the same cluster along with FI, demonstrate that a water-rich leucogranitic melt was trapped along with a H2O-rich, COH phase at conditions consistent with the inferred garnet growth (c. 700°C). In garnet from Bt-Grt-Sil enclaves, the almost complete decrepitation and fluid leakage suffered by the studied FI did not allow to estimate the original composition of fluids hosted in garnet. Based on the H2O content of coexisting melt inclusions, however, the fluid is inferred to have been more CO2-rich than the fluid in the Spl-Crd enclaves. This work adds further compositional constraints to the characterization of anatexis of metapelites in the lower crust: in fact, although final results clearly show that enclaves lost part of the original components, the composition of fluid trapped in garnet from Spl-Crd enclaves is probably very close to the original, and is consistent with the composition of the coexisting melt.

Research on melt and fluid inclusions in peritectic minerals represents a new approach to the problem of partial melting in natural rocks, and the present study demonstrated that reliable petrological and geochemical information on anatexis can be collected from nano- to micron-scale objects. The dataset reported in this study widens the horizons in crustal petrology, because for the first time the crustal melt composition can be analyzed rather than assumed. Moreover, MI study in migmatites is likely to have large potentials of development, as confirmed by recent findings of anatectic melt trapped in inclusions in peritectic minerals from various migmatite terrains. As regard the fluid coexistent with anatectic melt, the exceptional occurrence of MI and FI in garnets from El Hoyazo enclaves allowed the identification and characterization of a H2O-rich fluid present during the first step of anatexis of these metapelites.

Abstract (italian)

Nel presente lavoro di tesi sono riportati i risultati dello studio di inclusioni fluide e di fuso silicatico effettuato sulle khondaliti della Kerala Khondalite Belt, India, e sugli inclusi granulitici di El Hoyazo, Neogene Volcanic Province, Spagna meridionale, con il fine di caratterizzare l`anatessi di rocce metapelitiche.
Nelle khondaliti (gneiss granulitici a granato-sillimanite-cordierite), inclusioni di fuso silicatico (inclusioni vetrose, o MI), interpretate come contenenti fuso anatettico, sono state rinvenute per la prima volta in fasi peritettiche di classiche migmatiti metapelitiche, caratterizzate da metamorfismo regionale con fusione parziale a T~900°C e 6-8 kbar. Le caratteristiche petrografiche delle MI, la loro composizione chimica e il loro fabric interno, dovuto alla presenza di fasi cristallizzate, sono state caratterizzate attraverso l`uso del microscopio ottico e di quello elettronico a scansione con emissione di campo (FESEM), l`acquisizione di mappe elementari ai raggi X e le analisi alla microsonda elettronica (EMP) e in spettroscopia Micro-Raman.
I granati peritettici contengono aggregati irregolari costituiti da centinaia di MI, le quali vanno da totalmente cristallizzate (nanograniti) a vetrose, spesso con forme a cristallo negativo. I nanograniti presentano dimensioni tra 5 e 25 μm, e contengono un aggregato criptocristallino di Bt+Kfs+Pl+Qtz±Ap, oltre a fasi accessorie (apatite, zircone, rutilo, spinello e occasionalmente ilmenite) che molto probabilmente hanno favorito l`intrappolamento di porzioni di fuso durante la crescita del granato e la conseguente formazione di inclusioni. La grana delle fasi cristalline nei nanograniti è variabile, da pochi nanometri fino ad alcuni micron. Le inclusioni parzialmente cristallizzate contengono un fuso differenziato, che può occupare il 20-60% dell`area dell`inclusione, coesistente con quarzo, K-feldspato e biotite. Le inclusioni vetrose hanno solitamente dimensioni inferiori, 2.5–17.5 µm, a quelle dei nanograniti e costituiscono circa il 15 % delle inclusioni di ogni ammasso. Al loro interno è presente una fase vetrosa, solitamente coesistente con le stesse fasi accidentali riconosciute nei nanograniti. Dati microchimici sul vetro mostrano una composizione riolitica ultrapotassica, con K2O >> Na2O. Il contenuto di acqua stimato dalla differenza da 100 wt% dei totali delle analisi EMP è inferiore a 3 wt%. La presenza di inclusioni vetrose preservate in questo contesto è una scoperta senza precedenti. Il diametro medio delle inclusioni vetrose (8 μm) è inferiore a quello dei nanograniti (13 μm), e si propone che tale differenza di dimensioni abbia influito sulla cristallizzazione delle porzioni di fuso intrappolato, inibendo la nucleazione delle fasi cristalline nella maggior parte delle inclusioni più piccole.
I nanograniti sono stati rifusi attraverso l`uso di un tavolino riscaldante ad atmosfera controllata, e successivamente analizzati al fine di ottenere dati sulle loro composizioni totali. Le analisi in microsonda elettronica mostrano in tutte le inclusioni rifuse una composizione molto simile a quella delle inclusioni vetrose preservate. Avendo un chimismo povero in Na, nel diagramma Q-Ab-Or per il sistema aplogranitico questo fuso si trova molto lontano dalla composizione del “minimum melt”, comunemente accettata come rappresentativa di un fuso anatettico prodotto dalla fusione parziale di metapeliti. Tale composizione, sebbene non sia comune, è segnalata in letteratura per magmi riolitici e per prodotti sperimentali, e suggerisce che la fusione parziale di sia avvenuta a temperature superiori a 850°C, in accordo con le condizioni di anatessi proposte per queste rocce. Questi dati mostrano che assumere una composizione da “minimum melt” come rappresentativa non sia corretto nel presente caso di studio, e che non dovrebbe essere considerata quindi una regola generale. La coerenza dei dati microchimici ottenuti e l`attento studio microstrutturale dei campioni, unito all’uso delle opportune tecniche di rifusione, di microanalisi e di correzione dei dati, supportano l`interpretazione delle composizioni ottenute come rappresentative della fase intrappolata nelle inclusioni, e la conclusione che le MI nei granati delle khondaliti contengano porzioni di fuso anatettico. Questo risultato originale costituisce quindi un importante contributo alla conoscenza di fusi anatettici in rocce naturali.
Nella seconda parte del progetto di ricerca sono stati studiati gli inclusi granulitici di El Hoyazo. Queste metapeliti, parzialmente fuse, sono state rimosse dalla bassa crosta mentre l`anatessi stava avendo luogo, e contengono abbondante vetro riolitico in livelli e sacche, oltre che in inclusioni vetrose in quasi tutti i minerali della paragenesi. Diversamente dalle rocce sottoposte a metamorfismo regionale e raffreddate lentamente, in questo caso i caratteri microstrutturali dovuti alla fusione parziale sono stati “congelati” dalla rapida risalita dei campioni in un magma in eruzione. Il granato che contiene inclusioni vetrose è stato la prima fase solida prodotta dalla fusione parziale a ~700°C e 5-7 kbar, e, oltre alle MI, contiene numerose inclusioni fluide (FI) intrappolate in condizioni di immiscibilità fuso-fluido e che non presentano evidenze di modificazioni successive alla loro formazione. Lo studio delle FI nei granati degli inclusi a Spl-Crd e a Bt-Grt-Sil è stato condotto attraverso la loro caratterizzazione petrografica, studi microtermometrici, analisi in spettroscopia Micro-Raman, calcoli di bilanci di massa e studi al microscopio elettronico a trasmissione (TEM). Negli inclusi a Spl-Crd le FI sono bifasiche (L+V), da sferiche a tubulari, e spesso contengono grafite come fase intrappolata. Il fluido contenuto nelle inclusioni è una miscela di H2O+CO2+N2±H2S±CH4, con abbondante H2O, fino a 95 mol%. Negli inclusi a Bt-Grt-Sil, le inclusioni fluide nel granato sono monofasiche e contengono una miscela gassosa a CO2+N2. In entrambi i campioni le inclusioni fluide presentano densità in disaccordo con le proposte condizioni di intrappolamento, e suggeriscono che, nonostante il loro aspetto primario preservato, esse si siano riequilibrate durante la risalita. Lo studio al TEM dei granati negli inclusi a Bt-Grt-Sil ha mostrato, alla scala sub micrometrica, la presenza di fratture parzialmente rinsaldate, interpretabili come possibili vie di fuoriuscita di componenti dalle inclusioni fluide. Negli inclusi a Spl-Crd, i dati raccolti sulle biotiti e le inclusioni vetrose, entrambi coesistenti con le inclusioni fluide, dimostrano che un fuso leucogranitico e una fase COH, entrambi ricchi in acqua, sono stati intrappolati a condizioni di temperatura in accordo con quelle proposte per la formazione del granato (c. 700°C). Negli inclusi a Bt-Grt-Sil, invece, la quasi totale decrepitazione delle inclusioni fluide e la conseguente perdita di componenti non hanno permesso la caratterizzazione della composizione originale del fluido intrappolato nel granato. Tuttavia, sulla base dei contenuti in acqua delle inclusioni vetrose coesistenti, si ipotizza che il fluido fosse in origine più ricco in CO2 di quello presente negli inclusi a Spl-Crd. Il presente studio fornisce ulteriori dati sulla caratterizzazione della fusione parziale di metapeliti nella bassa crosta. Infatti, sebbene i risultati mostrino che gli inclusi hanno perso parte dei componenti originali, la composizione del fluido negli inclusi a Spl-Crd molto probabilmente è simile a quella primaria, in accordo con la composizione del fuso coesistente
Lo studio di inclusioni fluide e di fuso silicatico in minerali peritettici rappresenta un nuovo tipo di approccio al problema della fusione parziale in rocce naturali, e questa tesi dimostra che è possibile ottenere risultati validi e rappresentativi, sia dal punto di vista petrologico che geochimico, attraverso lo studio di campioni come i nanograniti, con dimensioni micrometriche o inferiori. Il set di dati ottenuto in questo studio amplia gli orizzonti dello studio petrologico della crosta, in quanto per la prima volta la composizione dei fusi crostali può essere analizzata invece che ipotizzata. Lo studio delle MI nelle migmatiti rappresenta inoltre un campo di studio con grandi potenziali di sviluppo, come è stato recentemente confermato dall`individuazione di ulteriori esempi di nanograniti intrappolati in minerali peritettici di differenti basamenti migmatitici. Per quanto riguarda il fluido coesistente col fuso anatettico, l`eccezionale presenza di MI e FI nei granati di El Hoyazo ha permesso l`identificazione e la caratterizzazione del fluido ricco in acqua che era presente in queste metapeliti all`inizio dell`anatessi

Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Cesare, Bernardo
Supervisor:Bodnar, Robert J. and Salvioli-Mariani, Emma
Ph.D. course:Ciclo 22 > Scuole per il 22simo ciclo > SCIENZE DELLA TERRA
Data di deposito della tesi:UNSPECIFIED
Anno di Pubblicazione:29 January 2010
Key Words:Anatexis; Fluid inclusions; Melt inclusions; Garnet; Granulites
Settori scientifico-disciplinari MIUR:Area 04 - Scienze della terra > GEO/07 Petrologia e petrografia
Struttura di riferimento:Dipartimenti > Dipartimento di Geoscienze
Codice ID:2767
Depositato il:29 Sep 2010 11:30
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Acosta-Vigil, A., Buick, I., Hermann, J., Cesare, B., Rubatto, D., London, D., Morgan VI, G., 2010. Mechanisms of crustal anatexis: a geochemical study of partially melted metapelitic enclaves and host dacite, SE Spain. Journal of Petrology, in press. Cerca con Google

Acosta-Vigil, A., Cesare, B., London, D., Morgan VI, G.B., 2007. Microstructures and composition of melt inclusions in a crustal anatectic environment, represented by metapelitic enclaves within El Hoyazo dacites, SE Spain. Chemical Geology 235, 450–465. Cerca con Google

Acosta-Vigil, A., London, D., Morgan VI, G.B., Dewers, T.A., 2003. Solubility of excess alumina in hydrous granitic melts in equilibrium with peraluminous minerals at 700–800ºC and 200 MPa, and applications of the aluminum saturation index. Contributions to Mineralogy and Petrology 146, 100–119. Cerca con Google

Alvarez-Valero, A., Cesare, B., Kriegsman, L.M., 2005. Formation of elliptical garnet in a metapelitic enclave by melt-assisted dissolution and reprecipitation. Journal of Metamorphic Geology 23, 65–74. Cerca con Google

Alvarez-Valero, A., Cesare, B., Kriegsman, L.M., 2007. Formation of spinel-cordierite-feldspar-glass coronas after garnet in metapelitic xenoliths: reaction modeling and geodynamic implications. Journal of Metamorphic Geology 25, 305– 320. Cerca con Google

Alvarez-Valero, A.M., 2004. Petrographic and thermodynamic study of the partial melting of restitic xenoliths from the Neogene Volcanic Province of SE Spain. Unpublished Ph.D. Thesis, 223 pp., Padova, Italy. Cerca con Google

Andersen, T., Neumann, E.R., 2001. Fluid inclusions in mantle xenoliths. Lithos 55, 301–320. Cerca con Google

Anderson, A.J., Bodnar, R.J., 1993. An adaptation of the spindle stage for geometric analysis of fluid inclusions. American Mineralogist, 78, 657-664. Cerca con Google

Bakker, R.J., 2003. Package FLUIDS 1. Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties. Chemical Geology 194, 3–23. Cerca con Google

Bakker, R.J., 2009. Package FLUIDS. Part 3. Correlations between equations of state, thermodynamics and fluid inclusions. Geofluids 9 (1), 63-74. Cerca con Google

Benito, R., López-Ruiz, J., Cebriá, J.M., Hertogen, J., Doblas, M., Oyarzun, R., Demaiffe, D., 1999. Sr and O isotope constraints on source and crustal contamination in the high-K calc-alkaline and shoshonitic neogene volcanic rocks of SE Spain. Lithos 46, 773–802. Cerca con Google

Berkesi, M., Hidas, K., Guzmics, T., Dubessy, J., Bodnar, R.J., Szabó, C., Vajna, B., Tsunogae, T., 2009. Detection of small amounts of H2O in CO2-rich fluid inclusions using Raman spectroscopy. Journal of Raman Spectroscopy 40, 1461 – 1463. Cerca con Google

Bindu, R.s., 1997. Granulite Facies Spinel-Cordierite Assemblages from the Kerala Khondalite Belt, Southern India. Gondwana Research 1, 121-128. Cerca con Google

Bodnar, R.,J., Student, J.J., 2006. Melt inclusions in plutonic rocks: petrography and microthermometry. In: Webster, J.D. (ed.) Melt inclusions in plutonic rocks. Mineralogical Association of Canada, Short Course 36, 1-26. Cerca con Google

Bodnar, R.J., 2003. Re-equilibration of fluid inclusions. In: Samson, I., Anderson, A.,, Marshall, D. (eds.) Fluid Inclusions: Analysis and Interpretation. Mineralogical Association of Canada, Short Course 32, 213-230. Cerca con Google

Bodnar, R.J., Connolly, J.A.D., Steele-MacInnis, M.J. 2009. A modified Redlich-Kwong equation of state for H2O-CO2 mixtures: application to fluid inclusion studies. XX ECROFI meeting, Granada (abstract). Cerca con Google

Bodnar, R.J., Reynolds, T.J., Kuehn C.A., 1985. Fluid inclusion systematics in epithermal systems. In: Berger, B.R. and Bethke P.M. (eds.) Geology and Geochemistry of Epithermal Systems. Society of Economic Geologists, Reviews in Economic Geology 2, 73-98. Cerca con Google

Braga, R., Massonne, H.J., 2008. Mineralogy of inclusions in zircon from high-pressure crustal rocks from the Ulten Zone, Italian Alps. Periodico di Mineralogia 77, p. 43–64. Cerca con Google

Braun, I., Raith, M. and Ravindra Kumar, G. R., 1996, Dehydration-melting phenomena in leptynitic gneisses and the generation of leucogranites: a case study from the Kerala Khondalite Belt, southern India: Journal of Petrology 37,1285–1305. Cerca con Google

Brown, M. 2001. Orogeny, migmatites and leucogranites: a review. Proceedings of the Indian Academy of Science (Earth and Planetary Science) 110, 313-336. Cerca con Google

Brown, M., 2007, Crustal melting and melt extraction, ascent and emplacement in orogens: mechanisms and consequences: Journal of the Geological Society 164, 709–730. Cerca con Google

Brown, M., Rushmer, T., 2006, Evolution and Differentiation of the Continental Crust: Cambridge, Cambridge University Press, 553p. Cerca con Google

Burchard, M., Schreyer, W. 1995. Melting experiments on the granitic country rocks of the Dora Maira pyrope quartzites. Bochumer Geologische und Geotechnische Arbeiten 44, 23-27. Cerca con Google

Burke, E.A.J., 2001. Raman microspectrometry of fluid inclusions. Lithos 55, 139–158. Cerca con Google

Carrington, D.P., Harley, S.L., 1995. Partial melting and phase relations in high-grade metapelites: an experimental petrogenetic grid in the KFMASH system. Contribution to Mineralogy and Petrology 120, 270–291. Cerca con Google

Cenki, B., Braun, I., and Bröcker, M., 2004, Evolution of the continental crust in the Kerala Khondalite Belt, southernmost India: Evidence from Nd isotope mapping combined with U-Pb and Rb-Sr geochronology: Precambrian Research 134, 275–292. Cerca con Google

Cenki, B., Kriegsman, L. M., Braun, I., 2002, Melt-producing and melt-consuming reactions in anatectic granulites: P-T evolution of the Achankovil cordierite gneisses, South India: Journal of Metamorphic Geology 20, 543-561. Cerca con Google

Cesare, B., 1995. Graphite precipitation within C-O-H fluid inclusions: closed-system chemical and density changes, and thermobarometric implications. Contributions to Mineralogy and Petrology 122, 25-33. Cerca con Google

Cesare, B., 2008a. Crustal melting: working with enclaves. In: Sawyer, E.W., Brown, M. (eds.) Working with Migmatites. Mineralogical Association of Canada, Short Course 38, 37–55. Cerca con Google

Cesare, B., Ferrero, S., Bartoli, O., Braga, R., Salvioli-Mariani, E., AcostaVigil,A., Meli, S., 2009b. ”Nanogranite” inclusions in peritectic minerals: finding the anatectic melt in migmatites and granulites. GSA Annual Meeting, Portland, (abstract). Cerca con Google

Cesare, B., Ferrero, S., Salvioli-Mariani, E., Pedron, D., Cavallo, A., 2009a. Nanogranite and glassy inclusions: the anatectic melt in migmatites and granulites. Geology 37, 627-630. Cerca con Google

Cesare, B., Gomez-Pugnaire, M.T., 2001. Crustal melting in the Alborán domain: constraints from the xenoliths of the Neogene Volcanic Province. Physycs and Chemistry of the Earth 26 (4–5), 255–260. Cerca con Google

Cesare, B., Gomez-Pugnaire, M.T., Rubatto, D., 2003. Residence time of S-type anatectic magmas beneath the Neogene Volcanic Province of SE Spain: a zircon and monazite SHRIMP study. Contributions to Mineralogy and Petrology 146, 28–43. Cerca con Google

Cesare, B., Maineri, C., 1999. Fluid-present anatexis of metapelites at El Joyazo (SE Spain): constraints from Raman spectroscopy of graphite. Contributions to Mineralogy and Petrology 135, 41–52. Cerca con Google

Cesare, B., Maineri, C., Baron Toaldo, A., Pedron, D., Acosta-Vigil, A., 2007. Immiscibility between carbonic fluids and granitic melts during crustal anatexis: a fluid and melt inclusion study in the enclaves of the Neogene Volcanic Province of SE Spain. Chemical Geology, 237, 433-449. Cerca con Google

Cesare, B., Meli, S., Nodari, L., Russo, U., 2005. Fe3+ reduction during biotite melting in graphitic metapelites: another origin of CO2 in granulites. Contributions to Mineralogy and Petrology 149, 129–140. Cerca con Google

Cesare, B., Rubatto, D., Gómez-Pugnaire, M.T., 2009c. Do extrusion ages reflect magma generation processes at depth? An example from SE Spain. Contributions to Mineralogy and Petrology 157, 267-279. Cerca con Google

Cesare, B., Salvioli Mariani, E., Venturelli, G., 1997. Crustal anatexis and melt extraction during deformation in the restitic xenoliths at El Joyazo (SE Spain). Mineralogical Magazine 61, 15–27. Cerca con Google

Cesare, B., Satish-Kumar, M., Cruciani, G., Shabeer, P., Nodari, L., 2008. Mineral chemistry of Ti-rich biotite from pegmatite and metapelitic granulites of the Kerala Khondalite Belt (southeast India): Petrology and further insight into titanium substitutions. American Mineralogist 93, 327–338. Cerca con Google

Chacko, T., Lamb, M., Farquhar, J., 1996, in The Archean and Proterozoic terrains in southern India within East Gondwana. In: Santosh, M. and Yoshida, M. (eds.) Gondwana Research Group Memoir 3. Field Science, 157–165, Osaka. Cerca con Google

Chacko, T., Ravindra-Kumar, G. R., Newton, R. C., 1987, Metamorphic P-T conditions of the Kerala (S. India) Khondalite belt, a granulite facies supracrustal terrain: Journal of Geology 95, 343–358. Cerca con Google

Chacko, T., Ravindra-Kumar, G. R., Meen, J. K., Rogers, J. J. W., 1992, Geochemistry of high-grade supracrustal rocks from the Kerala Khondalite Belt and adjacent massif charnockites: Precambrian Research 55, 469–489. Cerca con Google

Clemens, J.D, Vielzeuf, D., 1987. Constraints on melting and magma production in the crust. Earth and Planetary Science Letters 86, 287–306. Cerca con Google

Clemens, J.D., 1990. The granulite - granite connexion, in Vielzeuf, D. and Vidal, P., eds., Granulites and Crustal Differentiation: Dordrecht, Kluwer Academic Publishers, 25–36. Cerca con Google

Clemens, J.D., 2006. Melting of the continental crust: fluid regimes, melting reactions, and source-rock fertility, in Brown, M. and Rushmer, T., eds., Evolution and Differentiation of the Continental Crust: Cambridge, Cambridge University Press, 296–331. Cerca con Google

Clemens, J.D., 2009. The message in the bottle: “Melt” inclusions in migmatitic garnets. Geology 37, 671-672. Cerca con Google

Clemens, J.D., Holness, M.B., 2000.Textural evolution and partial melting of arkose in a contact aureole: a case study and implications. Electronic Geosciences 5, 4. Cerca con Google

Collins, A.S., Windley, B.F., 2002. The tectonic evolution of central and northern Madagscar and its place in the final assembly of Gondwana. Journal of geology 110, 325–339. Cerca con Google

Comas, M.C., Platt, J.P., Soto, J.I., Watts, A.B., 1999. The origin and tectonic history of the Alboran Basin: Insights from Leg 161. In: Zahn, R., Comas, M.C., Klaus, A. (eds) Proceedings ODP, Scientific Results 161, 555–579. Cerca con Google

Connolly, J.A.D., Cesare, B., 1993. C-O-H-S fluid composition and oxygen fugacity in graphitic metapelites. Journal of Metamorphic Geology 11, 379-388 Cerca con Google

Danyushevsky, L.V., MCNeill, A.W., Sobolev, A.V., 2002.: Experimental and petrological studies of melt inclusions in phenocrysts from mantle-derived magmas: an overview of techniques, advantages and complications. Chemical Geology 183, 5–24. Cerca con Google

De Vivo, B., Frezzotti, M.L., 1994. Evidence for magmatic immiscibility in Italian subvolcanic systems. In: De Vivo, B., Frezzotti, M.L. (Eds.), Fluid Inclusions in Minerals: Methods and Application. IMA Short Course, Virginia Polytechnic Institute and State University. Press, Blacksburg, VA, pp. 209–215. Cerca con Google

Della Ventura, G., Bellatreccia, F., Cesare, B., Harley, S. and Piccinini, M. 2009. FTIR microspectroscopy and SIMS study of water-poor cordierite from El Hoyazo, Spain: Application to mineral and melt devolatilization. Lithos 113, 498-506. Cerca con Google

Diamond, L.W., 2001: Review of the systematics of H2O-CO2 fluid inclusions. Lithos 55, 69-99. Cerca con Google

Donaldson, C.H., 1979, An experimental investigation of the delay in nucleation of olivine in Mafic Magmas: Contributions to Mineralogy and Petrology 69, 21–32. Cerca con Google

Drury, S.A., Harris, N.B.W., Holt, R.W., Reeves-Smith, G.W., Wightman, R.T., 1984. Precambrian tectonics and crustal evolution in South India. Joyurnal of Geology 92, 1–20. Cerca con Google

Duggen, S., Hoernle, K., van den Bogaard, P., Garbe-Schonberg, D., 2005. Post-collisional transition from subduction- to intraplate-type magmatism in the westernmost Mediterranean: evidence for continental-edge delamination of subcontinental lithosphere. Journal of Petrology 46, 1155–1201. Cerca con Google

Duggen, S., Hoernle, K., van den Bogaard, P., Harris, C., 2004. Magmatic evolution of the Alboran region: the role of subduction in forming the western Mediterranean and causing the Messinian Salinity Crisis. Earth Planetary Science Letters 218, 91–108. Cerca con Google

Eggler, D.H, Kadik, A., 1979. The system NaAlSi3O8 -H2O-CO2 to 20 kbar pressure; I, Compositional and thermodynamic relations of liquids and vapors coexisting with albite. American Mineralogist 64, 1036-1048. Cerca con Google

Elkins, L. T., Grove, T., 1990. Ternary feldspar experiments and thermody¬namic models. American Mineralogist 75, 544–559. Cerca con Google

Fall, A., 2009. Application of fluid inclusions in geological thermometry. PhD thesis, Virginia Polytechnic Institute and State University. Cerca con Google

Ferrero S., Cesare B., Salvioli-Mariani, E., Bodnar, R.J, 2009a. Textural and compositional study of melt inclusions (nanogranites) in anatectic metapelites. GSA Annual Meeting, Portland (abstract). Cerca con Google

Ferrero S., Cesare B., Salvioli-Mariani, E., Bodnar, R.J, 2009b. Textural and compositional study of melt inclusions (nanogranites) in anatectic metapelites. Granulites & Granulites, Praga (abstract). Cerca con Google

Flowers, G C., 1979. Correction of Holloway's (1977) adaptation of the modified Redlich-Kwong equation of state for calculation of the fugacities of molecular species in supercritical fluids of geologic interest. Contributions to Mineralogy and Petrology 69, 315-318. Cerca con Google

Frezzotti, M.L., 1992. Magmatic immiscibility and fluid phase evolution in the M. Genis granite (SE Sardinia, Italy). Geochimica and Cosmochimica Acta 56, 21-33. Cerca con Google

Frezzotti, M.L., 2001. Silicate melt inclusions in magmatic rocks: applications to petrology. Lithos 55, 273–299. Cerca con Google

Frezzotti, M.L., Ferrando, S., Dallai, L., Compagnoni, R. 2007. Intermediate Alkali^Alumino-silicate Aqueous Solutions Released by Deeply Subducted Continental Crust: Fluid Evolution in UHP OH-richTopaz^Kyanite Quartzites from Donghai (Sulu, China). Journal of Petrology 48, 1219-1241. Cerca con Google

Frezzotti, M.L., Touret, J.L.R., Lustenhouwer, W., Neumann, E.R., 1994. Melt and fluid inclusions in dunite xenoliths from La Gomera, Canary Islands: tracking the mantle metasomatic fluids. European Journal of Mineralogy 6, 805–817. Cerca con Google

Fuhrman, M., Lindsley, D.H., 1988. Ternary-feldspar modeling and thermometer. American Mineralogist 73, 201–215. Cerca con Google

Fyfe, W.S., 1973. The granulite facies, partial melting and the Archean crust. Philosophical Transactions of the Royal Society of London 273, 457-461. Cerca con Google

Gardien, V., Thompson, A.B., Grujic, D., Ulmer, P., 1995. Experimental melting of biotite + plagioclase + quartz ± muscovite assemblages and implications for crustal melting. Journal of Geophysical Research 100, 15581–15591 Cerca con Google

Geologic Survey of India, 1995. 1.500,000 Geological and mineralogical map of Kerala, Tamil Nadu and Pondicheri. Geologycal survey of India, Calcutta. Cerca con Google

Goldstein, R.H., Reynolds, T.J., 1994. Systematics of fluid inclusions in diagenetic minerals. S.E.P.M. Short Course 31, 199 pp. Cerca con Google

Guidotti, C.V.,1984. Micas in metamorphic rocks. In S.W. Bailey (Ed.), Micas, 13. Reviews in Mineralogy Mineralogical Society of America, Chantilly, Virginia, pp. 357–468. Cerca con Google

Hansen, E. C., Newton, R. C., Prame, W. K. B. N., Ravindra Kumar, G. R., 1987. Charnockite in the making in southern India and Sri Lanka. Contributions to Mineralogy and Petrology 96, 225–244. Cerca con Google

Harley, S.L. and Santosh, M., 1995. Wollastonite at Nuliyam, Kerala, southern India: a reassessment of CO2 infiltration and charnockite formation at a classic locality. Contributions to Mineralogy and Petrology 120, 83-94 Cerca con Google

Harris, N.B.W., Santosh, M., Taylor, P.N., 1994. Crustal evolution in South India: constraints from Nd isotopes. Journal of Geology 102, 139–150. Cerca con Google

Hartel, T. H. D., Pattison D. R. M., Helmers, H., Maaskant,P., 1990. Primary granitoid-composition inclusions in garnet from granulite facies metapelite: Direct evidence for the presence of a melt? Geological Association of Canada 15, 54 (abstract). Cerca con Google

Heinrich, W., Gottschalk, M., 1995. Metamorphic reactions between fluid inclusions and mineral host: I. Progress of the reaction calcite + quartz = wollastonite + CO2 in natural wollastonite-hosted fluid inclusions. Contributions to Mineralogy and Petrology 122, 51–61. Cerca con Google

Holland, T.J.B., Powell, R., 1998. An internally consistent thermodynamic data set for phases of petrological interest. Journal of Metamorphic Geology 16, 309–343. Cerca con Google

Hollister, L. S., 1990. Enrichment of CO2 in fluid inclusions in quartz by removal of H2O during crystal plastic deformation. Journal Structural Geology 12, 895-901. Cerca con Google

Holloway, J.R., 1976. Fluids in the evolution of granitic magmas:consequences of finite CO2 solubility. GSA Bulletin 87, 1513–1518. Cerca con Google

Holloway, J.R., 1977. Fugacity and activity of molecular species in supercritical fluids. In: Fraser, D. (Ed.), Thermodynamics in Geology. Reidel, Boston, MA, 161–181. Cerca con Google

Holness, M.B., Sawyer, E.W., 2008, On the pseudomorphing of melt-filled pores during the crystallization of migmatites: Journal of Petrology 49, 1343–1363. Cerca con Google

Holness, M.B., Clemens, J.D., 1999. Partial melting of the Appin Quartzite driven by fracture-controlled H2O infiltration in the aureole of the Ballachulish Igneous Complex, Scottish Highlands. Contributions to Mineralogy and Petrology 136, 154-168. Cerca con Google

Holtz, F., Johannes, W., Tamic, N., Behrens, H., 2001. Maximum and minimum water contents of granitic melts generated in the crust: a reevaluation and implications. Lithos 56, 1–14. Cerca con Google

Hopkins, M., Harrison, M.T., Manning, C.E., 2008. Low heat flow inferred from >4 Gyr zircons suggests Hadean plate boundary interactions. Nature 456, 493–496, doi: 10.1038/nature07465. Cerca con Google

Johannes, W., Holtz, F., 1996, Petrogenesis and experimental petrology of granitic rocks: Berlin, Springer, 335p. Cerca con Google

Kawakami, Y., Yamamoto, J., Kagi, H., 2003: Micro-Raman densimeter for CO2 inclusions in mantle-derived minerals. Applied Spectroscopy 57, 1333-1339. Cerca con Google

Kleinefeld, B., Bakker, R.J., 2002. Fluid inclusions as micro-chemical systems: evidence and modelling of fluid–host interactions in plagioclase. Journal of Metamorphic Geology 20, 845–858. Cerca con Google

Kretz, R., 1983, Symbols for rock-forming minerals. American Mineralogist 68, 277-279. Cerca con Google

Lemmon, E.W.; McLinden, M.O.; Friend, D.G., 2009. Thermophysical Properties of Fluid Systems. In: Linstrom and Mallard (eds.) NIST Chemistry WebBook, 69, Gaithersburg MD - http://webbook.nist.gov Vai! Cerca con Google

Lopez-Ruiz, J., Rodriguez-Badiola, E., 1980. La region volcanica Neogena del sureste de Espana. Estudios Geologicos 36, 5–63. Cerca con Google

Lowenstern, J., 1995. Applications of silicate-melt inclusions to the study of magmatic volatiles. In: Thompson, J.F.H. (ed.). Magmas, Fluids and Ore Deposits. Mineralogical Association of Canada Short Course Volume 23, 71-99. Cerca con Google

Lowenstern, J.B., 2003. Melt inclusions come of age: volatiles, volcanoes, and Sorby's legacy. In: De Vivo, B., Bodnar, R.J. (Eds.), Melt Inclusions in Volcanic Systems: Methods, Applications and Problems. Developments in Volcanology, vol. 5. Elsevier Press, Amsterdam, pp. 1–22. Cerca con Google

Maheshwari, A., Coltorti, M., Sial, A.N., Mariano, G., 1996, Crustal influences in the petrogenesis of the Malani rhyolite, southwestern Rajasthan: Combined trace element and oxygen isotope constraints: Journal of the Geological Society of India 47, 611–619. Cerca con Google

Marchildon, N., Brown, M., 2001. Melt segregation in late syn-tectonic anatectic migmatites: An example from the Onawa contact aureole, Maine, USA. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy 26, 225–229. Cerca con Google

Marchildon, N., Brown, M., 2002. Grain-scale melt distribution in two contact aureole rocks: implications for controls on melt localization and deformation. Journal of Metamorphic Geology 20, 381-396. Cerca con Google

Massonne, H.J., 1992. Evidence for low-temperature ultrapotassic siliceous fl uids in subduction zone environments from experiments in the system K2O-MgO-Al2O3-SiO2-H2O (KMASH). Lithos 28, 421–434. Cerca con Google

Morgan, G.B., IV, London, D., 2005, Effect of current density on the electron microprobe analysis of alkali aluminosilicate glasses: The American Mineralogist 90, 1131–1138. Cerca con Google

Muncill, G.E., Lasaga, A.C., 1988, Crystal-growth kinetics of plagioclase in igneous systems; isothermal H2O-saturated experiments and extension of a growth model to complex silicate melts: The American Mineralogist, 73, 982–992. Cerca con Google

Munksgaard, N.C., 1985. A non-magmatic origin for compositionally zoned euhedral garnets in silicic Neogene volcanics from SE Spain. Neues Jahrbuch für Mineralogie Abhandlungen 2, 73–82. Cerca con Google

Munskgaard, N., 1984. High δ18 and possible pre-eruptional Rb-Sr isochrons in cordierite-bearing Neogene volcanics from SE Spain. Contributions to Mineralogy and Petrology 87, 351-358. Cerca con Google

Nandakumar, V., Harley, S.L., 2000, A reappraisal of the pressure-temperature path of granulites from the Kerala Khondalite Belt, Southern India: Journal of Geology 108, 687–703. Cerca con Google

Patiño Douce, A.E., 1996, Effects of pressure and H2O content on the compositions of primary crustal melts: Transactions of the Royal Society of Edinburgh. Earth Sciences 87, 11–21. Cerca con Google

Patiño Douce, A.E., 1999, What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas?: Geological Society of London: Special Publications, 168, 55–75. Cerca con Google

Patiño Douce, A.E., Harris, N., 1998. Experimental Constraints on Himalayan Anatexis. Journal of Petrology 39, 689-710. Cerca con Google

Patiño Douce, A.E., Johnston, A.D., 1991, Phase equilibria and melt productivity in the pelitic system: implications for the origin of peraluminous granitoids: Contributions to Mineralogy and Petrology 107, 202–218. Cerca con Google

Pattison, D.R.M., 2006. The fate of graphite in prograde metamorphism of pelites: An example from the Ballachulish aureole, Scotland. Lithos 88, 85-99. Cerca con Google

Perini G., Cesare B., Gómez-Pugnaire M.T., Ghezzi, S., Tommasini S., 2009. Armouring effect in decoupling Sr-Nd isotopes during disequilibrium crustal melting: the case study of frozen migmatites from El Hoyazo and Mazarrón, SE Spain. European Journal of Mineralogy 21, 117-131, in press. Cerca con Google

Petford, N., Cruden, A.R., McCaffrey, K.J.W., Vigneresse, J.-L., 2000, Granite magma formation, transport and emplacement in the Earth’s crust: Nature 408, 669–673. Cerca con Google

Peucat, J. J., Vidal, P., Bernard-Griffiths, J., Condie, K. C.,1989. Sr, Nd, and Pb isotopic systematics in the Archean low- to high grade transition zone of southern India: syn-accretion vs post accretion granulites. Journal of Geology 97, 537–550. Cerca con Google

Pitcher, W.S., 1993, The nature and origin of granite: London, Blackie Academic & Professional, 321 p. Cerca con Google

Pretorius, W., Barton Jr, J.M., 2003. Petrology and geochemistry of crustal and upper mantle xenoliths from the Venetia Diamond Mine – evidence for Archean crustal growth and subduction. South African Journal of Geology 106, 213-230. Cerca con Google

Putnis, A., Prieto, M., Fernandez-Diaz, L., 1995, Fluid supersaturation and crystallization in porous media: Geological Magazine 132, 1–13. Cerca con Google

Roedder, E., 1984, Fluid inclusions: Mineralogical Society of America, Reviews in Mineralogy, v. 12, 644p. Cerca con Google

Roedder, E., 1992. Fluid inclusion evidence for immiscibility in magmatic differentiation. Geochimica et Cosmochimica Acta 56, 5–20. Cerca con Google

Santosh, M., 1986, Cordierite gneisses of southern Kerala, India: petrology, fluid inclusions and implications for crustal uplift history: Contributions to Mineralogy and Petrology 96,343–356. Cerca con Google

Santosh, M., 1996. The Trivandrum and Nagercoil granulite blocks. In: Santosh, M., Yoshida, M. (Eds.), The Archaean and Proterozoic terrains in southern India within East Gondwana, 3. Gondwana Research Group Memoires 243–277. Cerca con Google

Santosh, M., Jackson, D.H, Harris, N.B.W., Mattey, D.P., 1991. Carbonic fluid inclusions in South Indian granulites: evidence for entrapment during charnockite formation. Contributions to Mineralogy and Petrology 110, 318-330. Cerca con Google

Santosh, M., Tsunogae, T., 2003. Extremely high density pure CO2 fluid inclusions in a garnet granulite from Southern India. The Journal of Geology 111, 1–16. Cerca con Google

Satish-Kumar, M.; Santosh, M.; Harley, S. L.; Yoshida, M., 1996. Calc-silicate assemblages from the Kerala Khondalite Belt, southern India: implications for pressure-temperature-fluid histories. Journal of Southeast Asian Earth Sciences 14, 245–263. Cerca con Google

Sawyer, E.W., 1996, Melt-segregation and magma flow in migmatites: implications for the generation of granite magmas: Transactions of the Royal Society of Edinburgh. Earth Sciences 87, 85–94. Cerca con Google

Sawyer, E.W., 2008, Atlas of Migmatites: Quebec, Mineralogical Association of Canada, The Canadian Mineralogist Special Publication 9, 386p. Cerca con Google

Sawyer, E.W.,, Brown, M., 2008. Working with migmatites. Quebec, Mineralogical Association of Canada, Short Course Series 38, 158 p. Cerca con Google

Shabeer, K. P., 2004, Petrology and geochronology of granulite facies metamorphic rocks from Kerala Khondalite Belt, southern India: implications to partial melting and heat source: Ph.D. thesis, Osaka City University, Osaka. Cerca con Google

Shabeer, K. P., Satish-Kumar, M., Armstrong, R., Buick, I. S., 2005, Constraints on the timing of Pan-African granulite-facies metamorphism in the Kerala Khondalite Belt of southern India: SHRIMP mineral ages and Nd isotopic systematics: Journal of Geology 113, 95-106. Cerca con Google

Sorby, H.C., 1858: On the microscopical structure of crystals, indicating origin of minerals and rocks. Quarterly Journal of the Geological Society of London 14, 453–500. Cerca con Google

Srikantappa, C., Raith, M., Spiering, B., 1985. Progressive charnockitization of a leptynite-khondalite suite in southernKerala, India - evidence for formation of charnockites through decrease in fluid pressure? Journal of the Geologycal Society of India 26, 849–872. Cerca con Google

Sterner, S.M., Bodnar, R.J., 1984. Synthetic fluid inclusions in natural quartz. I. Compositional types synthesized and applications to experimental geochemistry. Geochimica et Cosmochimica Acta 48, 2659-2668. Cerca con Google

Sterner, S.M., Bodnar, R.J., 1989. Synthetic fluid inclusions –VII. Re-equilibration of fluid inclusions in quartz during laboratory-simulated metamorphic burial and uplift. Journal of Metamorphic Geology 7, 243–260. Cerca con Google

Stevens, G., Clemens, J.D., Droop, T.R., 1997. Melt production during granulite-facies anatexis: experimental data from “primitive” metasedimentary protoliths. Contributions to Mineralogy and Petrology 128, 352–370. Cerca con Google

Stockhert, B., Trepmann, C.A., Massonne H.J., 2009. Decrepitated UHP fluid inclusions: about diverse phase assemblages and extreme decompression rates (Erzgebirge, Germany). Journal of metamorphic geology 27, 673–684. Cerca con Google

Student, J.J., Bodnar, R.J., 1999. Synthetic fluid inclusions XIV: Microthermometric and compositional analysis of coexisting silicate melt and aqueous fluid inclusions trapped in the haplogranite-H2O-NaCl-KCl system at 800°C and 2000 bars. Journal of Petrology 40, 1509-1525. Cerca con Google

Student, J.J., Bodnar, R.J., 2004 Silicate melt inclusions in porphyry copper deposits: Identification and homogenization behavior. Canadian Mineralogist 42,1563-1600. Cerca con Google

Tadokoro, H., Tsunogae, T., Santosh, M., 2008, Metamorphic P-T path of the eastern Trivandrum Granulite Block, southern India: implications for regional correlation of lower crustal fragments: Journal of Mineralogical and Petrological Sciences 103, 279-284. Cerca con Google

Tajčmanová, L., Connolly, J.A.D, Cesare, B., 2009. A thermodynamic model for titanium and ferric iron solution in biotite. Journal of Metamorphic Geology 27, 153-165. Cerca con Google

Tamic, N., Behrens, H., Holtz, F. 2001. The solubility of H2O and CO2 in rhyolitic melts in equilibrium with a mixed CO2–H2O fluid phase. Chemical Geology 174, 333–347. Cerca con Google

Thomas, J.B., Bodnar, R.J., Shimizu, N., Sinha, A.K., 2002, Determination of zircon/melt trace element partition coefficients from SIMS analysis of melt inclusions in zircon: Geochimica et Cosmochimica Acta 66, 2887–2901. Cerca con Google

Thompson, A.B., 1982. Dehydration melting of pelitic rocks and the generation of H2O-undersaturated granitic liquids. American Journal Sciences 282, 1567-1595 Cerca con Google

Thompson, A.B., 2001. Clockwise P–T paths for crustal melting and H2O recycling in granite source regions and migmatite terrains. Lithos 56, 33-45. Cerca con Google

Tomilenko, A.A.,Chupin V.P., 1983. Studying Inclusions in Minerals from Metamorphic Complexes (Nauka), Novosibirsk, 524 Cerca con Google

Torok, K., Degi, J., Szep, A., Marosi, G., 2005. Reduced carbonic fluids in mafic granulite xenoliths from the Bakony-Balaton Highland Volcanic Field, W-Hungary. Chemical geology 223, 93-108. Cerca con Google

Touret, J., Olsen, S.N., 1985. Fluid inclusions in migmatites. In: Ashworth, J.R. (ed.), Migmatites, Blackie, Chapman and Hall, New York, 265-288. Cerca con Google

Touret, J.L.R., 1971. Le faciès granulite en Norvège méridionale. Les inclusions fluides. Lithos 4, 423–436. Cerca con Google

Touret, J.L.R., 1981. Fluid inclusions in high grade metamorphic rocks. In: Hollister, L.S., Crawford, M.L. (Eds.), Short Course in Fluid Inclusions: Applications to Petrology. Mineralogical Association of Canada, Calgary, 182–208. Cerca con Google

Touret, J.L.R., 2009. Mantle to lower-crust fluid/melt transfer through granulite metamorphism. Russian Geology and Geophysics 50, 1052–1062. Cerca con Google

Turner, S.P., Platt, J.P., George, R.M.M., Kelley, S.P., Pearson, D.G., Nowell, G.M., 1999 Magmatism associated with orogenic collapse of the Betic-Alboran Domain, SE Spain. Journal of Petrology 40, 1011–1036. Cerca con Google

Tuttle, O.F., Bowen, N.L., 1958. Origin of granite in the light of experimental studies in the system NaAlSi3O8-KAlSi3O8-SiO2-H2O. Geological Society of America Memories 74, 153 p Cerca con Google

Vanderhaeghe, O., 2001, Melt segregation, pervasive melt migration and magma mobility in the continental crust: the structural record from pores to orogens: Physics and Chemistry of the Earth. Part A: Solid Earth and Geodesy 26, 213–223. Cerca con Google

Vernon, R. H., 2004. A Practical Guide to Rock Microstructure. Cambridge: Cambridge University Press, 594 pp Cerca con Google

Vernon, R.H., 2007. Problems in identifying restite in S-type granites of southeastern Australia, with speculations on sources of magma and enclaves. Canadian Mineralogist 45, 147-178. Cerca con Google

Vielzeuf, D., Clemens, J.C., Pin, C., Moinet, E., 1990, Granites, granulites and crustal differentiation, in Vielzeuf, D. and Vidal, P. (eds), Granulites and Crustal Differentiation: Dordrecht, Kluwer Academic Publishers, 59–85. Cerca con Google

Vielzeuf, D., Holloway, J.R., 1988. Experimental determination of the fluid-absent melting relations in the pelitic system. Contribution to Mineralogy and Petrology 98, 257-276. Cerca con Google

Vityk, M.O., Bodnar, R.J., Doukhan, J.C., 2000. Synthetic fluid inclusions: XV. TEM investigationof plastic flow associated with re-equilibration of synthetic fluid inclusions in natural quartz. Contributions to Mineralogy and Petrology 139, n. 3, 285-297. Cerca con Google

Walte, N.P., Bons, P.D., Passchier, C.W., 2005. Deformation of melt-bearing systems-insight from in situ grain-scale analogue experiments. Journal of Structural Geology 27, 1666-1679. Cerca con Google

Wang, C.H., Wright, R.B., 1973. Raman studies of the effect of density of the Fermi resonance in CO2. Chemical Physycs Letters 23, 241-246. Cerca con Google

Watson, E.B., Brenan, J.M. 1987. Fluids in the lithosphere 1. Experimentally determined wetting characteristics of CO2-H2O fluids and their implication for fluid transport, host-rock physical properties and fluid inclusion formation. Earth and Planetary Science. Letters 85, 497–515. Cerca con Google

Werre, R.W., Bodnar, R.J., Bethke, P.M., Barton, P.B. Jr., 1979. A novel gas-flow fluid inclusions heating/freezing stage. Geological Society of America 11, 539 (abstract). Cerca con Google

White, A.J.R., Chapell, B.W., 1983. Granitoid types and their distribution in the Lachlan fold belt, southeastern Australia. In Roddick, A.J. (ed.), Circum-Pacific Plutonic Terranes. Geological Society of America Memories 159, 21-34. Cerca con Google

White, R.W., (2008): Insights gained from the petrological modeling of migmatites: Particular reference to mineral assemblages and common replacement textures. In: Sawyer, E.W., Brown, M. (eds.), Working with Migmatites. Mineralogical Association of Canada, Short Course 38, 77–96. Cerca con Google

Zeck H.P., 1992. Restite-melt and mafic-felsic magma mixing and mingling in an S-type dacite, Cerro del Hoyazo, southeastern Spain. Transactions of the Royal Society of Edinburgh 83, 139-144. Cerca con Google

Zeck, H.P., Williams, I., 2002. Inherited and magmatic zircon from Neogene Hoyazo cordierite dacite, SE Spain-Anatectic source rock provenance and magmatic evolution. Journal of Petrology 43,1089–1104. Cerca con Google

Zeck. H.P., 1970. An erupted migmatite from Cerro de Hoyazo, SE Spain. Contributions to Mineralogy and Petrology 26, 225–246. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record