Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Salvador, Alessia (2008) Investigation about the mechanism of action of new antiproliferative compounds. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
Documento PDF
10Mb

Abstract (english)

My research activity deals with the evaluation of the mechanism of action of new compounds with potential anticancer action. I studied molecules that demonstrated their antiproliferative activity without or after UV-A irradiation (photochemotherapics).

EVALUATION OF NEW POTENTIAL ANTICANCER AGENTS:
Quinoxalines and structure-related quinoxalinones represent an important class of molecules with antiproliferative activity. A series of new isoindolo[2,1-a]quinoxalin-6-ones derivatives was synthesized in Palermo University (Dipartimento Farmaco-Chimico, Tossicologico and Biologico) and the mechanism of action of the most active compound, ISQ3 , was evaluated. In fact, ISQ3 showed a very interesting antineoplastic activity reaching nanomolar IC50 values in many human tumor cell lines.
Cell death mode was checked through flow cytometry, searching for such typical apoptotic features as the loss of plasmatic membrane asymmetry after the exposure of phospholipids. This translocation is needed for the recognition of apoptotic cells by macrophages. Potential modifications in cell cycle were examined after the treatment with ISQ3. Then, the involvement of mitochondria in cell death was studied searching signals of a possible mitochondrial dysfunction. We started from the compound characteristics to find potential cellular targets.

EVALUATION OF NEW POTENTIAL PHOTOCHEMOTHERAPIC AGENTS:
PUVA therapy combines the action of psoralens with UV-A radiation for the cure of dermatological diseases with a hyperproliferative/ autoimmune character, for instance psoriasis, vitiligo and mycosis fungoides. This treatment presents some long-term adverse effects, such as mutagenesis and increased onset of cutaneous tumors, as a consequence of the formation of cross-links with DNA. Thus, there is an enhanced research of new derivatives with the same potency but devoid of the capability to induce DNA cross-links. In particular, the photochemical and photobiological properties of new angelicin, or angular furocoumarin, analogues, in which both oxygens were substituted with other heteroatoms, were studied. In fact, the synthesis of thiopyrano[2,3-e]indol-2-ones (L series) and pyrrolo[3,4-h]quinolin-2-ones (BV series) was conducted in Palermo University because the incapability of inducing DNA cross-links for geometry problems was supposed. Thus, DNA binding and photodamage properties, antiproliferative and phototoxic activity, the mechanism of cell death were evaluated for the most active compounds.


Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Vedaldi, Daniela
Ph.D. course:Ciclo 20 > Scuole per il 20simo ciclo > SCIENZE MOLECOLARI > SCIENZE FARMACEUTICHE
Data di deposito della tesi:2008
Anno di Pubblicazione:2008
Key Words:cancro, apoptosi, agenti fotochemioterapici
Settori scientifico-disciplinari MIUR:Area 03 - Scienze chimiche > CHIM/08 Chimica farmaceutica
Struttura di riferimento:Dipartimenti > pre 2012 - Dipartimento di Scienze Farmaceutiche
Codice ID:286
Depositato il:10 Oct 2008
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. D Hanahan, R.A. Weinberg, The hallmarks of cancer, Cell, 100 (2000), pp.57-70. Cerca con Google

2. Cancer, Fact Sheet N°297 (2006), World Health Organization, Geneva, Switzerland (http: //www.who.int/mediacentre/fatcsheets/fs297/en/print.html). Vai! Cerca con Google

3. S.L. Wolfe, Biologia molecolare e cellulare, (1994) ed. EdiSES Napoli Italy, pp. 1006-1048. Cerca con Google

4. L.A. Mitscher, Antibiotics and antimicrobial agents, in “Foye’s principle of medicinal chemistry” (2002) D.A. Williams, T.L. Lemke, ed. Lippincott Williams & Wilkins, pp. 819-864. Cerca con Google

5. V Spataro, G Bonadonna, Principi di distruzione e resistenza cellulare, in “Medicina Oncologica” (2003), ed. Masson Milano Italy, pp. 429-448 . Cerca con Google

6. S Drukman, M Kavallaris, Microtubule alterations and resistance to tubulin-binding agents, Intern. J. Oncol., 21 (2002), pp. 621-628. Cerca con Google

7. D.S. Lawrence, J.E. Copper, C.D. Smith, Structure-activity studies of substituted quinoxalinones as multiple-drug-resistance antagonists, J. Med. Chem., 44 (2001), pp. 594-601. Cerca con Google

8. E.D. Israels, L.G. Israels, The cell cycle, Oncologist, 5 (2000), pp. 510-513. Cerca con Google

9. M Dorée, S Galas, The cyclin-dependent protein kinases and the control of cell division, FASEB J., 8 (1994), pp. 1114-1121. Cerca con Google

10. L Gianni, C Sessa, G Capri, G Grasselli, G Bianchi, G Vitali, Farmaci chemioterapici, in Medicina Oncologica (2003), Ed. Masson Milano Italy, pp. 583- 676. Cerca con Google

11. P Callery, P Gannet, Cancer and cancer chemotherapy, in “Foye’s principles of medicinal chemistry”(2002), D.A. Williams, T.L. Lemke, ed. Lippincott Williams & Wilkins, pp. 924-951. Cerca con Google

12. M.R. Middleton, G.P. Margison, Improvement of chemotherapy efficacy by inactivation of a DNA-repair pathway, Lancet Oncol., 4 (2003), pp. 37-44. Cerca con Google

13. J.M. Berger, Structure of DNA topoisomerases, Biochim. Biophys. Acta, 1400 (1998), pp. 3-18. Cerca con Google

14. A.K McClendon, N Osheroff, DNA topoisomerase II, genotoxicity, and cancer, Mut.Res., 623 (2007), pp. 83-97. Cerca con Google

15. N Galjard, F Perez, A plus-end raft to control microtubule dynamics and function, Curr. Opin. Cell Biol., 15 (2003), pp. 48-53. Cerca con Google

16. A Jordan, J.A. Hadfield, N.J. Lawrence, A.T. McGown, Tubulin as a target for anticancer drugs: agents which interact with the mitotic spindle, Inc. Med. Res. Rev., 18 (1998), pp. 259-296. Cerca con Google

17. J Zhou, P Giannakakou, Targeting microtubules for cancer chemotherapy, Curr. Med. Chem – Anti-Cancer Agents, 5 (2005), pp. 65-71. Cerca con Google

18. C Sawyers, Targeted cancer therapy, Nature, 432 (2004), pp. 294-297. Cerca con Google

19. P Cohen, Protein kinases- the major drug target of the twenty-first century? Nat. Rev., 1 (2002), pp. 309-316. Cerca con Google

20. U Ziegler, P Groscurth, Morphological features of cell death, News Physiol. Sci., 19 (2004), pp. 124-128. Cerca con Google

21. Z Darzynkiewicz, G Juan, X Li, W Gorczyca, T Murakami, F Traganos, Cytometry in cell necrobiology: analysis of apoptosis and accidental cell death (necrosis), Cytometry, 21 (1997), pp. 1-20. Cerca con Google

22. L.G. Israels, E.D. Israels, Apoptosis, Oncologist, 4 (1999), pp. 332-339. Cerca con Google

23. F Oberhammer, J.W Wilson, C Dive, I Morris, J.A. Hickman, A.E. Wakeling, R.P. Walker, M Sikorska, Apoptotic death in epithelial cells: cleavage of DNA to 300 and/or 50 kb fragments prior to or in the absence of internucleosomal fragmentation, EMBO J., 12 (1993), pp. 3679-3684. Cerca con Google

24. K Vermeulen, D.R. Van Bockstaele, Z.N. Berneman, Apoptosis: mechanism and relevance in cancer, Ann. Hematol., 84 (2005), pp. 627-639. Cerca con Google

25. K.F. Ferri, G Kroemer, Organelle-specific initiation of cell death pathways, Nat. Cell Biol., 3 (2001), pp. E255-E263. Cerca con Google

26. N Demaurex, C Distelhorst, Apoptosis -the calcium connection, Science, 300 (2003), pp. 65-67. Cerca con Google

27. B Verhoven, R.A. Schlegel, P Williamson, Mechanisms of phosphatidylserine exposure, a phagocyte recognition signal, on apoptotic T lymphocytes, J. Exp. Med., 182 (1995), pp. 1597-1601. Cerca con Google

28. J Savill, V Fadok, Corpse clearance defines the meaning of cell death, Nature, 407 (2000), pp. 784-789. Cerca con Google

29. N.A. Thornberry, Y Lazebnik, Caspase: enemies within, Science, 281 (1998), pp.1312-1316. Cerca con Google

30. C Köhler, S Orrenius, B Zhivotovsky, Evaluation of caspase activity in apoptotic cells, J. Immunol. Meth., 265 (2002), pp. 97-110. Cerca con Google

31. K.M. Boatright, G.S. Salvesen, Mechanisms of caspase activation, Curr. Opin. Cell Biol., 15 (2003), pp. 725-731. Cerca con Google

32. G Denecker, D Vercammen, W Declercq, P Vandenabeele, Apoptotic and necrotic cell death domain receptors, Cell. Mol. Life Sci., 58 (2001), pp. 356-370. Cerca con Google

33. J.A. Parrish, T.B. Fitzpatrick, M.A. Pathak, L. Tanenbaum, Photochemotherapy of psoriasis with oral methoxsalen and longwave ultraviolet light, N. Engl. J. Med., 291 (1974), pp. 1207-1211. Cerca con Google

34. T.P. Coohill, Action spectroscopy: ultraviolet radiation, in “CRC Handbook of organic photochemistry and photobiology” (1995) ed. Horspool-Song, pp 1267- 1275. Cerca con Google

35. M. Weichenthal, T. Schwarz, Phototherapy: how does UV work?, Photodermatol. hotoimmunol. photomed., 21 (2005), pp. 260-266. Cerca con Google

36. J.C. Simon, D. Pfieger, E. Schöpf, Recent advances in phototherapy, Eur. J. Dermatol. 10 (2000), pp. 642-645. Cerca con Google

37. D Dolmans, D Fukumura, R.K. Jain, Photodynamic therapy for cancer, Nat. Rev. Cancer, 3 (2003), pp. 380-387. Cerca con Google

38. F Dall’Acqua, G Viola, D Vedaldi, Cellular and molecular target of psoralen, in “CRC Handbook of Organic Photochemistry and Photobiology” (2004) W. M. Hoorspool, F Lenci, ed. CRC Press, pp. 1–17. Cerca con Google

39. A. Madhukar, M.A. Pathak, T.B. Fitzpatrick, The evolution of photochemotherapy with psoralens and UV-A (PUVA): 2000 BC to 1992 AD, J. Photochem. Photobiol. B:Biol., 14 (1992), pp. 3-22. Cerca con Google

40. D Bethea, B Fullmer, S Syed, G Seltzer, J Tiano, C Rischko, L Gillespie, D Brown, F.P. Gasparro, Psoralen photobiology and photochemoterapy: 50 years of science and medicine, J.Dermatol. Sci., 19 (1999), pp. 78-88. Cerca con Google

41. R. Edelson, C Berger, F Gasparro, C.B. Jegasothy, P Heald, B Wintroub, E Vonderheid, R Knobler, K Wolff, G Plewig, G McKiernan, I Christiansen, M Oster, H Honigsmann, H Wilford, E Koroska, T Rehle, G Stingl, L Laroche, Treatment of T-cell lymphoma by extracorporeal photochemotherapy. Preliminary results, N. Engl. J. Med., 316 (1987), pp. 297-303. Cerca con Google

42. A Oliven, Y Shechter, Extracorporeal photopheresis: a review, Blood Rev., 15 (2001), pp. 103-108. Cerca con Google

43. J Bladon, P.C. Taylor, Extracorporeal photopheresis: A focus on apoptosis and cytokines, J. Dermatol. Sci., 43 (2006), pp. 85-94. Cerca con Google

44. L Lin, G.P. Wiesehahn, P. A. Morel, L Corash, Use of 8-methoxypsoralen and longwavelength ultraviolet radiation for decontamination of platelet concentrates, Blood, 74 (1989), pp. 517-525. Cerca con Google

45. J Llano, J Raber, J.A. Eriksson, Theoretical study of phototoxic reactions of psoralens, J. Photochem Photobiol A:chem 154 (2003), pp. 235–243. Cerca con Google

46. SC Shim, Photochemistry of skin-sensitizing psoralens, in “CRC Handbook of organic photochemistry and photobiology” (1995) ed. Horspool-Song, pp. 1347– 1356. Cerca con Google

47. W.W. Mantulin, P.S. Song, Excited states of skin-sensitizing coumarins and psoralens. Spectroscopic studies, J. Am. Chem. Soc. 95 (1973), pp. 5122–5129. Cerca con Google

48. F Dall’Acqua, P Martelli, Photosensitizing action of furocoumarins on membrane components and consequent intracellular events, J. Photochem. Photobiol. B:biol., 8 (1991), pp. 235-254. Cerca con Google

49. N Kitamura, S Kohtani, R Nakagaki, Molecular aspects of furocoumarin reactions: Photophysics, Photochemistry, Photobiology and structural Analysis, J .Photochem.Photobiol. C: photochem. rev., 6 (2005), pp, 168-185. Cerca con Google

50. S Caffieri, Furocoumarin photolysis: chemical and biological aspects, Photochem. photobiol. Sci., 1 (2002), pp. 149-157. Cerca con Google

51. S Caffieri, F Di Lisa, F Bolesani, M Facco, G Semenzato, F Dall'Acqua, M Canton, The mitochondrial effects of novel apoptogenic molecules generated by psoralen photolysis as crucial mechanism in PUVA therapy, Blood, 109 (2007), pp.4988- 4994. Cerca con Google

52. A.B. Santamaria, D.W. Davis, D.X. Nghiem, D.J. McConkey, S.E. Ullrich, M Kapoor, G Lozano, H.N. Ananthaswamy, p53 and Fas ligand are required for psoralen and UVA-induced apopotosis in mouse epidermal cells, Cell Death Differ., 9 (2002), pp. 549-560. Cerca con Google

53. M Canton, S Caffieri, F Dall'Acqua, F Di Lisa, PUVA-induced apoptosis involves mitochondrial dysfunction caused by the opening of the permeability transition pore, FEBS Lett. 522 (2002), pp. 168-172. Cerca con Google

54. G Viola, E Fortunato, L Cecconet, S Disarò, G Basso, Induction of apoptosis in Jurkat cells by photoexcited psoralen derivatives: Implication of mitochondrial dysfunction and caspase activation, Toxicol in Vitro 21 (2007), pp. 211-216. Cerca con Google

55. M Patel, R.J. McHugh, B.C. Cordova, R.M. Klabe, S Erickson-Viitanen, G.L. Trainor, J.D. Rodgers, Synthesis and evaluation of quinoxalinones as HIV-1 reverse transcriptase inhibitors, Bioorg. & Med. Chem. Lett., 10 (2000), pp. 1729-1731. Cerca con Google

56. A Carta, P Sanna, L Gherardini, D Usai, S Zanetti, Novel functionalized pyrido[2,3- g]quinoxalinones as antibacterial, antifungal and anticancer agents, Il Farmaco, 56 (2001), pp. 933-998. Cerca con Google

57. J Guillon, P Grellier, M Labaied, P Sonnet, J Léger, R Déprez-Poulain, I Forfar- Bares, P Dallemagne, N Lemaître, F Péhourcq, J Rochette, C Sergheraert, C Jarry, Synthesis, antimalarial activity, and molecular modeling of new pyrrolo[1,2- a]quinoxalines, bispyrrolo[1,2-a]quinoxalines, Bispyrido[3,2-e]pyrrolo[1,2- a]pyrazines, and Bispyrrolo [1,2-a]thieno[3,2-e]pyrazines, J. Med. Chem., 47 (2004), pp. 1997-2009. Cerca con Google

58. S.A.M. El-Hawash, N.S. Habib, M.A. Kassem, Synthesis of some new quinoxalines and 1,2,4-triazolo[4,3-a]quinoxalines for evaluation of in vitro antitumor and antimicrobial activities, Arch. Pharm. Chem. Life Sci., 339 (2006), pp. 564-571. Cerca con Google

59. S Alleca, P Corona, M Loriga, G Palgietti, R Loddo, V Mascia, B Busonera, P La Colla, Quinoxaline chemistry. Part 16. 4-Substituted anilino and 4-substituted phenoxymethyl pyrrolo[1,2-a]quinoxalines and N-[4-(pyrrolo[1,2-a]quinoxalin-4ylamino and hydroxymethyl]bezoyl glutamates. Synthesis and evalutaion of in vitro biological activity, Il Farmaco, 58 (2003), pp. 639-650. Cerca con Google

60. N Kawanishi, T Sugimoto, J Shibata, K Nakamura, K Masutani, M Ikuta, H Hirai, Structure-based drug design of a highly potent CDK1,2,4,6 inhibitor with novel macrocyclic quinoxalin-2-one structure, Bioorg.& Med. Chem. Lett., 16 (2006), pp. 5122-5126. Cerca con Google

61. C.H. Nguyen, E Fan, J Riou, M Bissery, P Vrignaud, F Lavelle, E Bisagni, Synthesis and biological evaluation of amino-substituted benzo[f]pyrido[4,3-b] and pyrido[3,4-b]quinoxalines: a new class of antineoplastic agents, Anti-Cancer Drug Design, 10 (1995), pp. 277-297. Cerca con Google

62. A.H. Abadi, 5-Substituted 2-Bromoindolo[3,2-b]quinoxalines. A class of potential antitumor agents with cdc25 phosphatase inhibitory properties, Arch. Pharm. Pharm. Med. Chem., 331 (1998), pp. 352-358. Cerca con Google

63. M.R. Boyd, K.D. Paull, Some practical considerations and applications of the National Cancer Institute in vitro anticancer drug discovery screen, Drug Dev. Res., 34 (1995), pp. 91-110. Cerca con Google

64. L.H. Hurley, DNA and its associated processes as targets for cancer therapy, Nat. Rev. Cancer, 2 (2002), pp. 188-200. Cerca con Google

65. M.T. Khosrow, T.B. Fitzpatrick, The benefits and risks of long-term PUVA photochemotherapy, Dermatol. Clinics, 16 (1998), pp. 227-234. Cerca con Google

66. F Dall'Acqua, D Vedaldi, S Caffieri, A Guiotto, P Rodighiero, F Baccichetti, F Carlassare, F Bordin, New monofunctional reagents for DNA as possible agents for the photochemotherapy of psoriasis: derivatives of 4,5'-dimethylangelicin, J. Med. Chem., 24 (1981), pp. 178-184. Cerca con Google

67. D Averbeck, E Moustacchi, E Bisagni, Biological effects and repair of damage photoinduced by a derivative of psoralen substituted at the 3,4 reaction site. Photoreactivity of this compound and lethal effect in yeast, Biochim. Biophys. Acta,518 (1978), pp. 464-481. Cerca con Google

68. N.K. Gibbs, E Quanten, S Baydoun, C.N. Knox, R Roelandts, F De Schryver, T.G. Truscott, R Young, Photophysical, photochemical and photobiological properties of pyrrolocoumarins; a new class of photoactive compounds, J. Photochem. Photobiol, B: Biol., 2 (1988), pp. 109-122. Cerca con Google

69. G Miolo, S Caffieri, D Vedaldi, F Baccichetti, C Marzano, V Lucchini, P Rodighiero, F Dall'Acqua, Photochemical and photobiological studies on methylthioangelicins, Il farmaco, 54 (1999), pp. 134-144. Cerca con Google

70. P Barraja, P Diana, A Montalbano, G Dattolo, G Cirrincione, G Viola, D Vedaldi, F Dall’Acqua, Pyrrolo[2,3-h]quinolin-2-ones: A new ring system with potent photoantiproliferative activity, Bioorg. & Med. Chem., 14 (2006), pp. 8712-8728. Cerca con Google

71. O Gia, S Mobilio, M Palumbo, M.A. Pathak, Benzo- and tetrehydrobenzo-psoralen congeners: DNA binding and photobiological properties, Photochem. Photobiol., 57 (1993), pp. 497-503. Cerca con Google

72. T Mosmann, Rapid colorimetric assay for cellular growth and survival: application to proliferation and citotoxic assay, J. Immunol. Meth., 65 (1983), pp. 55-63. Cerca con Google

73. I Vermes, C Haanen, H Steffens-Nakken, C Reutelingsperger, A novel assay for apoptosis: Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V, J. Immunol. Meths., 184 (1995), pp. 39-51. Cerca con Google

74. S Salvioli, A Ardizzoni, C Franceschi, A Cossarizza, JC-1 but not DiOC6(3) or rhodamine 123 is a reliable fluorescent probe to asses YD changes in intact cells: implications for studies on mitochondrial functionality during apoptosis, FEBS Lett. 411 (1997), pp. 77-82. Cerca con Google

75. X Wang, The expanding role of mitochondria in apoptosis, Genes & Dev., 15 (2001), pp. 2922-2933. Cerca con Google

76. G Kroemer, J.C. Reed, Mitochondrial control of cell death, Nat. Med., 6 (2000), pp. 513-519. Cerca con Google

77. G Rothe, G Valet, Flow cytometric analysis of respiratory burst activity in phagocytes with hydroethidine and 2',7'-dichlorofluorescin, J. Leukoc. Biol., 47 (1990), pp. 440-448. Cerca con Google

78. M Garcia Fernandez, L Troiano, L Moretti, M Nasi, M Pinti, S Salvioli, J Dobrucki, A Cossarizza, Early changes in intramitochondrial cardiolipin distribution durino apoptosis, Cell Growth & Diff., 13 (2002), pp. 499-455. Cerca con Google

79. J.M. Petit, A Maftah, M.H. Ratinaud R Julien 10-N-nonyl acridine orange interacts with cardiolipin and allows the quantification of this phospholipid in isolated mitochondria, Eur. J. Biochem., 209 (1992),pp. 267-273. Cerca con Google

80. D Bonne, C Heusèle, C Simon, D Pantaloni, 4',6-diamidino-2-phenylindole, a fluorescent probe for tubulin and microtubules, J. Biol. Chem., 260 (1985), pp. 2819-2825. Cerca con Google

81. S.K. Sengupta, in “Cancer Chemotherapeutic Agents” (1995), ed American Chemical Society – Washington, Vol 5 pp. 205-217. Cerca con Google

82. H Ihmels, K Faulhaber, G Viola, Evaluation of the DNA-binding properties of cationic dyes by absorption and emission spectroscopy, in “Highlights in bioorganic chemistry: methods and applications” (2004), ed. C Schmuck H Wennemers Copyright, pp. 172-190. Cerca con Google

83. H Li, J Aubrecht, A.J. Fornace J, Toxogenomics: Overview and potential applications for the study of non-covalent DNA interacting chemicals, Mut. Res.,623 (2007), pp. 98-108. Cerca con Google

84. M.F. Braña, M Cacho, A Gradillas, B de Pascual-Teresa, A Ramos, Intercalators as anticancer drugs, Curr. Pharma. Des., 7 (2001), pp. 1745-1780. Cerca con Google

85. T.C. Jenkins, in: “Methods in Molecular Biology”, (1997), ed K.R. Fox , Humana Press, Totowa, New Jersey, vol. 90, pp. 195–218. Cerca con Google

86. J.D. McGhee, P.H. Von Hippel, Theoretical aspects of DNA-protein interactions: cooperative and non-cooperative binding of large ligands to a one-dimensional heterogeneous lattice, J. Mol. Biol., 86 (1974), pp. 469-489. Cerca con Google

87. G Schatchard, The attraction of proteins for small molecules and ions, Ann. N.Y. Acad. Sci., 51 (1949), pp. 660–672. Cerca con Google

88. D Suh, J.B. Chaires, Criteria for the mode of binding of DNA binding agents, Bioorg. & Med. Chem, 6 (1995), pp. 723-728. Cerca con Google

89. B Nordén, T Kurucsev, Analyzing DNA complexes by circular and linear dichroism, J. Mol. Recogn., 7 (1994), pp. 141-156. Cerca con Google

90. Y Pommier, P Pourquier, Y Fan, D Strumberg, Mechanism of action of eukaryotic DNA topoisomerase I and drugs targeted to the enzyme, Biochim. Biophys. Acta, 1400 (1998), pp. 83-106. Cerca con Google

91. D.J.A. Bridewell, G.J. Finlay, B.C. Baguley, Mechanism of cytotoxicity of N-[2- (dimethylamino)ethyl]acridine-4-carboxamide and its 7-chloro derivative: the roles of topoisomerase I and II, Cancer Chemother. Pharmacol. 43 (1999), pp. 302-308. Cerca con Google

92. M Facompre, C Carrasco, P Colson, C Houssier, J.D. Chisholm, D.L. Van Vranken, C Bailly, DNA binding and topoisomerase I poisoning activities of novel disaccharide indolocarbazoles, Mol. Pharmacol., 62 (2002), pp. 1215-1227. Cerca con Google

93. F Luciani, A Molinari, F Lozupone, A Calcabrini, L Lugini, A Stringaro, P Puddu, G Arancia, M Cianfriglia, S Fais, P-Glycoprotein-actin association through ERM family proteins: a role in P-glycoprotein function in human cells of lymphoid origin, Blood, 99 (2002), pp. 641-648. Cerca con Google

94. M.T. Santini, R Romano, G Rainaldi, P Filippini, E Bravo, L Porcu, A Motta, A Calcabrini, S Mescini, P.L. Indovina, G Arancia, the relationship between 1H-NMR mobile lipid intensity and cholesterol in two human multidrug resistant cell lines (MCF-7 and LoVo), Biochim. Biophys. Acta, 1531 (2001), pp. 111-131. Cerca con Google

95. A Salvador, Nuovi tiopiano[2,3,e]indol-2-oni angolari quali potenziali agenti fotochemioterapici: studio del meccanismo d’azione, master thesis. Cerca con Google

96. P Barraja, L Sciabica, P Diana, A Lauria, A Montalbano, A Almerico, G Dattolo, G Cirrincione, S Disarò, G Basso, G Viola, F Dall’Acqua, Synthesis and photochemotherapeutic activity of thiopyrano[2,3-e]indol-2-ones, Bioorg. & Med.Chem. Lett., 15 (2005), pp. 2291-2294. Cerca con Google

97. A.K. Ghose, G.M. Crippen, Atomic physicochemical parameter for threedimensional structure-directed quantitative structrure-activity relationship I. Partition coefficents as measure of hydrophobicity, J. Comp. Chem., 7 (1986), pp. 565-577. Cerca con Google

98. D.W. Hedley, S Chow, Evaluation of methods for measuring cellular glutathione content using flow cytometry, Cytometry 15 (1994), pp. 349-358. Cerca con Google

99. M Zhao, J.W. Eaton, U.T. Brunk, Protection against oxidant-mediated lysosomal rupture: a new anti-apoptotic activity of Bcl-2? FEBS Lett., 485 (2000), pp. 104-108. Cerca con Google

100. A.M. Martelli, A Cappellini, P Tazzari, A Billi, C Tassi, F Ricci, F Falà, R Conte, Caspase-9 is the upsteam caspase activated by 8-methoxypsoralen and ultraviolet-A radiation treatement of Jurkat T leukemia cells and normal T lymphocytes, Haematol., 89 (2004), pp. 471-479. Cerca con Google

101. G Viola, A Salvador, L Cecconet, G Basso, D Vedaldi, F Dall’Acqua, GG Aloisi, M Amelia , A Barbafina, L Latterini, F Elisei, Photophysical properties and photobiological behaviour of amiodaquine, chloroquine and primaquine, Photochem. Photobiol., 83 (2007), pp. 1415-1427. Cerca con Google

102. G Ouédraogo, P Morlière, R Santus, M.A. Miranda, J.V. Castell, Damage to mitochondria of cultured human skin fibroblasts photosensitized by fluoroquinolones, J. Photochem. Photobiol. B: Biol., 58 (2000), pp. 20-25. Cerca con Google

103. G Viola, E Fortunato, L Cecconet, L Del Giudice, F Dall’Acqua, G Basso, Central role of mitochondria and p53 in PUVA-induced apoptosis in human keratinocytes cell line NCTC-2544, Toxicol. Appl. Pharmacol. (2007), doi:10.1016/j.taap.2007.10.004. Cerca con Google

104. M Parreño, J.P. Vaqué, I Casanova, P Frade, M.V. Céspedes, M.A. Pavón, A Molins, M Camacho, L Vila, J.F. Nomdedeu, R Mangues, J León, Novel triiodophenol derivatives induce caspase-independent mitochondrial cell death in leukemia cells inhibited by Myc, Mol. Cancer Ther., 5 (2006), pp. 1166-1175. Cerca con Google

105. A.R. Santiago, A.J. cristóvão, P.F. Santos, C.M. Carvalho, A.F. Ambrósio, High glucose induces caspase-independent cell death in retinal neural cells, Neurobiol.Disease, 25 (2007), pp. 464-472. Cerca con Google

106. B Epe, M Pflaum, S Boiteux, DNA damage induced by photosensitizers in cellular and cell-free systems, Mut. Res., 299 (1993), pp. 135-145. Cerca con Google

107. T.A. Ciulla, J.R. Van Camp, E Rosenfeld, I Kochevar, Photosensitization of singlestrand breaks in pBR322 DNA by Rose Bengal, Photochem. Photobiol. 49 (1989), pp. 293-298. Cerca con Google

108. A. W. Girotti, Photodynamic lipid peroxidation in biological systems, Photochem. Photobiol., 53 (1990), pp. 497-509. Cerca con Google

109. P Morlière, A Moysan, R Santus, G Hüppe, J Mazière, L Dubertret, UVA-induced lipid peroxidation in cultured human fibroblasts, Biochem. Biophys. Acta, 1084, (1991), pp. 261-268. Cerca con Google

110. G Viola, A Salvador, D Vedaldi, E Fortunato, S Disarò, G Basso, M.J. Queiroz, Induction of apoptosis by photoexcited tetracyclic compounds derivatives of benzo[b]thiophenes and pyridines, J. Photochem. Photobiol. B: Biol. 82 (2006), pp. 105–116. Cerca con Google

111. M.M. Bradford, A rapid and sensitive method for the quantification of microgram quantities of protein-dye binding, Anal. Biochem., 72 (1976), pp. 248-254. Cerca con Google

112. R Lyng, T Härd, B Nordén, Induced circular dichroism of DNA intercalators: electric dipole allowed transitions. Biopolymers 26 (1987), pp. 1327-1345 Cerca con Google

113. A Wada, S Kozawa, Instrument for the studies of differential flow dichroism of polymer solutions, J. Polim. Sci. A 2 (1964), pp. 853-864. Cerca con Google

114. G.L. Peterson, A simplification of the protein assay method of Lowry et al. which is more generally applicable, Analyt. Biochem. 83, (1977), pp. 346-356+ Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record