Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Lanzotti, Maria Angela (2008) Caratterizzazione strutturale del sistema redox Tioredossina/Tioredossina Reduttasi dall'archaeon Sulfolobus solfataricus. [Tesi di dottorato]

Full text disponibile come:

Documento PDF

Abstract (inglese)

Recent investigations have demonstrated that disulfide bridges may play a crucial role in the stabilization of proteins in hyperthermophilic organisms. The process of disulfide formation is not spontaneous but it is modulated by complex enzymatic systems. A major role in this process is played by ubiquitous proteins belonging to the thioredoxin superfamily, which includes enzymes such as thioredoxins (Trx), thioredoxin reductases (TrxR), and disulfide oxidases/isomerases. Here we report a characterization of the structure and stability of the TrxR (SsTrxRB3) isolated from Sulfolobus solfataricus. This protein is particularly interesting since it able to process different substrates (Trx and PDO) and it is endowed with an additional NADH oxidase activity. Although some characterizations of TrxR isolated from eubacteria have been reported, no structural information has been hitherto for the archeal counterparts.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Zagari, Adriana
Correlatore:Vitagliano, Luigi
Dottorato (corsi e scuole):Ciclo 20 > Corsi per il 20simo ciclo > FISIOLOGIA MOLECOLARE E BIOLOGIA STRUTTURALE
Data di deposito della tesi:31 Gennaio 2008
Anno di Pubblicazione:31 Gennaio 2008
Parole chiave (italiano / inglese):SsTrxR, SsTrxA1, SsTrxA2
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/11 Biologia molecolare
Struttura di riferimento:Dipartimenti > Dipartimento di Biologia
Codice ID:280
Depositato il:04 Nov 2008
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Arner E.S.J and Holmgren A. (2000) Physiological functions of thioredoxin and thioredoxin reductase. Eur J. Biochem 267, 6102-6109. Cerca con Google

2. Bao R., Chen Y., Tang Y.J., Janin J. and Zhou C.Z. (2006) Crystal structure of Yeast Cytoplasmatic Thioreoxin Trx2 Proteins 66, 246-249 Cerca con Google

3. Beeby M., O'Connor B.D., Ryttersgaard C., Boutz D.R., Perry L.J., and Yeats T.O. (2005) The genomic of disulfide bonding and protein stabilization in thermophiles. Plos Biol 3(9), e309 Cerca con Google

4. Bulaj G. Formation of disulfide bonds in proteins and peptides (2005) . Biotechnology Advances 23, 87-92 Cerca con Google

5. Capitani G., Markovic-Housley Z., Delval G., Morris M., Jansonius J.N and Shurmann P. (2000) Crystal structure of two Functionally different Thioredoxins in Spinach Chloroplast. J. Mol. Biol. 302, 135-154 Cerca con Google

6. Carvalho A.P., Fernandes P.A. and Ramos M.J. (2005) Similarities and differences in the thioredoxin superfamily. Progress in biophysics and molecular biology 91, 229-248. Cerca con Google

7. Chakravarty S. and Varadarajan R. (2002) Elucidation of factors responsible for enhanced thermal stability of proteins: a structural genomic based study. Biochemistry 41, 8152-8161. Cerca con Google

8. Chan, M. K., Mukund, S. Kletzin, A., Adams, M. W. W. And Rees, D. C. (1995) Structure of a Hyperthermophilic tungstonpterin enzyme, aldehyde ferredozin oxidoreductase. Scienze 267, 1463-1469. Cerca con Google

9. Chivers P.T and Raines R.T. (1997) General acid/base catalysis in the active site of Escherichia coli thioredoxin. American chemical Society 36, 15810-15816. Cerca con Google

10. Chivers P.T., Laboissiere M.C.A. and Raines R.T (1996) The CXXC motif: imperatives for the formation of native disulfide bonds in the cell. The EMBO Journal 15, 2659-2667. Cerca con Google

11. Chivers P.T., Prehoda K.E., Raines R.T ( 1997) The CXXC Motif: A rheostat in the active site. American Chemical Society 36, 4061-4066. Cerca con Google

12. Cowan D.A. (1992). Biochemistry and molecular biology of the extremely thermophilic archaeobacteria. In: "Molecular Biology and Biotechnology of Extremophiles", Edited by Herbert, R.A. e Sharp, R.J., Blackie, Glasgow e London. Cerca con Google

13. Dyson H.J., Jeng M.F., Tennant L.L., Slaby I., Lindell M., Cui D.S., Kuprin S. And Holmgren A. (1996) Effects of Buried Charged Groups on Cysteine thiol ionization and reactivity in Escherichia coli thioredoxin: structural and functional characterization of mutants of Asp 26 and Lys 57. American Chemical society 36, 2622-2636. Cerca con Google

14. Eriksson, A. E., Baase, W. A., Zhang, X. J., Heize, D. W., Blaber, M., Baldwin, E. P. And Matthews, B.W. (1992) Response of a protein structure to cavity creating mutations and is relation to the hydrophobic effect. Science 255, 178-183 Cerca con Google

15. Feller G., and Gerday C. (1997). Psychrophilic enzymes: molecular basis of cold adaptation. CMOLS 53, 830-841. Cerca con Google

16. Hirt R.P., Iler S.M., Embley T.M. and Coombs G.H. (2002) The diversity and evolution of thioredoxin reductase: new perspectives. TRENDS in parasitology 18, 302-308. Cerca con Google

17. Holmgren A. (1989) Thioredoxin and glutaredoxin systems. The Journal of biological chemistry 264, 13963-13966. Cerca con Google

18. Holmgren A., Johansson C., Berndt C., lonn M.E., Hudemann C. and Lillig C.H. ( 2005) Biochemical Society 33, 1375-1377. Cerca con Google

19. Holmgren A., Soderberg B.O., Eklund H. And Branden C.I. (1975) Prov. Nat. Acad. Sci 6, 2305-2309. Cerca con Google

20. Imada, K., Sato, ., M., Tanaka, N., Katsube, Y., Matsuura, Y. And Oshima, T. (1991) Three-dimensional structure of highly thermostable enzyme, 9-isopropylmalate dehydrogenase of Thermus thermophilus at 2.2 ?… resolution. J.Mol.Biol. 222, 725-738 Cerca con Google

21. Jaenicke R. (1991). Protein stability and molecular adaptation to extreme conditions. Eur. J. Biochem. 202, 715-728. Cerca con Google

22. Karshikoff A. and Ladestein R. (2001). Ion pairs and the thermotolerance of proteins from hyperthermophiles: a "traffic rule" for hot roads. TRENDS Biochem. Sci. 26, 9, 550-556. Cerca con Google

23. Katti, S. K. and LeMaster, D. M.(1990) J. Mol. Biol. 212, 167-184. Cerca con Google

24. Ladestein R., Ren B.(2006) Protein disulfides and protein disulfide oxidoreductases in hyperthermophiles . FEBS Journal 273, 4170-4185. Cerca con Google

25. Lennon B.W., Williams C.H., Ludwing J.R. and M.L. (1999). Crystal Structure of reduce thioredoxin from Escherichia Coli: structural flexibility in isoalloxazine ring of the flavin adenine dinucleotide cofactor. Protein Science 8, 2366-2379 Cerca con Google

26. Lennon B.W., Williams C.H., Williams Jr.and Ludwing M.L. (2000) Twists in catalysis: alternating conformations of Escherichia coli Thioredoxin Reductase. Science 289, 1190-1194. Cerca con Google

27. Pedone E., Limauro D., D'Alterio R., Rossi M. and Bartolucci S. (2006) Characterizationof a multifunctional protein disulfide oxidoreductase from Sulfolobus solfataricus. FEBS . Cerca con Google

28. Perutz, M.F and Raidt, H. (1975) Stereochemical basis of heat stability in bacterial ferredoxins and in hemoglobin A2. Nature 255, 256-259 Cerca con Google

29. Podar M., and Reysenbach A.L. (2006) New opportunities revealed by biotechnological explorations of extremophiles. Current Opinion in Biotechnolgy 17, 250-255 Cerca con Google

30. Privalov P.L. (1979). Stability of proteins. Adv. Protein Chem. 33, 167-241. Cerca con Google

31. Rehse P.H., Kumei M. And Tahirov T.H. (2005) Compact reduced thioredoxin structure from the thermophilic bacteria Thermus thermofilus. Proteins 61, 1032-1037. Cerca con Google

32. Ruocco M.R., Ruggiero A., Masullo L., Arcari P., Masullo M.(2004) A 35 kDa NAD(P)H oxidase previously isolated from the archaeon Sulfolobus solfataricus is instead a thioredoxin reductase. Biochimie 86, 883-892. Cerca con Google

33. Sadeghi M., Naderi-Manesh H., Zarrabi M., Ranjbar B. (2005) Effective factors in thermostability of thermophilic proteins. Biophysical Chemistry 119, 256-270 Cerca con Google

34. Scandura, R., Consalvi, V., Chiaraluce, R., Politi, L. and Engel P. C. (1995) Protein termostability in extremophiles. Biochimie 80, 933-941 Cerca con Google

35. Schultz L.W., Chivers P.T., Raines R.T (1999) The CXXC motif: crystal structure of an active-site variant of Escherichia Coli thioredoxin. Acta Crystallographica D55, 1533-1538. Cerca con Google

36. Smeets A., Evrard C., Landtmeters M., Marchand C., Knoops B., and Declercq J.P. (2005) Crystal structure of oxidized and reduce forms of human mitochondrial thioredox 2. Protein Science 14, 2610-2621. Cerca con Google

37. Vogt, G., Woell, S. and Argos, P. (1997) Protein thermal stability, hydrogen bonds, and ion pairs. J. Mol. Biol 269, 631-643 Cerca con Google

38. Williams C.H., Arscott L.D., Muller S., Lennon B.W., Ludwing M.L., Wang P.F., Veine D.M., Becker K. and Schirmer R.H. (2000) Thioredoxin reductase. FEBS 267, 6110-6117 Cerca con Google

39. Woese C. R. (1993). In: "The Biochemistry of Archaebacteria", Edited by Kates M., Kushner D.J. e Matheson A.T., Elsevier Sc. Publ. Cerca con Google

40. Woese C. R., Kandler O., and Wheelis M.L. (1990). Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Nat. Acad. Sci. USA 87, 4576-4579. Cerca con Google

41. Woese C. R., Magrum L. J., and Fox G. E. (1978). Archeabacteria. J. Mol. Evol. 11, 245-252. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record