Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Faccio, Anita (2008) New penta- and hexacyclic derivatives of quinolizinium ion: DNA-binding and DNA-photocleavaging properties. [Tesi di dottorato]

Full text disponibile come:

Documento PDF

Abstract (inglese)

The discovery of new compounds with antitumoral activity has become one of the most important goals in medicinal chemistry. One interesting group of chemotherapeutic agents used in cancer therapy comprises molecules that interact with DNA. Research in this area has revealed a range of DNA recognizing molecules that act as antitumoral agents, including groove binders, alkylating and intercalator compounds. DNA intercalators are molecules that insert perpendicularly into DNA without forming covalent bonds. The only recognized force that maintain the stability of the DNAintercalators complex, even more than DNA alone, are van der Waals, hydrogen bonding, hydrophobic, and/or charge transfer forces. These molecules have attracted particular attention due to their antitumoral activity. For example, a number of acridine and anthracycline derivatives are excellent DNA intercalators that are now on the
market as chemotherapeutic agents. However, the clinical application of these and other compounds of the same class has encountered problems such as multidrug resistance (MDR), and secondary and /or collateral effects. These shortcoming have motivated the search of new compounds to be used either in place of, or in conjunction with, the existing molecules. Along these lines, especially important are the ligands capable of
structure- or sequence-selective binding to nucleic acids, since such compounds may purposefully influence the biological functionality of genetic material in vivo.
The condensed poly(hetero)aromatic compounds are usually regarded as representative DNA intercalators, especially if they posses electron-deficiency or charged aromatic cores. However, only a few ligands are known that bind to the DNA by the intercalative mode exclusively. A vast number of ligands, which have an intercalating part endowed with a variety of substituents, bind to the DNA by a mixed mode, since the substituents occupy the DNA grooves upon binding. In view of the complexity of the ligand-DNA recognition process, a study with model compounds which posses only one DNAbinding
mode is desired.
Measurement of the binding constant and biological activity of DNA-intercalator complexes in the 1970’s and QSAR studies in the 1980’s, leads to the conclusion that there should exist a relationship between cytotoxic activity and binding force. Otherwise, cytotoxicity is not only dependent on the ability to interact with DNA, since there are many DNA intercalators that are incapable of working as cytotoxic agents. To be effective, a drug must first overcome many barriers, including metabolic pathways, and cytoplasmatic and nuclear membranes. Once drug is situated in the nucleus, it must be capable of interacting with DNA by intercalating, that is forming a stable complex
with a relatively long half-life. Cytotoxicity could be also a consequence of the poisoning of topoisomerases, enzymes that are directly involved in DNA recognition, in the fundamental steps of cellular growth. The spatial arrangement of DNA before,
during, and after replication is essential to a high-quality cell division process. In this way, DNA topology is governed by these enzymes. The enzymes can be classified into two main classes: type I, which breaks only one strand of the DNA, although both strands are involved in the interaction with the enzyme, and type II, which breaks both strands of the duplex. They are both a good leads for DNA intercalators, which induce
cytotoxicity when they poison the enzymes by stabilizing the ternary, DNA– intercalator–topoisomerase complex in such a way that the enzymatic process cannot continue forward or backward. Finally, once the enzyme–DNA complexes are poisoned by intercalators, the ternary complex is detected by the cell as a damaged portion, which triggers a series of events, which induces cell apoptosis (programmed cell death).
In recent years much interest has been focused on molecules that may bind and modify genetic material. Along these lines, there has been increasing attention in the discovery and investigation of compounds that cleave DNA when irradiated with visible or UV light. These molecules are called photonucleases and they exhibit a large potential for therapeutic applications because they are often inert until activated by light and allow control of the reaction both in a spatial and temporal sense. The photonucleases operate by several distinct mechanism. One class of compounds photosensitizes the excitation of reactive intermediates that react with DNA, such as singlet oxygen, or the hydroxyl radical. In a second class, the photonuclease is bound to the nucleic acid before its activation and the DNA damage is thus localized at or near the binding site. These compounds, like any other small DNA-binding molecule, associate by intercalation or fit into the minor groove of the DNA. So, the photosensitized damage of DNA offers a
promising tool to destroy DNA on purpose and may have a photobiological effects as they can be applied as phototherapeutics. The photosensitization of cells and tissue
using photoactive drugs has been exploited in a variety of phototherapies for the treatment of multiple diseases. In fact in the last 20 years there was the development of dyes for photodynamic therapy, in particular porphyrins and porphyrins-based compounds, or new psoralen derivatives to apply for the well known PUVA therapy. Moreover photosensitization approaches have also been investigated for antimicrobical use, disinfections of blood products, as well as for wound closure in photochemical tissue bonding.
Among the compounds investigated along these lines are quinolizinium derivatives such as coralyne and the related molecules. Moreover was recently observed that the tri- and tetra-benzoquinolizinium derivatives and indoloquinolizinium exhibit DNA-binding and, after UV-A irradiation, DNA-photodamaging properties. However, other examples for DNA-binding quinolizinium derivatives with photonuclease activity are still rare.
The compounds analyzed in this project are a penta- and hexacyclic derivatives of quinolizinium ion, namely, diazoniapentaphene derivatives, diazoniaanthra[1,2-
a]anthracenes, diazoniahexaphene and a partly saturated hydroxyl-substituted diazoniapentaphene. The investigations of these compounds allow to evaluate both the influence of the position of the positive charge and if the extension of ? system may enhance the interaction between DNA base pair. Finally, biological studies are carried out, because their cytotoxic and photocytotoxic activity was never been consider before.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Dall'Acqua, Francesco
Dottorato (corsi e scuole):Ciclo 20 > Scuole per il 20simo ciclo > SCIENZE MOLECOLARI > SCIENZE FARMACEUTICHE
Data di deposito della tesi:2008
Anno di Pubblicazione:2008
Parole chiave (italiano / inglese):DNA, topoisomerasi, spettroscopia, attività biologica, fotonucleasi
Settori scientifico-disciplinari MIUR:Area 03 - Scienze chimiche > CHIM/08 Chimica farmaceutica
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze Farmaceutiche
Codice ID:285
Depositato il:08 Set 2008
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Katzung B.G., Basic and clinical pharmacology. Ed Lange Medical Books, 1998. Cerca con Google

2. Rang H.P., Dale M.M. and Ritter J.M., Pharmacology. Harcourt Health Sciences, 1999. Cerca con Google

3. Tolone G., General oncology. Medical books, 2001. Cerca con Google

4. Maraldi N.M., Zini N., Santi S., Scotlandi K., Serra M. and Baldini N., Pglycoprotein subcellular localization and cell morphotype in MDR1 genetransfected human osteosarcoma cells. Biol. Cell, 1999, 91, 17-28. Cerca con Google

5. Gariboldi M.B., Terni F., Ravizza R., Meschini S., Marra M., Condello M., Arancia G. and Monti E., The nitroxide tempol modulates anthracycline resistance in breast cancer cells. Free Rad. Biol. & Med., 2006, 40, 1409-1418. Cerca con Google

6. Foye W.O., Lemke T.L. and Williams D.A., Principles of medicinal chemistry. Lea & Fabinger Book, 1995. Cerca con Google

7. Hurley L.H., DNA and its associated process as target for cancer therapy. Nature, 2002, 11, 188-200. Cerca con Google

8. Hadfield J.A., Ducki S., Hirst N. and McGrow A.T., Tubulin and microtubules as targets for anticancer drugs. Prog. Cell Cyc. Res., 2003, 5, 309-325. Cerca con Google

9. Jordan M.A. and Wilson L., Microtubules and actin filaments: dynamic targets for cancer chemotherapy. Curr. Op. Cell Biol., 1998, 10, 123-130. Cerca con Google

10. Denny B.J., Whellhouse R.T., Stevens M.F.G., Tsang L.L.H. and Slack J.A., NMR amd molecular modeling investigation of mechanism of action of antitumor drug temozolomide and its interaction with DNA. Biochemistry, 1994, 33, 9045-9051. Cerca con Google

11. Diana P., Barraja P., Lauria A., Montalbano A., Almerico A.M., Dattolo G. and Cirrincione G., Pyrrolo[2,1-d][1,2,3,5]tretrazin-4(3H)-ones, a new class of azolotetrazines with potent antitumor activity. Bioorg. Medic. Chem., 2003, 11, 2371-2380. Cerca con Google

12. Goodman L.S., Wintrobe M.M., Dameshek W., Goodman J.J. and Gilman A., Nitrogen mustard therapy. Use of methyl-bis(b-chloroethylamine hydrochloride) and tris(b-chloroethyl)amine hydrochloride for Hodgkin’ s disease, lymphosarcoma, leukaemia and certain allied and miscellaneous disorders. JAMA, 1946, 132, 126-132. Cerca con Google

13. Muller W. and Crothers D.M., Studies of the binding of actinomycin and related compounds to DNA. J. Mol. Biol., 1968, 35, 251-290. Cerca con Google

14. Zimmer C. and Wahnert U., Non-intercalating DNA-binding ligands: specificity of the interaction and their use as tools in biophysical, biochemical and biological investigations of the genetic material. Prog. Biophys. Mol. Biol., 1986, 47, 31-112. Cerca con Google

15. Thuong N. and Helene C., Sequence specific recognition and modification of double helical DNA by oligonucleotides. Angew. Chem. Int. Ed. Engl., 1993, 32, 666-690. Cerca con Google

16. Han H. and Hurley L.H., G-quadruplex DNA: a potential target for anti-cancer drug design. Trends Pharmacol. Sci., 2000, 21, 136-142. Cerca con Google

17. Sun D et al., Inhibition of human telomerase by a G-quadruplex-interactive compound. J. Med. Chem., 1997, 40, 2113-2116. Cerca con Google

18. Broggini M. and D’ Incalci M., Modulation of transcription factor-DNA interactions by anticancer drugs. Anticancer Drug Des., 1994, 9, 373-387. Cerca con Google

19. Wang J.C., DNA topoisomerases. Annu. Rev. Biochem., 1996, 65, 635-692. 20. Pourquier P. and Pommier Y., Topoisomerase I-mediated DNA damage. Adv. Cancer Res., 2001, 80, 189-216. Cerca con Google

21. Ihmels H., Faulhaber K. and Viola G., Evaluation of the DNA-binding properties of cationic dyes by absorption and emission spectroscopy. Highlights in Bioorg. Chem. Meth. and Appl., Ed. by Carsten Schmuck and Helma Wennemers, 2004. Cerca con Google

22. a) Haq I and Ladbury J., Drug-DNA recognition: energetics and implications for design. J. Mol. Recognit., 2000, 13, 188-197. b) Wemmer D.E. and Dervan P.B., Targeting the minor groove of DNA. Curr. Opin. Struct. Biol., 1997, 7, 355-361. c) Hurley L.H., DNA and associated targets for drug design. J. Med. Chem., 1989, 32, 2027-2033. Cerca con Google

23. Probst C.L. and Perun T.L., Nucleic acid targeted drug design. Ed. Marcell Dekker, New York, 1992. Cerca con Google

24. Demeunynck M., Bailly C. and Wilson W.D., DNA and RNA binders, Ed. Wiley- VCH, Weinheim, 2002. Cerca con Google

25. Wilson W.D., Blackburn G.M. and Gait M.J., Nucleic acids in chemistry and biology. Ed. IRL Press, Oxford, UK, 1996. Cerca con Google

26. Gottesfeld J.M,. Neely L., Trauger J.W., Baird E.E. and Dervan P.B., Regulation of gene expression by small molecules. Nature, 1997, 387, 202-205. Cerca con Google

27. Takahashi T., Tanaka H., Matsuda A., Doi T., Yamada H., Matsumoto T., Sasaki D. and Sugiura Y., DNA cleaving activities of 9-membered masked enediyne analogues possessing DNA intercalator and sugar moieties. Bioorg. Med. Chem. Lett., 1998, 8, 3303-3306. Cerca con Google

28. Odom D.T., Parker C.S. and Barton J.K., Site-specific inhibition of transcription factor binding to DNA by a metallointercalator. Biochemistry, 1999, 38, 5155- 5163. Cerca con Google

29. Wagenknecht H.A., Stemp E.D.and Barton J.K., DNA-Bound peptide radicals generated through DNA-mediated electron transport. J. Am. Chem. Soc., 2000, 39, 5483-5491. Cerca con Google

30. Lerman L.S., Structural considerations in the interaction of DNA and acridines. J. Mol. Biol., 1961, 3, 18-30. Cerca con Google

31. Armstrong R.W., Kurucsev T. and Strauss U.P., The interaction between acridine dyes and deoxyribonucleic acid. J. Am. Chem. Soc., 1970, 92, 3174-3181. Cerca con Google

32. Tuite E. and Norden B., Intercalative interactions of ethidium dyes with triplex structures. Bioorg. Med. Chem., 1995, 3, 701-711. Cerca con Google

33. LePecq J.B. and Paoletti C., A fluorescent complex between ethidium bromide and nucleic acids. Physical-chemical characterization. J. Mol. Biol., 1967, 27, 87-106. Cerca con Google

34. Rye H.S., Yue S., Wemmer D.E., Quesada M.A., Haugland R.P., Mathies R.A. and Glazer A.N., Stable fluorescent complexes of double-stranded DNA with bisintercalating asymmetric cyanine dyes: properties and applications. Nucleic Acids Res., 1992, 20, 2803-2812. Cerca con Google

35. Breslin D.T., Yu C., Ly D. and Schuster G.B., Structural modification changes the DNA binding mode of cation-substituted anthraquinone photonucleases: association by intercalation or minor groove binding determines the DNA cleavage efficiency. Biochemistry, 1997, 36, 10463-10473. Cerca con Google

36. Molina A., Vaquero J.J., Garcia-Navio J.L., de Pascal-Teresa B., Gado F. and Rodrigo M.M., Novel DNA intercalators based on the pyridazino[1’ ,6’ :1,2]pyrido[4,3-b]indol-5-inium system. J. Org. Chem., 1999, 64, 3907-3915. Cerca con Google

37. Ihmels H., Faulhaber K., Sturm C., Bringmann G., Messer K., Gabellini N., Vedaldi D. and Viola G., Acridizinium salts as novel class of DNA-binding and site-selective DNA-photodamaging chromophores. Photochem. Photobiol., 2001, 74, 505-512. Cerca con Google

38. Pilch D.S., Yu C., Makhey D., LaVoie E.J., Srinivasan A.R., Olson W.K., Sauers R.S., Breslauer K.J., Geacintov N.E. and Liu L.F., Minor groove-directed and intercalative ligand-DNA Interactions in the poisoning of human DNA topoisomerase I by protoberberine analogs. Biochemistry, 1997, 36, 12542-12553. Cerca con Google

39. Pjura P.E., Grzeskowiak K. and Dickerson R.E., Binding of Hoechst 33258 to the minor groove of B-DNA. J Mol Biol., 1987, 197, 257-271. Cerca con Google

40. Bailly C. and Chaires J.B., Sequence-specific DNA minor groove binders. Design and synthesis of netropsin and distamycin analogues. Bioconjug. Chem., 1998, 9, 513-538. Cerca con Google

41. Lerman L.S., The structure of the DNA-acridine complex. Proc. Natl. Acad. Sc.i USA., 1963, 49, 94-102. Cerca con Google

42. Wilson W.D., Gough A.N., Doyle J.J. and Davidson M.W., Intercalation with DNA as a possible mechanism of antileukemic action. J. Med. Chem., 1976, 19, 1261-1263. Cerca con Google

43. Viola G., Bressanini M., Gabellini N., Vedaldi D., Dall’Acqua F. and Ihlmes H., Naphtoquinolizinium derivatives as a novel platform for DNA-binding and DNAphotodamaging chromophores. Photochem. Photobiol. Sci., 2002, 1, 882-889. Cerca con Google

44. Viola G., Dall’Acqua F., Gabellini N., Moro S., Vedaldi D. and Ihmels H., Indolo[2,3-b]-quinolizinium bromide: an efficient intercalator with DNAphotodamaging properties. ChemBioChem, 2002, 3, 550-558. Cerca con Google

45. Viola G., Ihmels H., Krauber H., Vedaldi D. and Dall’Acqua F., DNA-binding and DNA-photocleavaging properties of 12a,14a-diazoniapentaphene. ARKIVOC, 2004, 219-230. Cerca con Google

46. Ihmels H., Faulhaber K., Vedaldi D., Dall’Acqua F. and Viola G., Intercalation of organic dye molecules in to double-stranded DNA. Part 2: the annelated quinolizinium ion as a structural motif in DNA intercalators. Photochem. Photobiol., 2005, 81, 1107-1115. Cerca con Google

47. Ihmels H., Otto D., Dall’Acqua F., Faccio A., Moro S. and Viola G., Comparative studies on the DNA-binding properties of linear and angular dibenzoquinolizinium ions. J. Org. Chem., 2006, 71, 8401-8411. Cerca con Google

48. Martinez R. and Chacon-Garcia L., The search of DNA-intercalators as antitumoral drugs: what it worked and what did not work. Curr. Med. Chem., 2005, 12, 127- 151. Cerca con Google

49. Cotter T.G., Lennon S.V., Glynn J.G. and Martin S.J., Cell death via apoptosis and its relationship to growth, development and differentiation of both tumor and normal cells. Anticancer Res., 1990, 10, 1153-1159. Cerca con Google

50. Calabresi P. and Chabner B.A., In Goodman and Gilman’ s The pharmacological basis of therapeutics. 9th ed., Hardman J.G., Goodman Gilman A., Limbird L.E., Eds., Mc. Graw Hill, 1996, 1225-1232. Cerca con Google

51. Solary E., Bertrand R. and Pommier Y., Apoptosis induced by DNAtopoisomerase I and II inhibitors in human leukemic HL-60 cells. Leuk. Lymphoma, 1994, 15, 21- 32. Cerca con Google

52. Watson J.D., and Crick F.H.C., Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature, 1953, 171, 737-738. Cerca con Google

53. Maiti M. and Kumar G.S., Molecular aspects on the interaction of protoberberine, benzophenanthridine, and aristolochia group of alkaloids with nucleic acid structures and biological perspectives. Medic. Res. Rev., 2006. Cerca con Google

54. Blackburn G.M. and Gait N.J., Nucleic acids in chemistry and biology. Oxford: IRL Press, 1990. Cerca con Google

55. Saenger W., Principles of nucleic acids structure. New York: Springer-Verlag, 1984. Cerca con Google

56. Pohl F.M. and Jovin T.M., Salt-induced co-operative conformational change of a synthetic DNA: Equilibrium and kinetic studies with poly (dG-dC). J. Mol. Biol., 1972, 67, 375–396. Cerca con Google

57. Wang A.H., Quigley G.J., Kolpak F.J., Crawford J.L., van Boom J.H., van der Marel G. and Rich A., Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature, 1979, 282, 680–686. Cerca con Google

58. Ivanov V.I., Minchenkova L.E., Schyolkina A.K. and Poletayev A.I., Different conformations of double-stranded nucleic acid in solution as revealed by circular dichroism. Biopolymers, 1973, 12, 89–110. Cerca con Google

59. Wang A.J., Quigley G.J., Kolpak F.J., van der Marel G., van Boom J.H. and Rich A., Left-handed double helical DNA: Variations in the backbone conformation. Science, 1981, 211, 171 176. Cerca con Google

60. Reddy S.Y., Leclerc F. and Karplus M., DNA polymorphism: A comparison of force fields for nucleic acids. Biophys. J., 2003, 84, 1421–1449. Cerca con Google

61. Felsenfeld G., Davies D.R. and Rich A., Formation of a three-stranded polynucleotide molecule. J. Am. Chem. Soc., 1957, 79, 2023–2024. Cerca con Google

62. Feigon J., A new DNA quadruplex. Curr. Biol., 1993, 3, 611–613. Cerca con Google

63. Brown D.M. and Todd A.R., Nucleic acids. Annu. Rev. Biochem., 1955, 24, 311- 338. Cerca con Google

64. Chargaff E. Some recent studies on the composition and structure of nucleic acids. J. Cell. Physiol., 1951, 38, 41-59. Cerca con Google

65. Foloppe N. and MacKerell A.D.J., Intrinsic conformational properties of deoxyribonucleosides: implicated role for cytosine in the equilibrium among the A, B, and Z forms of DNA. Biophys. J., 1999, 76, 3206-3218. Cerca con Google

66. Behe M. and Felsenfeld G., Effects of methylation on a synthetic polynucleotide: The B–Z transition in poly(dG-m5dC).poly(dG-m5dC). Proc. Natl. Acad. Sci. USA., 1981, 78, 1619 1623. Cerca con Google

67. Rich A., Nordheim A. and Wang A.H., The chemistry and biology of left-handed Z-DNA. Annu. Rev. Biochem., 1984, 53, 791–846. Cerca con Google

68. Jovin T.M., Soumpasis D.M. and McIntosh L.P., The transition between B-DNA and Z-DNA. Annu. Rev. Phys. Chem., 1987, 38, 521–558. Cerca con Google

69. Jagger J., Introduction to research in ultraviolet photobiology. In Prentice-Hall, Englewood Cliffs, 1967. Cerca con Google

70. Coohill T.P., Action spectroscopy: ultraviolet radiation. In Handbook of organic photochemistry and photobiology, CRC Press, Inc., 1995. Cerca con Google

71. Sutherland J.C. and Griffin K.P., Absorption spectrum of DNA for wavelength greater than 300 nm. Radiat. Res., 1981, 41, 339-348. Cerca con Google

72. Coohill T.P., Peak M.J. and Peak J.G., The effects of ultraviolet wavelength present in sunlight on human cells in vitro. Photochem. Photobiol., 1987, 46, 1043- 1051. Cerca con Google

73. Painter R.B., The role of DNA damage and repair in cell killing induced by ionizing radiation. In Radiation Biology in Cancer Research, Ed. Raven Press, 1980. Cerca con Google

74. Peak M.J., Peak J.G. and Carnes B.A., Induction of direct and indirect single-strand breaks in human cell DNA by far- and near-ultraviolet radiations: action spectrum and mechanism. Photochem. Photobiol.,1987, 45, 381-390. Cerca con Google

75. Peak M.J., Peak J.G. and Jones C.A., Different (direct and indirect) mechanism for the induction of DNA-protein crosslinks in human cells by far- and near-ultraviolet radiation (290 and 405 nm). Photochem. Photobiol., 1985, 42, 141-149. Cerca con Google

76. Peak J.G., Peak M.J. and MacCoss M., DNA breakage caused by 334-nm ultraviolet light is enhanced by naturally occurring nucleic acid components and nucleotide coenzymes. Photochem. Photobiol., 1984, 39, 713-721. Cerca con Google

77. Parrish J.A., Fitzpatrick T.B., Tanembaum L. and Pathak M.A., Photochemotherapy of psoriasis with oral methoxalen and long wave ultraviolet light. New Eng. J. Med., 1974, 291, 1207-1220. Cerca con Google

78. Kochevar I.E., Basic concepts in photobiology. Photoimmunology, Ed. Plenum Press, 1983. Cerca con Google

79. Pouget J.P., Douki T., Richard M.J. and Cadet J., DNA damage induced in cells by gamma and UV-A radiation as measured by HPLC/GC-MS and HPLC-EC and Comet assay. Chem. Res. Toxicol., 2000, 13, 541-549. Cerca con Google

80. Misiaszek R., Crean C., Joffe A., Geacintov N.E. and Shafirovich V., Oxidative DNA damage associated with combination of guanine and superoxide radicals and repair mechanism via radical trapping. J. Biol. Chem., 2004, 279, 32106-32115. Cerca con Google

81. Hiraku Y., Ito K., Hirakawa K. and Kawanishi S., Photosensitized DNA damage and its protection via a novel mechanism. Photochem. Photobiol., 2007, 83, 205- 212. Cerca con Google

82. Ravanat J.L., Di Mascio P., Martinez G.R., Medeiros M.H. and Cadet J., Singlet oxygen induces oxidation of cellular DNA. J. Biol. Chem., 2000, 275, 40601- 40604. Cerca con Google

83. Celander D.W. and Cech T.R., Iron(II)-ethylenediaminetetraacetic acid catalyzed cleavage of RNA and DNA oligonucleotides: similar reactivity toward single- and double-stranded forms. Biochemistry, 1990, 29, 1355-1361. Cerca con Google

84. Yamamoto K. and Kawanishi S., Hydroxyl free radical is not the main active species in site-specific DNA damage induced by copper(II) ion and hydrogen peroxide. J. Biol. Chem., 1989, 264, 15435-15440. Cerca con Google

85. Vargas F., Rivas C. and Drosos J.C., Clinical application of phototherapy. In Advances in biomedical applications of photochemistry & photobiology, 2002. Cerca con Google

86. Krumann J. and Morita A., Mechanism of ultraviolet (UV)B and UVA phototherapy. J. Invest. Dermatol., 1999, 4, 70-76. Cerca con Google

87. Beijersbergen van Henegouwen G.M.J., Medicinal photochemistry: phototoxic and phototherapeutic aspects of drugs. In Advances in drug research, Academic Press Limited, 1997. Cerca con Google

88. Dall’Acqua F. and Rodighiero G., Biological and medicinal aspects of furocoumarins (psoralens and angelicins). In Primary photo-processes in biological medicine, Ed. Plenum Press, 1985. Cerca con Google

89. Parrish J.A., Stern R.S., Pathak M.A. and Fitzpatrick T.B., Photochemotherapy of skin diseases. In The science of photomedicine, Ed. Plenum Press, 1982. Cerca con Google

90. Gasparro F.P., Psoralen Photochemistry. In Extracorporeal photochemotherapy: clinical spects and the molecular basis for efficacy, Ed. CRC Press, 1994. Cerca con Google

91. Chang T.Y., Heinrich L.A., Schultz M.D., Reizner G.T., Kumm R.C. and Cripps D.J., PUVA and skin cancer. A historical cohort study on 492 patients. J. Am. Acad. Dermatol., 1992, 26, 173-177. Cerca con Google

92. Stern R.S. and Laird S., The carcinogenic risk of treatment for severe psoriasis. Cancer, 1994, 73, 2759-2764. Cerca con Google

93. Friedman P.S., Effects of ultraviolet radiation on immune responses of skin. Abstracts of book of first European congress of photobiology, 1986. Cerca con Google

94. Moor A.C. and Gasparro F.P., Biochemical aspects of psoralen photochemotherapy. Clin. Dermatol., 1996, 14, 353-365. Cerca con Google

95. Edelson R., Berger C., Gasparro F.P., Jegasothy B., Heald P., Wintroub B., Vonderheid E., Knobler R., Wolff K., Plewig G., McKiernan G., Christiansen I., Oster M., Honigsmann H., Wilford H., Kokoschka E., Rehle T., Perez M., Stingl G. and Laroche L., Treatment of cutaneous T-cell lymphoma by extracorporeal photochemotherapy. New Engl. J. Med., 1987, 316, 297-303. Cerca con Google

96. Heald P.W. and Edelson R.L., Photopheresis for T-cell mediated diseases. Adv. Dermatol., 1989, 3, 25-40. Cerca con Google

97. Edelson R.L., Photopheresis: present and future aspects. J. Photochem. Photobiol. B: Biol., 1991, 10, 165-174. Cerca con Google

98. Heald P., Rook A., Perez M., Wintroub B., Knobler R., Jegasothy B., Gasparro F.P., Berger C. and Edelson R., Treatment of erythrodermic cutaneous T-cell lymphoma with extracorporeal photochemotherapy. J. Am. Acad. Dermatol., 1992, 27, 427-433. Cerca con Google

99. Jori G., Molecular and cellular mechanisms in photodmedicine: porphyrins in cancer treatment. In Primary photo-processes in biology and medicine, Ed Plenum Press, 1985. Cerca con Google

100. Moan J., Porphyrin photosensitization and phototherapy. Photochem. Photobiol., 1986, 43, 681-690. Cerca con Google

101. Stables G.I. and Ash D.V., Antitumour treatment: photodynamic therapy. Cancer Treat. Rev., 1989, 21, 311-323. Cerca con Google

102. Lockshin R.A. and Zakeri Z., Programmed cell death and apoptosis: origin of the theory. Nat. Rev. Cell. Biol., 2001, 2, 545-550. Cerca con Google

103. Kerr J.F., Wyllie A.H. and Currie A.R., Apoptosis is a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer, 1972, 26, 239-257. Cerca con Google

104. Leist M. and Jaattela M., Four deaths and a funeral: from caspases to alternative mechanisms. Nat. Rev. Mol. Cell Biol., 2001, 2, 589-598. Cerca con Google

105. Meier P., Finch A. and Evan G., Apoptosis in development. Nature, 2000, 407, 796-801. Cerca con Google

106. Fadeel B., Gleiss B., Hogstrand K., Chandra J., Wiedmer T., Sims P.J., Henter J.I., Orrenius S. and Samali A., Phosphatidylserine exposure during apoptosis is a celltype- specific event and does not correlate with plasma membrane phospholipid scramblase expression. Biochem. Biophys. Res. Commun., 1999, 266, 504-511. Cerca con Google

107. Saraste A. and Pulkki K., Morphologic and biochemical hallmarks of apoptosis. Cardiovasc. Res., 2000, 45, 528-537. Cerca con Google

108. Ishizaki Y., Cheng L., Mudge A.W. and Raff M.C., Programmed cell death by default in embryonic cells, fibroblasts, and cancer cells. Mol. Biol. Cell., 1995, 6, 1443-1458. Cerca con Google

109. Weil M., Jacobson M.D., Coles H.S., Davies T.J., Gardner R.L., Raff K.D. and Raff M.C., Constitutive expression of the machinery for programmed cell death. J. Cell. Biol., 1996, 133, 1053-1059. Cerca con Google

110. Bratton S.B., MacFarlane M., Cain K. and Cohen G.M., Protein complexes activate distinct caspase cascades in death receptor and stress-induced apoptosis. Exp. Cell. Res., 2000, 256, 27-33. Cerca con Google

111. Denault J.B. and Salvesen G.S., Caspases: keys in the ignition of cell death. Chem. Rev., 2002, 102, 4489-4500. Cerca con Google

112. Earnshaw W.C., Martins L.M. and Kaufmann S.H., Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu. Rev. Biochem., 1999, 68, 383-424. Cerca con Google

113. Naismith J.H. and Sprang S.R., Modularity in the TNF-receptor family. Trends Biochem. Sci., 1998, 23, 74-79. Cerca con Google

114. Scaffidi C., Fulda S., Srinivasan A., Friesen C., Li F., Tomaselli K.J., Debatin K.M., Krammer P.H. and Peter M.E., Two CD95 (APO-1/Fas) signaling pathways. Embo J., 1998, 17, 1675-1687. Cerca con Google

115. Luo X., Budihardjo I., Zou H., Slaughter C. and Wang X., Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell, 1998, 94, 481-490. Cerca con Google

116. Slee E.A., Harte M.T., Kluck R.M., Wolf B.B., Casiano C,A,, Newmeyer D.D., Wang H.G., Reed J.C., Nicholson D.W., Alnemri E.S., Green D.R. and Martin S.J., Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. J. Cell. Biol., 1999, 144, 281-292. Cerca con Google

117. Salvesen G.S. and Renatus M., Apoptosome: the seven-spoked death machine. Dev. Cell., 2002, 2, 256-257. Cerca con Google

118. Hengartner M.O., The biochemistry of apoptosis. Nature, 2000, 407, 770-776. Cerca con Google

119. Wang X., The expanding role of mitochondria in apoptosis. Genes Dev., 2001, 15, 2922-2933. Cerca con Google

120. Bernardi P., Scorrano L., Colonna R., Petronilli V. and Di Lisa F., Mitochondria and cell death. Mechanistic aspects and methodological issues. Eur. J. Biochem., 1999, 264, 687-701. Cerca con Google

121. Kroemer G. and Reed J.C., Mitochondrial control of cell death. Nat. Med., 2000, 6, 513-519. Cerca con Google

122. Beutner G., Ruck A., Riede B. and Brdiczka D., Complexes between porin, hexokinase, mitochondrial creatine kinase and adenylate translocator display properties of the permeability transition pore. Implication for regulation of permeability transition by the kinases. Biochim. Biophys. Acta, 1998, 1368, 7-18. Cerca con Google

123. Reed J.C., Apoptosis-based therapies. Nat. Rev. Drug Discov., 2002, 1, 111-121. Cerca con Google

124. Wang X.W., Role of p53 and apoptosis in carcinogenesis. Anticancer Res., 1999, 19, 4759-4771. Cerca con Google

125. Wolfe L.S., Biology of the cell. Ed. Wadsworth Publishing Company, Inc., 1981. Cerca con Google

126. Alberts B., Johnson A., Lewis J., Raff M., Roberts K. and Walter P., Molecular Biology of the Cell. Garland Science: New York, 2003. Cerca con Google

127. Elledge S.J., Cell Cycle Checkpoints: Preventing an Identity Crisis. Science, 1996, 274, 1664-1672. Cerca con Google

128. Morgan D.O., The Cell Cycle: Principles of Control. New Science Press, 2007. Cerca con Google

129. Osheroff N., DNA topoisomerases. Biochim. Biophys. Acta, 1998, 1400, 1-2. Cerca con Google

130. Palumbo M., Gatto B., Moro S., Sissi C. and Zagotto G., Sequenze-specific interactions of drugs interfering with the topoisomerase-DNA cleavage complex. Biochim. Biophys. Acta, 2002, 1587, 145-154. Cerca con Google

131. Pommier Y., Pourquier P., Fan Y. and Strumberg D., Mechanism of action of eukaryotic DNA topoisomerase I and drugs targeted to the enzyme. Biochim. Biophys. Acta, 1998, 1400, 83-106. Cerca con Google

132. D’Arpa P. and Liu L.F., Topoisomerase-targeting antitumor drugs. Biochim. Biophys. Acta, 1989, 989, 163-177. Cerca con Google

133. Nitiss J.L., Investigating the biological functions of DNA topoisomerases in eukaryotic cells. Biochim. Biophys. Acta, 1998, 1400, 63-81. Cerca con Google

134. Berger J.M., Structure of DNA topoisomerases. Biochim. Biophys. Acta, 1998, 1400, 3-18. Cerca con Google

135. Wang J.C., DNA topoisomerases. Annu. Rev. Biochem., 1996, 65, 635-692. Cerca con Google

136. Kaufmann S.H., Cell death induced by topoisomerase-targeted drugs: more questions than answers. Biochim. Biophys. Acta, 1998, 1400, 195-211. Cerca con Google

137. Pommier Y., Pourquier P., Fan Y. and Strumberg D., Mechanism of action of eukaryotic DNA topoisomerase I and drugs targeted to the enzyme. Biochim. Biophys. Acta, 1998, 1400, 83-106. Cerca con Google

138. Pourquier P. and Pommier Y., Topoisomerase I-mediated DNA damage. Adv. Cancer Res., 2001, 80, 189, 216. Cerca con Google

139. Bailly C., Topoisomerase I poisons and suppressors as anticancer drugs. Curr. Med. Chem., 2000, 7, 39-58. Cerca con Google

140. Marco E., Laine W., Tardy C., Lansiaux A., Iwao M., Ishibashi F., Bailly C. and Gago F., Molecular determinants of topoisomerase I poisoning by Lamellarins: comparison with camptothecin and structure-activity relationship. J. Med. Chem., 2005, 48, 3796-3807. Cerca con Google

141. Wang L.K., Rogers B.D. and Hecht S.M., Inhibition of topoisomerase I function by coralyne and 5,6-dyhyrocoralyne. Chem. Res. Toxicol., 1996, 9, 75-83. Cerca con Google

142. McCledon A.K. and Osheroff N., DNA toposiomerase II, genotoxicity, and cancer. Mut. Res., 2007, 623, 83-97. Cerca con Google

143. Burden D.A. and Osheroff N., Mechanism of action of eukaryotic topoisomerase II and drugs targeted to the enzyme. Biochim. Biophys. Acta, 1998, 1400, 139-154. Cerca con Google

144. Baldwin E.L. and Osheroff N., Etoposide, topoisomerase II and cancer. Curr. Med. Chem., 2005, 5, 363-372. Cerca con Google

145. Fortune J.M. and Osheroff N., Merbarone inhibits the catalytic activity of human topoisomerase IIa by blocking DNA cleavage. J. Biol. Chem., 1998, 273, 17643- 17650. Cerca con Google

146. Felix C.A., Kolaris C.P. and Osheroff N., Topoisomerase II and the etiology of chromosomal translocations. DNA Repair, 2006, 5, 1093-1108. Cerca con Google

147. Dassonneville L., Wattez N., baldeyrou B., Mahieu C., Lansiaux A., Banaigs B., Bonnard I. and Bailly C., Inhibition of topoisomerase II by the marine alkaloid ascididemin and induction of apoptosis in leukaemia cells. Biochem. Phamacol., 2000, 60, 527-537. Cerca con Google

148. Norden B. and Kurucsev T., Analysing DNA complexes by circular and linear dichroism. J. Mol. Recognit., 1994, 7, 141-156. Cerca con Google

149. Lyng R., Hard T. and Norden B., Induced circular dichroism of DNA intercalators: electric dipole allowed transitions. Biopolymers, 1987, 26, 1327-1345. Cerca con Google

150. Norden B., Kubista M. and Kurucsev T., Linear dichroism spectroscopy of nucleic acids. Q. Rev. Biophys., 1992, 25, 51-170. Cerca con Google

151. Scatchard G., The attraction of proteins for small molecules and ions. Ann. N. Y. Acad. Sci., 1949, 51, 660-672. Cerca con Google

152. McGhee D. and vonHippelk P.H., Theoretical aspects of DNA-protein interactions: co-operative and non-co-operative binding of large ligands to a one-dimentional homogeneous lattice. J. Mol. Biol., 1974, 86, 469-489. Cerca con Google

153. Bailly C., Tardy C., Wang L., Armitage B., Hopkins K., Kumar A., Schuster G.B., Boykin D.W. and Wilson W.D., Recognition of ATGA sequences by the unfused aromatic dication DB293 forming stacked dimmers in the DNA minor groove. Cerca con Google

Biochemistry, 2001, 40, 9770-9779. Cerca con Google

154. Crow S.D.G., Bailly C., Garbay-Jaureguiberry C., Roques B., Ramsay-Shaw B. and Waring M.J., DNA sequence recognition by the antitumor drug ditercalium.Biochemistry, 2002, 41, 8672-8682. Cerca con Google

155. Martin C., Ellis T., McGurk C.J., Jenkins T.C., Hartley J.A., Waring M.J. and Thurston D.E., Sequence-selective interaction of the minor-groove interstrand cross-linking agent SJG-136 with naked and cellular DNA: footprinting and enzyme inhibition studies. Biochemistry, 2005, 4, 4135-4147. Cerca con Google

156. Maxam A.M. and Gilbert W., Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol., 1980, 65, 499-560. Cerca con Google

157. Pflaum M., Haring M., Hegler J., Raudiger H.; Use of repair endonucleases to characterize DNA damage induced by reactive oxygen species in cellular and cell – free systems. Toxicol. Lett., 1993, 67, 57-72. Cerca con Google

158. Cadet J., Bourdat A.G., D’Ham C., Duarte V., Gasparutto D., Romieu A. and Ravanat J.L., Oxidative base damage to DNA: specificity of base excision repair enzymes. Mutation Res., 2000, 462, 121-128. Cerca con Google

159. Mosmann T., Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxic assay. J. Immunol. Meth., 1983, 65, 55-63. Cerca con Google

160. Potapenko A.Y., Mechanisms of photodynamic effects of furocoumarins, Photochem. Photobiol., 1991, 9, 1-33. Cerca con Google

161. Pathak M.A., Fitzpatrick T.B., The evolution of photochemotherapy with psoralens and UVA ( PUVA ): 2000 BC to 1992 AD, Photochem. Photobiol., 1992, 14, 3-22. Cerca con Google

162. Girotti A.W., Photodynamic lipid peroxidation in biological systems. Photochem. Photobiol., 1990, 51, 497-509. Cerca con Google

163. Morlière P., Moysan A., Santus R., Hüppe G., Mazière J., Dubertret L., UVAindeced lipid peroxidation in cultured human fibroblasts. Biochem. Biophys. Acta, 1991, 1084, 261-268. Cerca con Google

164. Kessel D., Luo Y., Mathieu P. and Reiners J.J.Jr., Determinants of the apoptotic response to lysosomal photodamage. Photochem. Photobiol., 2000, 71, 196-200. Cerca con Google

165. Vermes I., Haanen C., Steffens-Nakken H. and Reutelingsperger C. A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J. Immun. Method., 1995, 184, 39-51. Cerca con Google

166. Kluza J., Lansiaux A., Wattez N., Hildebrand M.P., Lèonce S., Pierrè A., Hickman J.A. and Bailly C. Induction of apoptosis in HL-60 leukemia and b-16 melanoma cells by the acronycine derivative S23906-1. Biochem. Pharmacol., 2002, 63, 1443-1452. Cerca con Google

167. Verhoven B., Schlegel R.A. and Williamson P., Mechanisms of phosphatidylserine exposure, a phagocyte recognition signal, on apoptotic T lymphocytes. J. Exp.Med., 1995, 182, 1597-1601. Cerca con Google

168. Salvioli S., Ardizzoni A., Franceschi C and Cossarizza A. JC-1, but not DiOC6(3) or rhodamine 123, is a reliable fluorescent probe to assess ?? changes in intact cells: implications for studies on mitochondrial functionality during apoptosis. FEBS Letters, 1997, 411, 77-82. Cerca con Google

169. Cossarizza A., Baccarani Contri M., Kalashnikova G. and Franceschi C., A new method for the cytofluorimetric analysis of mitochondria membrane potential using the J-aggregate forming cation 5,5’ ,6,6’ -tetrachloro-1,1’ ,3,3’ - tetraethylbenzimidazolcarbocyanine iodide (JC-1). Biochem. Biophys. Res. Comun., 1993, 197, 40-45. Cerca con Google

170. Thornberry N.A. and Lazebnik Y., Caspases: enemies within. Science, 1998, 281, 1312-1316. Cerca con Google

171. Kohler C., Orrenius S. and Zhivotovsky B. Evaluation of caspase activity in apoptotic cells. J. Immunol. Meth., 2002, 265, 97-110. Cerca con Google

172. Fabbri F., Carloni S., Brigliadori G., Zoli W., Lapalombella R. and Marini M. Sequential events of apoptosis involving docetaxel, a microtubule-interfering agent: a cytometric study. BMC Cell Biol., 2006, 7:6. Cerca con Google

173. Wada A. and Kozawa S., Instrument for studies of differential flow dichroism of polymer solutions. J. Polym. Sci.: Part A, 1964, 2, 853-864. Cerca con Google

174. Brown T., Taherbhai Z., Sexton J., Sutterfied A., Turlington M., Jones J., Stallings L., Stewart M., Buchnueller K., Mackay H., O’Hare C., Kluza J., Nguyen B., Wilson D., Lee M. And Hartley J.A. Synthesis and biophysical evaluation of minor-groove binding C-terminus modified pyrrole and imidazole triamide analogs of distamycin. Bioorg. Med. Chem., 2007, 15, 474-483. Cerca con Google

175. Ciulla T.A., Van Camp J.R., Rosenfeld E., Kochevar I.E., Photosensitization of single-strand breaks in pBR322 DNA by rose Bengal. Photochem. and Photobiol., 1989, 49, 293-298. Cerca con Google

176. Peterson G.L., A simplification of the protein assay method of Lowry et al. which is more generally applicable. Analyt. Biochem., 1977, 83, 346-356. Cerca con Google

177. Lansiaux A., Tanious F., Mishal Z., Dassonneville L., Kumar A., Stephens C.E., Hu Q., Wilson W.D., Boykin D.W. and and Bailly C. Distribution of furamidine analogues in tumor cells: targeting of the nucleus or mitochondria depending on the amidine substitution. Cancer Res. , 2002, 62, 7219–7229. Cerca con Google

178. Bradford M.M., A rapid and sensitive method for the quantification of microgram quantities of protein-dye binding. Anal. Biochem., 1976, 72, 248-254. Cerca con Google

179. Bridwell D.J.A., Finlay G.J. and Baguley B.C., Mechanism of cytotoxicity of N-[2- (dimethylamino)ethyl] acridine-4-carboxamide and of its 7-chloro derivative: the roles of topoisomerases I and II. Cancer Chemother. Pharmacol., 1999, 43, 302- 308. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record