Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

FRANCESCHINI, LISA (2010) INTERFERENZA TRA I SEGNALI CELLULARI DELL'INSULINA E DELL'IFN: POSSIBILE LINK TRA INSULINO RESISTENZA (IR) E RIDOTTA RISPOSTA ALLA TERAPIA ANTIVIRALE NELL'INFEZIONE CRONICA DA VIRUS DELL'EPATITE C (HCV). [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF - Versione sottomessa
1601Kb

Abstract (inglese)

Chronic hepatitis C virus infection occurs in 170-200 millions of people worldwide and is the leading cause of liver disease progression, ranging from cirrhosis to hepatocarcinoma. The current standard treatment of HCV infection is based on a combination of Pegylated interferon-alpha (PEG-IFN-a) plus ribavirin. However sustained virological response (SVR) rate is achieved in 50-80% of the patients according with HCV-genotype (1). Non-response to antiviral therapy seems to be associated with several host and viral factors including HCV genotype, viral load, older age, male sex, BMI, degree of fibrosis, African ancestry.
Recent studies have shown that insulin resistance (IR) is a frequent pathological condition in CHC when compared to patients with other forms of chronic liver disease (2) and that IR prevalence is higher in patients with HCV genotype 1 infection (3). Understanding mechanisms that cause IR in the HCV patients has been made difficult due to the co-existence of several cofactors, associated with the metabolic syndrome. Shintany et al (4) suggested that HCV could be directly involved in the pathogenesis of IR through a modulation of insulin pathway induced by viral proteins (5). IR is clinically relevant as it is associated with type 2 diabetes (3, 6), and it correlates with liver fibrosis progression, cirrhosis and HCC (7, 8). Several lines of evidence indicate that IR is a negative predictor of the response to antiviral therapy in CHC patients treated with IFN plus ribavirin (9, 10). In a recent study, we have demonstrated that in HCV patients the impairment of antiviral response to PEG-IFN-a 24 h after the first injection of the drug is directly related to baseline insulin levels much more than HOMA-IR Index (11) suggesting the hypothesis that insulin itself can interferes with IFN-a signalling in infected hepatocytes probably because of common intracellular players. However the mechanisms by which insulin can affect IFN-a signalling are still unclear and are under intensive investigation.
Over-expression of intracellular factors associated with IR phenotype may play a role in the response to antiviral therapy in HCV infected patients as they are possibly involved in regulating IFN-a signalling (12). These intracellular factors include some members of SOCS family, a group of related proteins induced also by insulin treatment (13), that act as negative regulators of several intracellular pathway, including insulin signalling itself, and that have been shown to alter tyrosine kinase activity of growth factor receptors (13-17). It is known that hepatocyte-specific SOCS3 suppression by antisense-oligonucleotide treatment, in obese diabetic mice, decreased the elevated circulating insulin levels improving insulin sensitivity (18, 19). SOCS-1 and SOCS-3 proteins may inhibit insulin signalling through different mechanisms which involve both an inhibition of the insulin receptor kinase activity, ubiquitin-mediated degradation and a down-regulation of tyrosine phosphorylation of insulin receptor substrate-1 and 2 (IRS1 and IRS2) (20). Interestingly, SOCS3 over-expression in vitro was shown to be related to an impairment of IFN-a antiviral and anti-proliferative activity (21, 22) and in liver biopsies was also strongly associated with non-response to interferon therapy in HCV patients (23-28).
In response to viral infection, IFN-a is produced in epithelial cells, plasmacytoid dendritic cells and lymphocytes. The binding of IFN-a to the type I IFN receptor induces a very rapid phosphorylation and activation of some important effectors of the interferon pathway, such as JAKs and STATs, resulting in mRNA translation of IFN-stimulated genes (ISGs) which have a direct antiviral properties. ISGs include myxovirus resistance 1 (MxA), 2’-5’ oligoadenylatesynthetase 1 (OAS-1) and double-stranded RNA (dsRNA)-dependent protein kinase (PKR) (29).
On the basis of these clinical and experimental evidence we aimed to investigate in vitro the possible role of insulin in interfering with IFN-a pathway by analyzing gene and protein expression of some ISGs and to elucidate the mechanisms at the basis. Particularly we wanted to study a possible involvement of SOCS3, as a common player of both insulin and IFN pathways, which is known to be over-expressed by insulin in myocytes. For this purpose, siRNA technology was used.
Human hepatocellular carcinoma HepG2 cells were treated with IFN-a (100 IU/ml) and insulin (100nM and 1000nM) alone or in combination for different incubation-times (2, 4, 8 and 12 hours). Total RNA was isolated from cultured cells. Time course analysis of ISGs mRNA levels (PKR, MxA e OAS-1) was performed by Real Time PCR. PKR protein expression was also evaluated in the same settings by Western-blot analysis. SOCS3-siRNA experiments were set and silencing effect was evaluated through gene expression analysis of ISGs. Our results showed that IFN-a alone was able to enhance the gene expression of all the analyzed ISGs. Insulin alone induces no effect on the gene expression of all ISGs analysed, suggesting specificity of the stimuli. However, HepG2 treated with IFN-a plus insulin (100 and 1000nM) showed a dose-dependent decrease of ISGS mRNA levels compared to controls. This result is more evident when data were expressed as AUC (area under the curve), which considers the total mRNA production during the stimulation. Mean AUC were the following: IFN-a only treatment PKR = 38,97 + 8,60; MxA= 12531,89 + 4667,98; OAS-1= 24,63 + 5,58); IFN+ insulin100nM: PKR = 19,94 + 8,03 (P=0,017); MxA= 3679,34 + 1158,01 (P=0,0103); OAS-1= 7,1 + 3,76 (P=0,002); IFN+ insulin1000nM: PKR = 11,46 + 0,01 (P=0,0017).; MxA= 949,04 + 100,07 (P=0,0186); OAS-1= 1,37 + 1,36(P=0,006). Interestingly, PKR protein expression was also reduced when cells were treated with IFN-a plus insulin (100nM). In order to verify if SOCS3 is involved in the inhibition of IFN-a signalling by insulin, HepG2 were incubated with both insulin and IFN-a and then transfected with SOCS3-siRNA. Silencing of SOCS3 had no effect on ISGs mRNA levels (PKR: 3,28 + 0,43; OAS-1: 2,59 + 0,94; SOCS3: 1,43 + 1,22) if compared to controls [cells incubated with insulin plus IFN-a and cells transfected with non-targeting siRNA (negative control) in witch SOCS3 over-expression is maintained as consequence of insulin effect (PKR: 3,10 + 0,19; OAS-1: 3,1+ 0,92; SOCS3: 7,3 + 0,98)]. Therefore the modulation of IFN-a antiviral activity does not involve over-expression of SOCS3 induced by insulin.
Our results showed that in HepG2 cells insulin significantly reduces the IFN-a mediated induction of three major ISGs in a dose-dependent manner through SOCS3-independent mechanism. These data suggest that insulin levels might play a pivotal role in reduced response to IFN-a based antiviral therapy. Indeed these experimental results support the clinical evidence that control of baseline insulin levels before initiation of IFN-a therapy remains the best choice to improve the response to antiviral therapy in CHC.

Abstract (italiano)

L'infezione cronica da virus dell'epatite C (CHC) colpisce 170-200 milioni di persone nel modo. Essa rappresenta una delle principali cause di malattia acuta e cronica del fegato che porta allo sviluppo di cirrosi ed epatocarcinoma (HCC) nei paesi occidentali. Attualmente il trattamento terapeutico dell'HCV è basato sull'utilizzo di interferone-alpha peghilato (PEG-IFN-a) somministrato in combinazione con l'analogo guanosidico ribavirina. Tuttavia, la risposta virologica sostenuta (SVR) si ottiene solo nel 50-80% dei pazienti in base al genotipo virale (1). Il fallimento della terapia antivirale sembra essere legato sia alle caratteristiche dell'ospite che a fattori virali che includono il genotipo virale, la carica virale, l'età, il sesso maschile, l'indice di massa corporea (BMI), il grado di fibrosi e la razza africana. Studi recenti hanno evidenziato che l'insulino-resistenza (IR) è una condizione frequente nei pazienti con CHC se paragonati a pazienti con altre forme di malattia epatica (2), inoltre la prevalenza dell'IR è maggiore nei pazienti infettati con HCV di genotipo 1 (3). Tuttavia i meccanismi che portano all'IR nei pazienti HCV sono di difficile comprensione a causa della coesistenza di numerosi cofattori coinvolti nella sindrome metabolica. Shintany et al (4) ha suggerito che l'HCV sembra essere direttamente coinvolto nella patogenesi dell'IR mediante una modulazione del segnale intracellulare dell'insulina da parte delle proteine virali (5). IR ha una certa rilevanza clinica poiché è associata al diabete di tipo 2 (3, 6) e correla con la progressione della fibrosi epatica, cirrosi e HCC (7, 8). Inoltre, parecchie evidenze cliniche dimostrano che l'IR può essere considerato un fattore predittivo negativo della risposta alla terapia antivirale in pazienti CHC trattati con PEG-IFN-a e ribavirina (9, 10). In un recente studio clinico abbiamo dimostrato che in pazienti HCV l'inefficacia della risposta alla terapia antivirale può essere dimostrata già dopo 24 ore dalla prima iniezione di PEG-IFN, esiste, infatti, una relazione lineare tra il calo viremico e i livelli di insulina al basale più che con l'indice HOMA-IR.
Questi risultati suggeriscono fortemente l'ipotesi che l'insulina, probabilmente favorendo l'over-espressione di fattori intracellulari, possa interferire con il pathway dell'IFN, bloccando l'effetto soppressivo dell'IFN sulla replica virale negli epatociti infettati (12). I meccanismi mediante cui l'insulina interferisce con il segnale dell'IFN-a non sono ancora stati chiariti e sono ancora molto studiati. Questi fattori potrebbero comprendere i membri della famiglia SOCS (Suppressor of Cytokine Signaling), un gruppo di proteine la cui espressione è indotta anche dal trattamento con l'insulina (17). Essi agiscono come regolatori negativi di numerosi pathway intracellulari, tra cui lo stesso segnale dell'insulina, poiché alterano l'attività tirosin chinasica di numerosi recettori di fattori di crescita (13-17). E' stato dimostrato che la soppressione specifica di SOCS3, mediante oligonucleotidi antisenso in topi obesi, porta ad una riduzione dei livelli di insulina in circolo migliorando la sensibilità all'insulina (18, 19). Le proteine SOCS1 e SOCS3 modulano il segnale dell'insulina tramite differenti meccanismi: inibizione dell'attività chinasica del recettore dell'insulina, attraverso la degradazione mediata dall'ubiquitina, e riduzione della fosforilazione a livello della tirosina di IRS-1 e 2 (Insulin Receptor Substrate-1 and 2) (20). Inoltre è stato dimostrato, in vitro, che l'over-espressione di SOCS3 è associata ad una riduzione dell'attività antivirale e anti-proliferativa dell'IFN-a (21, 22) e che in biopsie epatiche di pazienti HCV è strettamente associata alla ridotta risposta alla terapia antivirale (23-28). In risposta all'infezione virale L'IFN-a è prodotto dalle cellule epiteliali, dalle cellule dendritiche e dai linfociti. Il legame dell'IFN-a al recettore di classe I induce una rapida fosforilazione e attivazione di alcuni importanti effettori del segnale intracellulare dell'IFN, come le proteine JAK e STAT, questo porta alla trascrizione dei geni stimolati dall'IFN (ISGs) che hanno importanti proprietà antivirali. Gli ISGs comprendono myxovirus resistance 1 (MxA), 2’-5’ oligoadenylatesynthetase 1 (OAS-1) e double-stranded RNA (dsRNA)-dependent protein kinase (PKR) (29).
Sulla base di queste evidenze cliniche e sperimentali lo scopo di questo progetto di ricerca è stato quello di analizzare in vitro come l'espressione degli IFN-Stimulated-Genes (ISGs), effettori del segnale dell'IFN con proprietà antivirali, possa essere modulata in seguito a trattamento con insulina. Si è voluto inoltre verificare il possibile meccanismo mediante il quale l'insulina è in grado di interagire sulla risposta cellulare all'IFN- a andando a valutare il ruolo l'espressione di un membro della famiglia di Suppressor of Cytokine Signalling (SOCS), SOCS3. E' noto, infatti, che l'espressione di SOCS3 aumenta notevolmente dopo trattamento con insulina. A tal scopo la tecnologia utilizzata è stata quella degli siRNA.
La linea cellulare di epatocarcinoma HepG2 è stata trattata con IFN-a (100 IU/ml) e insulina (100nM and 1000nM) da soli o in co-stimolazione per diversi tempi di incubazione (2, 4, 8 e 12 ore). Dopo l'estrazione dell'RNA totale è stata eseguita l'analisi di espressione genica degli ISGs (PKR, MxA e OAS-1) mediante Real Time PCR. Sugli stessi campioni è stata fatta anche l'analisi dell'espressione proteica di PKR mediante Western-blot. Utilizzando lo stesso modello sperimentale sono stati condotti degli esperimenti di siRNA sui quali è stato valutato l'effetto del silenziamento di SOCS3 sull'espressione genica degli ISGs. Come da atteso il trattamento con solo IFN-a induce un aumento dei livelli di RNA di tutti i geni ISGs analizzati. Lo stimolo con sola insulina non ha alcun effetto sull'espressione genica degli ISGs; questo dimostra che la loro over-espressione è stimolo-specifica ed avvalora la specificità dell'analisi condotta. Tuttavia, il pre-trattamento della linea cellulare HepG2 con diverse concentrazioni di insulina (100 e 1000 nM) e poi lo stimolo con IFN-a (100 UI/mL) ha dimostrato chiaramente che l'insulina è in grado di diminuire l'espressione genica degli ISGs in modo dose-dipendente. Tale risultato è particolarmente evidente se espresso come AUC (area under the curve), che considera la produzione totale di trascritto durante tutto il tempo di stimolazione. AUC media: trattamento con solo IFN-a: PKR = 38,97 + 8,60; MxA= 12531,89 + 4667,98; OAS-1= 24,63 + 5,58); IFN+ insulina100nM: PKR = 19,94 + 8,03 (P=0,017); MxA= 3679,34 + 1158,01 (P=0,0103); OAS-1= 7,1 + 3,76 (P=0,002); IFN+ insulina1000nM: PKR = 11,46 + 0,01 (P=0,0017).; MxA= 949,04 + 100,07 (P=0,0186); OAS-1= 1,37 + 1,36(P=0,006). I risultati ottenuti dall’analisi quantitativa dell’mRNA di PKR hanno trovato un solido riscontro nella successiva valutazione dell’espressione di PKR proteina. Si osserva, infatti, una significativa riduzione della proteina, rispetto al trattamento con solo IFN-a, quando le cellule HepG2 vengono incubate sia con insulina (100 nM) che con IFN-a (100UI/ml). Allo scopo di verificare il ruolo di SOCS3, indotto dall'insulina, come possibile soppressore citoplasmatico dello stimolo interferonico le cellule HepG2 sono state trasfettate con SOCS3-siRNA e stimolate con insulina e IFN-a. Il silenziamento di SOCS3 non ha alcun effetto positivo sui livelli di mRNA dei geni ISGs analizzati (PKR: 3,28 + 0,43; OAS-1: 2,59 + 0,94; SOCS3: 1,43 + 1,22), se confrontati con il controllo [cellule trasfettate con non-targeting siRNA e trattate con insulina e IFN-a (controllo negativo) nelle quali l'over-espressione di SOCS3 è mantenuta come conseguenza dell'effetto dell'insulina (PKR: 3,10 + 0,19; OAS-1: 3,1+ 0,92; SOCS3: 7,3 + 0,98)]. Questi risultati dimostrano che la modulazione dell'attività antivirale dell' IFN-a, da parte dell'insulina, non è dovuta all'over-espressione di SOCS3.
I nostri risultati dimostrano che l'insulina riduce, in modo dose-dipendente, l'espressione dei tre principali geni ISGs analizzati attraverso un meccanismo SOCS3-indipendente. Questi dati suggeriscono che i livelli di insulina potrebbero svolgere un ruolo cruciale nel ridurre la risposta alla terapia antivirale basata sull'uso dell'IFN. Questi dati sperimentali sono a supporto delle evidenze cliniche in quanto sottolineano che il controllo dei livelli basali di insulina prima dell'inizio della terapia con IFN-a rimane ad oggi la scelta migliore per aumentare la risposta antivirale.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:MARTINES, DIEGO
Correlatore:ALBERTI, ALFREDO
Dottorato (corsi e scuole):Ciclo 22 > Scuole per il 22simo ciclo > BIOLOGIA E MEDICINA DELLA RIGENERAZIONE > SCIENZE EPATOLOGICHE E GASTROENTEROLOGICHE
Data di deposito della tesi:NON SPECIFICATO
Anno di Pubblicazione:29 Gennaio 2010
Parole chiave (italiano / inglese):Virus dell'epatite C (HCV), Insulino Resistenza, SOCS3, geni correlati all'interferone (ISGs)
Settori scientifico-disciplinari MIUR:Area 06 - Scienze mediche > MED/04 Patologia generale
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze Chirurgiche Gastroenterologiche "Pier Giuseppe Cevese"
Codice ID:2786
Depositato il:20 Set 2010 13:06
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Zeuzem S, Hultcrantz R, Bourliere M, Goeser T, Marcellin P, Sanchez-Tapias J, Sarrazin C, Harvey J, Brass C, Albrecht J. "Peginterferon alfa-2b plus ribavirin for treatment of chronic hepatitis C in previously untreated patients infected with HCV genotypes 2 or 3". J Hepatol. 2004 Jun;40(6):993-9. Erratum in: J Hepatol. 2005 Mar;42(3):434. Cerca con Google

2. Kawaguchi T, Yoshida T, Harada M, Hisamoto T, Nagao Y, Ide T, Taniguchi E, Kumemura H, Hanada S, Maeyama M, Baba S, Koga H, Kumashiro R, Ueno T, Ogata H, Yoshimura A, Sata M. "Hepatitis C virus down-regulates insulin receptor substrates 1 and 2 through up-regulation of suppressor of cytokine signaling 3". Am J Pathol. 2004 Nov;165(5):1499-508. Cerca con Google

3. Hui JM, Sud A, Farrell GC, Bandara P, Byth K, Kench JG, McCaughan GW, George J. "Insulin resistance is associated with chronic hepatitis C virus infection and fibrosis progression [corrected]". Gastroenterology. 2003;125:1695–1704 Cerca con Google

4. Shintani Y, Fujie H, Miyoshi H, Tsutsumi T, Tsukamoto K, Kimura S, Moriya K, Koike K. "Hepatitis C virus infection and diabetes: direct involvement of the virus in the development of insulin resistance". Gastroenterology. 2004 Mar;126(3):840-8. Cerca con Google

5. Koike K. "Hepatitis C virus infection can present with metabolic disease by inducing insulin resistance". Intervirology. 2006;49(1-2):51-7. Cerca con Google

6. Leandro G, Mangia A, Hui J, Fabris P, Rubbia-Brandt L, Colloredo G, Adinolfi LE, Asselah T, Jonsson JR, Smedile A, Terrault N, Pazienza V, Giordani MT, Giostra E, Sonzogni A, Ruggiero G, Marcellin P, Powell EE, George J, Negro F; "HCV Meta-Analysis (on) Individual Patients' Data Study Group. Relationship between steatosis, inflammation, and fibrosis in chronic hepatitis C: a meta-analysis of individual patient data". Gastroenterology. 2006 May;130(6):1636-42. Cerca con Google

7. Taura N, Ichikawa T, Hamasaki K, Nakao K, Nishimura D, Goto T, Fukuta M, Kawashimo H, Fujimoto M, Kusumoto K, Motoyoshi Y, Shibata H, Abiru N, Yamasaki H, Eguchi K. "Association between liver fibrosis and insulin sensitivity in chronic hepatitis C patients". Am J Gastroenterol. 2006 Dec;101(12):2752-9. Epub 2006 Oct 6. Cerca con Google

8. D'Souza R, Sabin CA, Foster GR. "Insulin resistance plays a significant role in liver fibrosis in chronic hepatitis C and in the response to antiviral therapy". Am J Gastroenterol. 2005 Jul;100(7):1509-15. Cerca con Google

9. Dai CY, Huang JF, Hsieh MY, Hou NJ, Lin ZY, Chen SC, et al. "Insulin resistance predicts response to peginterferon-alpha/ribavirin combination therapy in chronic hepatitis C patients". J Hepatol 2009; 50 (4): 712–718. Cerca con Google

10. Romero-Gomez M, Del Mar Viloria M, Andrade RJ, Salmeron J, Diago M, Fernandez-Rodriguez CM, Corpas R, Cruz M, Grande L, Vazquez L, Munoz-De-Rueda P, Lopez-Serrano P, Gila A, Gutierrez ML, Perez C, Ruiz-Extremera A, Suarez E, Castillo J. "Insulin resistance impairs sustained response rate to peginterferon plus ribavirin in chronic hepatitis C patients". Gastroenterology. 2005 Mar;128(3):636-41. Cerca con Google

11. Bortoletto G, Scribano L, Realdon S, Marcolongo M, Mirandola S, Franceschini L, Bonisegna S, Noventa F, Plebani M, Martines D, Alberti A. "Hyperinsulinaemia reduces the 24-h virological response to PEG-interferon therapy in patients with chronic hepatitis C and insulin resistance". J Viral Hepat. 2009 Oct 21. Cerca con Google

12. Persico M, Capasso M, Persico E, Svelto M, Russo R, Spano D, et al. "Suppressor of cytokine signaling 3 (SOCS3) expression and hepatitis C virus-related chronic hepatitis: insulin resistance and response to antiviral therapy". Hepatology 2007; 46(4): 1009–15. Cerca con Google

13. Emanuelli B, Peraldi P, Filloux C, et al. "SOCS-3 is an insulin-induced negative regulator of insulin signaling". J Biol Chem. 2000;275:15985–15991. Cerca con Google

14. Krebs DL, Hilton DJ. SOCS: physiological suppressors of cytokine signaling. J Cell Sci. 2000;113(Pt 16):2813–2819. Cerca con Google

15. Krebs DL, Hilton DJ. "A new role for SOCS in insulin action. Suppressor of cytokine signaling". Sci STKE. 2003;2003:PE6 Cerca con Google

16. Hortner M, Nielsch U, Mayr LM, et al. "Suppressor of cytokine signaling-3 is recruited to the activated granulocyte-colony stimulating factor receptor and modulates its signal transduction". J Immunol. 2002;169:1219–1227. Cerca con Google

17. De Sepulveda P, Okkenhaug K, Rose JL, et al. "Socs1 binds to multiple signalling protein and suppresses steel factor-dependent proliferation". EMBO J. 1999;18:904–915. Cerca con Google

18. Ueki K, Kondo T, Tseng YH, Kahn CR. "Central role of suppressors of cytokine signaling protein in hepatic steatosis, insulin resistance, and the metabolic syndrome in the mouse". Proc Natl Acad Sci U S A. 2004 Jul 13;101(28):10422-7. Epub 2004 Jul 6. Erratum in: Proc Natl Acad Sci U S A. 2005 Sep 20;102(38):13710. Cerca con Google

19. Ueki K, Kondo T, Kahn CR. "Suppressor of cytokine signaling 1 (SOCS-1) and SOCS-3 cause insulin resistance through inhibition of tyrosine phosphorylation of insulin receptor substrate protein by discrete mechanisms". Mol Cell Biol. 2004 Jun;24(12):5434-46. Erratum in: Mol Cell Biol. 2005 Oct;25(19):8762. Cerca con Google

20. Rui L, Yuan M, Frantz D, Shoelson S, White MF. "SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2". J Biol Chem. 2002 Nov 1;277(44):42394-8. Epub 2002 Sep 12. Cerca con Google

21. Vlotides G, Sörensen AS, Kopp F, Zitzmann K, Cengic N, Brand S, Zachoval R, Auernhammer CJ. "SOCS-1 and SOCS-3 inhibit IFN-alpha-induced expression of the antiviral protein 2,5-OAS and MxA". Biochem Biophys Res Commun. 2004 Jul 30;320(3):1007-14. Cerca con Google

22. Song MM, Shuai K. "The suppressor of cytokine signaling (SOCS) 1 and SOCS3 but not SOCS2 proteins inhibit interferon-mediated antiviral and antiproliferative activities". J Biol Chem. 1998 Dec 25;273(52):35056-62. Cerca con Google

23. Miyaaki H, Ichikawa T, Nakao K, Matsuzaki T, Muraoka T, Honda T, Takeshita S, Shibata H, Ozawa E, Akiyama M, Miuma S, Eguchi K. "Predictive value of suppressor of cytokine signal 3 (SOCS3) in the outcome of interferon therapy in chronic hepatitis C". Hepatol Res. 2009 Sep;39(9):850-5. Epub 2009 Jul 13. Cerca con Google

24. Kim KA, Lin W, Tai AW, Shao RX, Weinberg E, De Sa Borges CB, Bhan AK, Zheng H, Kamegaya Y, Chung RT. "Hepatic SOCS3 expression is strongly associated with non-response to therapy and race in HCV and HCV/HIV infection". J Hepatol. 2009 Apr;50(4):705-11. Epub 2009 Feb 14. Cerca con Google

25. Huang Y, Feld JJ, Sapp RK, Nanda S, Lin JH, Blatt LM, Fried MW, Murthy K, Liang TJ. "Defective hepatic response to interferon and activation of suppressor of cytokine signaling 3 in chronic hepatitis C". Gastroenterology. 2007 Feb;132(2):733-44. Epub 2006 Nov 29. Cerca con Google

26. Bode JG, Ludwig S, Ehrhardt C, Albrecht U, Erhardt A, Schaper F, Heinrich PC, Häussinger D. "IFN-alpha antagonistic activity of HCV core protein involves induction of suppressor of cytokine signaling-3". FASEB J. 2003 Mar;17(3):488-90. Epub 2003 Jan 22. Cerca con Google

27. Persico M, Russo R, Persico E, Svelto M, Spano D, Andolfo I, La Mura V, Capasso M, Tiribelli C, Torella R, Iolascon A. "SOCS3 and IRS-1 gene expression differs between genotype 1 and genotype 2 hepatitis C virus-infected HepG2 cells". Clin Chem Lab Med. 2009;47(10):1217-25. Cerca con Google

28. Walsh MJ, Jonsson JR, Richardson MM, Lipka GM, Purdie DM, Clouston AD, Powell EE. "Non-response to antiviral therapy is associated with obesity and increased hepatic expression of suppressor of cytokine signalling 3 (SOCS-3) in patients with chronic hepatitis C, viral genotype 1". Gut. 2006 Apr;55(4):529-35. Epub 2005 Nov 18. Cerca con Google

29. Der SD, Zhou A, Williams BR, Silverman RH. "Identification of genes differentially regulated by interferon alpha, beta, or gamma using oligonucleotide arrays". Proc Natl Acad Sci U S A. 1998;95:15623–8. Cerca con Google

30. Bretner M, Najda A, Podwinska R, Baier A, Paruch K, Lipniacki A, Piasek A, Borowski P, Kulikowski T. "Inhibitors of the NTPase/helicases of hepatitis C and related Flaviviridae viruses". Acta Pol Pharm. 2004 Dec;61 Suppl:26-8. Cerca con Google

31. Simmonds P. "Viral heterogeneity of the hepatitis C virus". J Hepatol. 1999;31 Suppl 1:54-60. Cerca con Google

32. Laporte J, Malet I, Andrieu T, Thibault V, Toulme JJ, Wychowski C, Pawlotsky JM, Huraux JM, Agut H, Cahour A. "Comparative analysis of translation efficiencies of hepatitis C virus 5' untranslated regions among intraindividual quasispecies present in chronic infection: opposite behaviors depending on cell type". J Virol. 2000 Nov;74(22):10827-33. Cerca con Google

33. Friebe P, Lohmann V, Krieger N, Bartenschlager R. "Sequences in the 5' nontranslated region of hepatitis C virus required for RNA replication". J Virol. 2001 Dec;75(24):12047-57. Cerca con Google

34. Kato N. "Molecular virology of hepatitis C virus". Acta Med Okayama. 2001 Jun;55(3):133-59. Cerca con Google

35. Yasui K, Wakita T, Tsukiyama-Kohara K, Funahashi SI, Ichikawa M, Kajita T, Moradpour D, Wands JR, Kohara M. "The native form and maturation process of hepatitis C virus core protein". J Virol. 1998 Jul;72(7):6048-55. Cerca con Google

36. Suzuki R, Suzuki T, Ishii K, Matsuura Y, Miyamura T. "Processing and functions of Hepatitis C virus proteins". Intervirology. 1999;42(2-3):145-52. Cerca con Google

37. Ravaggi A, Natoli G, Primi D, Albertini A, Levrero M, Cariani E. "Intracellular localization of full-length and truncated hepatitis C virus core protein expressed in mammalian cells". J Hepatol. 1994 Jun;20(6):833-6 Cerca con Google

38. Yamanaka T, Kodama T, Doi T. "Subcellular localization of HCV core protein regulates its ability for p53 activation and p21 suppression". Biochem Biophys Res Commun. 2002 Jun 14;294(3):528-34. Cerca con Google

39. Ruster B, Zeuzem S, Roth WK. "Hepatitis C virus sequences encoding truncated core proteins detected in a hepatocellular carcinoma". Biochem Biophys Res Commun. 1996 Feb 27;219(3):911-5. Cerca con Google

40. Yeh CT, Lo SY, Dai DI, Tang JH, Chu CM, Liaw YF. "Amino acid substitutions in codons 9-11 of hepatitis C virus core protein lead to the synthesis of a short core protein product". J Gastroenterol Hepatol. 2000 Feb;15(2):182-91. Cerca con Google

41. Shimizu YK, Igarashi H, Kiyohara T, Cabezon T, Farci P, Purcell RH, Yoshikura H. "A hyperimmune serum against a synthetic peptide corresponding to the hypervariable region 1 of hepatitis C virus can prevent viral infection in cell cultures". Virology. 1996 Sep 15;223(2):409-12. Cerca con Google

42. Reed KE, Gorbalenya AE, Rice CM. "The NS5A/NS5 proteins of viruses from three genera of the family flaviviridae are phosphorylated by associated serine/threonine kinases". J Virol. 1998 Jul;72(7):6199-206. Cerca con Google

43. Tan SL, Katze MG. "How hepatitis C virus counteracts the interferon response: the jury is still out on NS5A". Virology. 2001 May 25;284(1):1-12. Cerca con Google

44. He Y, Katze MG. "To interfere and to anti-interfere: the interplay between hepatitis C virus and interferon". Viral Immunol. 2002;15(1):95-119. Cerca con Google

45. Reyes GR. "The nonstructural NS5A protein of hepatitis C virus: an expanding, multifunctional role in enhancing hepatitis C virus pathogenesis". J Biomed Sci. 2002 May-Jun;9(3):187-97 Cerca con Google

46. Zeuzem S. "Hepatitis C virus: kinetics and quasispecies evolution during anti-viral therapy". Forum (Genova). 2000 Jan-Mar;10(1):32-42. Cerca con Google

47. Simmonds P, Holmes EC, Cha TA, Chan SW, McOmish F, Irvine B, Beall E, Yap PL, Kolberg J, Urdea MS. "Classification of hepatitis C virus into six major genotypes and a series of subtypes by phylogenetic analysis of the NS-5 region". J Gen Virol. 1993 Nov;74 ( Pt 11):2391-9. Cerca con Google

48. Simmonds P. "The origin and evolution of hepatitis viruses in humans". J Gen Virol. 2001 Apr;82(Pt 4):693-712. Cerca con Google

49. Tisminetzky S, Gerotto M, Pontisso P, Chemello L, Prescott LE, Rose KA, Baralle F, Simmonds P, Alberti A. "Comparison of genotyping and serotyping methods for the identification of hepatitis C virus types". J Virol Methods. 1995 Nov;55(3):303-7 Cerca con Google

50. Polyak SJ, Gerotto M. "The molecular basis for responsiveness to anti-viral therapy in hepatitis C". Forum (Genova). 2000 Jan-Mar;10(1):46-58. Cerca con Google

51. Gao G, Buskell Z, Seeff L, Tabor E. "Drift in the hypervariable region of the hepatitis C virus during 27 years in two patients". J Med Virol. 2002 Sep;68(1):60-7. Cerca con Google

52. Gerotto M, Sullivan DG, Polyak SJ, Chemello L, Cavalletto L, Pontisso P, Alberti A, Gretch DR. "Effect of retreatment with interferon alone or interferon plus ribavirin on hepatitis C virus quasispecies diversification in nonresponder patients with chronic hepatitis C". J Virol. 1999 Sep;73(9):7241-7. Cerca con Google

53. Busch MP. "Insights into the epidemiology, natural history and pathogenesis of hepatitis C virus infection from studies of infected donors and blood product recipients". Transfus Clin Biol. 2001 Jun;8(3):200-6. Cerca con Google

54. Cohen J. "The scientific challenge of hepatitis C". Science. 1999 Jul 2;285(5424):26-30. Cerca con Google

55. Lauer GM, Walker BD. "C virus infection". N Engl J Med. 2001; 345(1): 41-52. Cerca con Google

56. Farci P, Alter HJ, Govindarajan S, Wong DC, Engle R, Lesniewski RR, Mushahwar IK, Desai SM, Miller RH, Ogata N, et al. "Lack of protective immunity against reinfection with hepatitis C virus". Science. 1992 Oct 2;258(5079):135-40. Cerca con Google

57. Adinolfi LE, Utili R, Andreana A, Tripodi MF, Rosario P, Mormone G, Ragone E, Pasquale G, Ruggiero G. "Relationship between genotypes of hepatitis C virus and histopathological manifestations in chronic hepatitis C patients". Eur J Gastroenterol Hepatol. 2000 Mar;12(3):299-304. Cerca con Google

58. Ramadori G, Meier V. "Hepatitis C virus infection: 10 years after the discovery of the virus". Eur J Gastroenterol Hepatol. 2001 May;13(5):465-71. Cerca con Google

59. Fattovich G, Ribero ML, Pantalena M, Diodati G, Almasio P, Nevens F, Tremolada F, Degos F, Rai J, Solinas A, Mura D, Tocco A, Zagni I, Fabris F, Lomonaco L, Noventa F, Realdi G, Schalm SW, Tagger A; (Eurohep Study Group on Viral Hepatitis). "Hepatitis C virus genotypes: distribution and clinical significance in patients with cirrhosis type C seen at tertiary referral centres in Europe". J Viral Hepat. 2001 May;8(3):206-16. Cerca con Google

60. Bellentani S, Miglioli L, Masutti F, Saccoccio G, Tiribelli C. "Epidemiology of hepatitis C virus infection in Italy: the slowly unraveling mystery". Microbes Infect. 2000 Nov;2(14):1757-63. Cerca con Google

61. Roffi L, Ricci A, Ogliari C, Scalori A, Minola E, Colloredo G, Donada C, Ceriani R, Rinaldi G, Paris B, Fornaciari G, Morales R, Del Poggio P, Sangiovanni A, Buonocore M, Bellia V, Riboli P, Nava MC, Panizzuti F, Piperno A, Pozzi M, Pioltelli P, Mancia G. "HCV genotypes in Northern Italy: a survey of 1368 histologically proven chronic hepatitis C patients". J Hepatol. 1998 Nov;29(5):701-6. Cerca con Google

62. Alberti A, Chemello L, Benvegnù L. "Natural history of hepatitis C". J Hepatol. 1999, 31 Suppl. 1, 17-24. Cerca con Google

63. Benvegnù L, Gios M, Boccato S, Alberti A. "Natural history of compensated viral cirrhosis: a prospective study on the incidence and hierarchy of major complications". Gut 2004, 53(5), 744-9. Cerca con Google

64. Pawlotsky JM. "Pathophysiology of hepatitis C virus infection and related liver desease". Trends Microbiol. 2004, 12(2), 96-102. Cerca con Google

65. Seeff LB. "Natural history of hepatitis C". Am J Med. 1999, 107(6B):10S-15S. Cerca con Google

66. Pawlotsky JM. "Mechanisms of antiviral treatment efficacy and failure in chronic hepatitis C".Antiviral Res. 2003 Jun;59(1):1-11. Cerca con Google

67. Tanaka E, Kiyosawa K. "Natural history of acute hepatitis C". J Gastroenterol Hepatol 2000 15 Suppl: E97-104. Cerca con Google

68. Alberti A, Benvegnù L. "Management of hepatitis C". J Hepatol. 2003;38 Suppl 1:S104-18. Review. Cerca con Google

69. Cammà C, Di Bona D, Schepis F, Heathcote EJ, Zeuzem S, Pockros PJ, Marcellin P, Balart L, Alberti A, Craxi A. "Effect of peginterferon alfa-2a on liver histology in chronic hepatitis C: a meta-analysis of individual patient data". Hepatology. 2004 Feb;39(2):333-42. Cerca con Google

70. Fried MW, Shiffman ML, Reddy KR, Smith C, Marinos G, Goncales FL Jr, Haussinger D, Diago M, Carosi G, Dhumeaux D, Craxi A, Lin A, Hoffman J, Yu J. "Peginterferon alfa-2a plus ribavirin for chronic hepatitis C virus infection". Cerca con Google

N Engl J Med. 2002 Sep 26;347(13):975-82. Cerca con Google

71. Manns MP, McHutchison JG, Gordon SC, Rustgi VK, Shiffman M, Reindollar R, Goodman ZD, Koury K, Ling M, Albrecht JK. "Peginterferon alfa-2b plus ribavirin compared with interferon alfa-2b plus ribavirin for initial treatment of chronic hepatitis C: a randomised trial". Lancet. 2001 Sep 22;358(9286):958-65. Cerca con Google

72. Cammà C, Bruno S, Di Marco V, Di Bona D, Rumi M, Vinci M, Rebucci C, Cividini A, Pizzolanti G, Minola E, Mondelli MU, Colombo M, Pinzello G, Craxi A. "Insulin resistance is associated with steatosis in nondiabetic patients with genotype 1 chronic hepatitis C". Hepatology. 2006 Jan;43(1):64-71. Cerca con Google

73. Hadziyannis et al., 2004 S.J. Hadziyannis, H. Sette Jr., T.R. Morgan, V. Balan, M. Diago and P. Marcellin et al., “Peginterferon-alpha-2a and ribavirin combination therapy in chronic hepatitis C: a randomized study of treatment duration and ribavirin dose”. Ann Intern Med 140 (2004), pp. 346–355. Cerca con Google

74. E. Foy, K. Li, C. Wang, R. Sumpter Jr., M. Ikeda and S.M. Lemon et al., “Regulation of interferon regulatory factor-3 by the hepatitis C virus serine protease”. Science 300 (2003), pp. 1145–1148. Cerca con Google

75. Taniguchi CM, Ueki K, Kahn R. "Complementary roles of IRS-1 and IRS-2 in the hepatic regulation of metabolism". J Clin Invest 2005; 115:718-27. Cerca con Google

76. Stern SE, Williams K, Ferrannini E, et al. "Identification of individuals with insulin resistance using routine clinical measurements". Diabetes 2005; 54: 333-9. Cerca con Google

77. Draznin B. "Molecular mechanisms of insulin resistance: serine phosphorylation of insulin receptor substrate-1 and increased expression of p85alpha: the two sides of a coin". Diabetes. 2006 Aug;55(8):2392-7. Cerca con Google

78. Ueki K, Kadowaki T, Kahn CR. " Role of suppressors of cytokine signaling SOCS-1 and SOCS-3 in hepatic steatosis and the metabolic sindrome". Hepatol Res. 2005 Oct;33(2):185-92. Epub 2005 Oct 13. Cerca con Google

79. Kim JK. "Fat uses a TOLL-road to connect inflammation and diabetes". Cell Metab. 2006 Dec;4(6):417-9. Review. Cerca con Google

80. Mehta SH, Brancati FL, Sulkowski MS, Strathdee SA, Szklo M, Thomas DL. " Prevalence of type 2 diabetes mellitus among persons with hepatitis C virus infection in the United States". Ann Intern Med. 2000 Oct 17;133(8):592-9. Cerca con Google

81. Allison ME, Wreghitt T, Palmer CR, Alexander GJ. “Evidence for a link between hepatitis C virus infection and diabetes mellitus in a cirrhotic population”. J Hepatol. 1994 Dec;21(6):1135-9. Cerca con Google

82. Grimbert S, Valensi P, Lévy-Marchal C, Perret G, Richardet JP, Raffoux C, Trinchet JC, Beaugrand M. "High prevalence of diabetes mellitus in patients with chronic hepatitis C. A case-control study". Gastroenterol Clin Biol. 1996;20(6-7):544-8. Cerca con Google

83. Mason AL, Lau JY, Hoang N, Qian K, Alexander GJ, Xu L, Guo L, Jacob S, Regenstein FG, Zimmerman R, Everhart JE, Wasserfall C, Maclaren NK, Perrillo RP. "Association of diabetes mellitus and chronic hepatitis C virus infection". Hepatology. 1999 Feb;29(2):328-33. Cerca con Google

84. Caronia S, Taylor K, Pagliaro L, Carr C, Palazzo U, Petrik J, O'Rahilly S, Shore S, Tom BD, Alexander GJ. "Further evidence for an association between non-insulin-dependent diabetes mellitus and chronic hepatitis C virus infection". Hepatology. 1999 Oct;30(4):1059-63. Cerca con Google

85. Aytug S, Reich D, Sapiro LE, Bernstein D, Begum N. "Impaired IRS-1/PI3-kinase signaling in patients with HCV: a mechanism for increased prevalence of type 2 diabetes". Hepatology. 2003 Dec;38(6):1384-92. Cerca con Google

86. Pazienza V, Clément S, Pugnale P, Conzelman S, Foti M, Mangia A, Negro F. "The hepatitis C virus core protein of genotypes 3a and 1b downregulates insulin receptor substrate 1 through genotype-specific mechanisms". Hepatology. 2007 May;45(5):1164-71. Cerca con Google

87. Bonjardim CA, Ferreira PC, Kroon EG. "Interferons: signaling, antiviral and viral evasion". Immunol Lett. 2009 Jan 29;122(1):1-11. Epub 2008 Dec 6. Review. Cerca con Google

88. van Boxel-Dezaire AH, Rani MR, Stark GR. " Complex modulation of cell type-specific signaling in response to type I interferons". Immunity. 2006 Sep;25(3):361-72. Review. Cerca con Google

89. Darnell JE Jr, Kerr IM, Stark GR. "Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins." Science. 1994 Jun 3;264(5164):1415-21. Review. Cerca con Google

90. Tang X, Gao JS, Guan YJ, McLane KE, Yuan ZL, Ramratnam B, Chin YE. " Acetylation-dependent signal transduction for type I interferon receptor". Cell. 2007 Oct 5;131(1):93-105. Cerca con Google

91. Tenoever BR, Ng SL, Chua MA, McWhirter SM, García-Sastre A, Maniatis T. "Multiple functions of the IKK-related kinase IKKepsilon in interferon-mediated antiviral immunity". Science. 2007 Mar 2;315(5816):1274-8. Cerca con Google

92. Takaoka A, Yanai H. "Interferon signalling network in innate defence". Cellular Microbiology 2006. 8(6), pp. 907-922. Cerca con Google

93. Bonjardim CA. " Interferons (IFNs) are key cytokines in both innate and adaptive antiviral immune responses--and viruses counteract IFN action". Microbes Infect. 2005 Mar;7(3):569-78. Epub 2005 Mar 3. Review. Cerca con Google

94. Taguchi T, Nagano-Fujii M, Akutsu M, Kadoya H, Ohgimoto S, Ishido S, Hotta H. "Hepatitis C virus NS5A protein interacts with 2’,5’-oligoadenylate synthetase and inhibits antiviral activity of IFN in an IFN sensitivity-determining region-indipendent manner". J Gen Virol. 2004. 85(Pt4): 959-69. Cerca con Google

95. Clemens MJ, Elia A. "The double-stranded RNA-dependent protein Kinase PKR: structure and function". J Interferon Cytokine Res. 1997. 17(9):503-24. Rewiev Cerca con Google

96. Sadler JA, Lacthoumanin O, Hawkes D, Mak J, Williams BRG. "An Antiviral Response Directed by PKR Phosphorylation of the RNA Helicase A". PLoS Pathogens, 2009. Vol.5(2): e1000311. doi:10.1371. Cerca con Google

97. Frese M, Pietschmann T, Moradpour D, Haller O, Bartenshlager R. "Interferon-α inhibits hepatitis C virus subgenomic RNA replication by an MxA-indipendent pathway". Journal of General Virology, 2001. 82, pp723-733. Cerca con Google

98. Shun-Chi Wu, Shin C. Chang, Hung-Yi Wo, Pei-Ju Liao and Ming-Fu Chang. "Hepatitis C virus NS5A protein down-regulates the expression of spindle gene Aspm through PKR-p38 signaling pathway". The Journal of Biological Chemistry, 2008. Vol283, No 43, pp 29396-29404. Cerca con Google

99. Sadler AJ, Williams BR. " Interferon-inducible antiviral effectors". Nat Rev Immunol. 2008 Jul;8(7):559-68. Review. Cerca con Google

100. Miyaaki H, Ichikawa T, Nakao K, Matsuzaki T, Muraoka T, Honda T, Takeshita S, Shibata H, Ozawa E, Akiyama M, Miuma S, Eguchi K. "Predictive value of suppressor of cytokine signal 3 (SOCS3) in the outcome of interferon therapy in chronic hepatitis C". Hepatol Res. 2009 Sep;39(9):850-5. Epub 2009 Jul 13. Cerca con Google

101. Persico M, Capasso M, Russo R, Persico E, Crocè L, Tiribelli C, Iolascon A. "Elevated expression and polymorphisms of SOCS3 influence patient response to antiviral therapy in chronic hepatitis C". Gut. 2008 Apr;57(4):507-15. Epub 2007 Sep 19. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record