Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Pretto, Isacco (2010) Base Reaction Control of Space Manipulators. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF - Versione sottomessa
Available under License Creative Commons Attribution Non-commercial No Derivatives.

3431Kb

Abstract (inglese)

In this thesis a research activity is presented, concerning matters of dynamics and control of robot manipulators for space robotics applications. In particular, kinematic control principles suitable for the realization of trajectory-tracking manoeuvres are considered for manipulators in the kinematic redundancy condition, that is typically available on actual space robotic systems. A well known characteristic of space manipulators is due to the dynamic coupling that arises between the manipulator motion and the motion of the base spacecraft on which the manipulator is mounted, due to action-reaction exchanges between the subsystems, and to the characteristics of their momentum equations that determine the non-holonomic nature of the system. This coupling determines dynamic disturbances generated by the manipulator during operation. It reveals important to control these disturbances in order to respect the pointing requirements of the spacecraft, for what concerns communications, on-board instrumentation, and solar panels orientation, and also for what concerns restrictions on the admissible acceleration disturbances exerted on the base platform, that in particular can be imposed during experimental micro-gravity activities onboard the space station.
Fundamental objective of the kinematic control schemes developed in this work is to achieve an optimization of the possible joint trajectories that command the movement of the arm, in order to minimize the dynamic disturbances exerted on the platform, which is possible thanks to a balanced coordination of the arm internal motions, that compensates for its momentum variations that are produced during a trajectory-tracking manoeuvre. Original formulations for the base reaction control are presented and analyzed, and the problem is set in the mathematical framework of constrained least squares methods, while the kinematic control is resolved at the joint acceleration level, in order to attain an effective expressions of the kinematic and dynamic variables involved. The proposed principles reveal suitable for real-time space applications, thanks to the local formulation of the optimization problems and to the use of stable and consolidated solution routines. Analysis and validation of the proposed laws have been developed be means of an experimental test campaign on a planar robot manipulator prototype with three degrees-of-freedom, suspended by air bearings on a flat granite plane, in order to simulate the microgravity environment. In particular a series of trajectory-tracking tests have been performed with dynamic measurements of the resultant base reactions. The analysis is completed by means of a robot simulator system, that has been developed by reproducing the geometrical and inertial characteristics of the experimental prototype. The performance of the control laws have been evaluated both in the fixed base condition, and in the free-floating base condition, and in this case an evaluation on the influence of the inertial parameters involved have been carried out. An independent research activity was related to the application of optimization methods for contact forces control of a bio-inspired climbing robots with dry adhesive pads. Control principles are presented, and their performances evaluated by means of a robot simulator and validated through an experimental robot prototype.

Abstract (italiano)

In questa tesi è presentato un lavoro di ricerca sulla dinamica ed il controllo di bracci robotici per applicazioni spaziali. In particolare, sono proposti dei principi di controllo cinematico adatti all'inseguimento di traiettorie nello spazio operativo del manipolatore in condizioni di ridondanza cinematica, le quali sono tipicamente disponibili negli attuali sistemi robotici spaziali. Caratteristica meccanica peculiare delle applicazioni di robotica orbitale è l'accoppiamento dinamico che si verifica tra il moto del braccio ed il moto della piattaforma satellitare sulla quale è montato, dovuto agli scambi di azione e reazione che i due sottosistemi si scambiano tra di loro ed alla natura non-olonomica del sistema. Tale accoppiamento è causa di disturbi dinamici esercitati dal manipolatore in fase di operazione, che è necessario controllare in modo da ottemperare sia ai requisiti di puntamento del satellite per quanto riguarda le comunicazioni, la strumentazione di bordo, e l'orientazione dei pannelli solari, sia alle restrizioni sui disturbi di accelerazione impartiti alla piattaforma, che in particolare possono essere imposte durante attività sperimentali in microgravità a bordo della stazione spaziale. Obiettivo fondamentale degli schemi di controllo cinematico sviluppati in questo lavoro, è quello di realizzare una ottimizzazione delle possibili traiettorie di giunto che comandano il movimento del braccio, in modo da minimizzare il disturbo dinamico esercitato sulla piattaforma, reso possibile attraverso la coordinazione dei movimenti interni del braccio, i quali compensino le variazioni di momento che si producono in questo durante l'inseguimento di traiettoria. Formulazioni originali di controllo delle reazioni sono presentate ed analizzate, attraverso il supporto matematico dei metodi ai minimi quadrati vincolati, mentre il controllo cinematico è risolto al livello delle accelerazioni di giunto, in modo da poter esprimere in maniera efficace le grandezze cinematiche e dinamiche coinvolte. I principi proposti si rivelano adatti per l'implementazione in tempo reale in applicazioni spaziali, grazie all'impostazione dei problemi in forma locale ed alla possibilità di utilizzo di algoritmi numerici stabili e consolidati. L'analisi e la validazione delle leggi proposte è stata effettuata attraverso prove sperimentali su un manipolatore planare sperimentale a tre gradi di libertà, sospeso su cuscinetti d'aria in modo da simulare l'ambiente di microgravità, con il quale sono state effettuate prove di inseguimento con misure dinamiche dei disturbi di reazione. L'analisi sperimentale è accompagnata dallo sviluppo di un ambiente di simulazione, il quale riproduce le caratteristiche geometriche ed inerziali del robot sperimentale. Le prestazioni delle leggi di controllo sono state valutate sia per le condizioni di vincolo a base fissa, che di base libera, ed in quest'ultimo caso sono state effettuate valutazioni rispetto all'influenza dei parametri inerziali coinvolti. Una parte indipendente del lavoro, riguarda infine l'applicazione di metodi di ottimizzazione per il controllo delle forze di adesione, adatti al controllo di robot arrampicatori, i quali sfruttano l'utilizzo di sistemi di adesione secca in modo da aumentare l'aderenza alla superficie. I principi di controllo sono testati attraverso un simulatore ed i risultati validati in un robot prototipo sperimentale.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Cocuzza, Silvio
Dottorato (corsi e scuole):Ciclo 22 > Scuole per il 22simo ciclo > SCIENZE TECNOLOGIE E MISURE SPAZIALI > ASTRONAUTICA E SCIENZE DA SATELLITE
Data di deposito della tesi:NON SPECIFICATO
Anno di Pubblicazione:01 Febbraio 2010
Parole chiave (italiano / inglese):space robotics, space manipulator, redundancy resolution, inverse kinematics, manipulator dynamics, dynamics optimization, constrained least squares, climbing robot, base reactions
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/13 Meccanica applicata alle macchine
Area 09 - Ingegneria industriale e dell'informazione > ING-IND/03 Meccanica del volo
Area 09 - Ingegneria industriale e dell'informazione > ING-IND/12 Misure meccaniche e termiche
Struttura di riferimento:Centri > Centro Interdipartimentale di ricerca di Studi e attività  spaziali "G. Colombo" (CISAS)
Codice ID:2896
Depositato il:28 Ott 2010 16:02
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] D. A. Rohn, C. Lawrence, and A. Brush, “Microgravity robotics technology program.” Houston, Texas: prepared for the International Conference and Exhibit ISA/88 of the Instrument Society of America, October 1988, also E-4148; NAS 1.15:100898; NASA-TM-100898, NASA Glenn Research Center. Cerca con Google

[2] D. A. Rohn, “Microgravity Mechanisms and Robotics Program,” NASA, Lewis Research Center, Lewis Structures Technology, Tech. Rep., 1988, vol. 1: Structural Dynamics, pp. 143–155. Cerca con Google

[3] J. H. Miller, C. Lawrence, and D. A. Rohn, “The Dynamic Effects of Internal Robots on Space Station Freedom,” in AIAA Guidance, Navigation and Control Conference, New Orleans, LA., vol. 3. Washington, DC: American Institute of Aeronautics and Astronautics, Aug. 12-14 1991, pp. 1865–1878, previously announced in STAR as N91- 22604. Cerca con Google

[4] P. Putz, “Space robotics,” Reports on Progress in Physics, vol. 65, pp. 421–463, 2002. Cerca con Google

[5] A. Ellery, An introduction to space robotics. Springer Verlag, 2000. Cerca con Google

[6] S. Dubowsky and M. A. Torres, “Path Planning for Space Manipulators to Minimize Spacecraft Attitude Disturbances,” in Proc. IEEE International Conference on Robotics and Automation, Apr. 9–11, 1991, pp. 2522–2528. Cerca con Google

[7] S. Dubowsky and E. Papadopoulos, “The Kinematics, Dynamics, and Control of Free-Flying and Free-Floating Space Robotic Systems,” IEEE Transactions on Robotics and Automation, vol. 9, no. 5, pp. 531–543, Oct. 1993. Cerca con Google

[8] E. Papadopoulos and S. Dubowsky, “On the Nature of Control Algorithms for Free-Floating Space Manipulators,” IEEE Transactions on Robotics and Automation, vol. 7, no. 6, pp. 750–758, Dec. 1991. Cerca con Google

[9] D. Nenchev, Y. Umetani, and K. Yoshida, “Analysis of a Redundant Free-Flying Spacecraft/Manipulator System,” IEEE Transactions on Robotics and Automation, vol. 8, no. 1, pp. 1–6, Feb. 1992. Cerca con Google

[10] Y. Umetani and K. Yoshida, “Resolved Motion Rate Control of Space Manipulators with Generalized Jacobian Matrix,” IEEE Transactions on Robotics and Automation, vol. 5, no. 3, pp. 303–314, 1989. Cerca con Google

[11] K. Yoshida and Y. Umetani, Space Robotics: Dynamics and Control. Kluwer Academic Publishers, 1993, ch. Control of Space Manipulators with Generalized Jacobian Matrix, pp. 165–204. Cerca con Google

[12] Y. Xu and T. Kanade, Eds., Space Robotics: Dynamics and Control. Norwell, Massachussetts USA: Kluwer Academic Press, 1993. Cerca con Google

[13] S. Moosavian and E. Papadopoulos, “Free-flying robots in space: an overview of dynamics modeling, planning and control,” Robotica, vol. 25, no. 05, pp. 537–547, 2007. Cerca con Google

[14] D. Nenchev, K. Yoshida, and Y. Umetani, “Analysis, design and control of free-flying space robots using fixed-attitude-restricted Jacobian matrix,” in The fifth international symposium on Robotics research. MIT Press, 1991, pp. 251–258. Cerca con Google

[15] M. A. Torres and S. Dubowsky, “Minimizing spacecraft attitude disturbances in space manipulator systems,” Journal of Guidance, Control, and Dynamics, vol. 15, pp. 1010–1017, Aug. 1992. Cerca con Google

[16] Y. Nakamura and R. Mukherjee, “Exploiting nonholonomic redundancy of free-flying space robots,” IEEE Transactions on Robotics and Automation, vol. 9, no. 4, pp. 499–506, Aug. 1993. Cerca con Google

[17] Y. Nakamura and R. Mukherjee, “Nonholonomic motion planning of free-flying space robots via a bi-directional approach,” Space robotics: dynamics and control, p. Cerca con Google

101, 1993. Cerca con Google

[18] C. W. De Silva, “Trajectory design for robotic manipulators in space applications,” Journal of Guidance, Control, and Dynamics, vol. 14, pp. 670–674, 1991. Cerca con Google

[19] R. D. Quinn, L. Chen, and C. Lawrence, “Base Reaction Control for Space-Based Robots Operating in Microgravity Environment,” Journal of Guidance, Control, and Dynamics, vol. 17, no. 2, pp. 263–270, 1994. Cerca con Google

[20] B. Schäfer, R. Krenn, and B. Rebele, “On inverse kinematics and kinetics of redundant space manipulator simulation,” J. of Computational and Applied Mechanics, vol. 4, no. 1, pp. 53–70, 2003. Cerca con Google

[21] R. Krenn and G. Hirzinger, “Modular, Generic Inverse Kinematics Algorithm Applied to Kinematically Redundant Space Manipulators,” in Proc. 8th ESA Workshop on Advanced Space Technologies for Robotics and Automation, Noordwijk, The Netherlands, 2004. Cerca con Google

[22] D. N. Nenchev, K. Yoshida, P. Vichitkulsawat, and M. Uchiyama, “Reaction null-space control of flexible structure mounted manipulator systems,” IEEE Transactions on Robotics and Automation, vol. 15, no. 6, pp. 1011–1023, Dec. 1999. Cerca con Google

[23] K. Yoshida, D. Nenchev, and M. Uchiyama, “Moving base robotics and reaction management control,” in International Symposium on Robotics Research, vol. 7. MIT Press, 1996, pp. 100–110. Cerca con Google

[24] J. Luh, M. Walker, and R. Paul, “Resolved-acceleration control of mechanical manipulators,” IEEE Transactions on Automatic Control, vol. 25, no. 3, pp. 468–474, 1980. Cerca con Google

[25] B. Siciliano, “Kinematic control of redundant robot manipulators: A tutorial,” Journal of Intelligent and Robotic Systems, vol. 3, no. 3, pp. 201–212, 1990. Cerca con Google

[26] Y. Nakamura, Advanced robotics: redundancy and optimization. Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA, 1990. Cerca con Google

[27] C. L. Lawson and R. J. Hanson, Solving least squares problems. Prentice-Hall, Upper Saddle River, NJ, 1974. Cerca con Google

[28] S. L. Campbell and C. D. Meyer, Generalized Inverses of Linear Transformations. New York: Dover Publications, Inc., 1991. Cerca con Google

[29] R. Hanson and K. Haskell, “Algorithm 587: two algorithms for the linearly constrained least squares problem,” ACM Transactions on Mathematical Software (TOMS), vol. 8, no. 3, p. 333, 1982. Cerca con Google

[30] Y. Zhu and X. R. Li, “Recursive least squares with linear constraints,” in Proc. 38th IEEE Conference on Decision and Control, vol. 3, Dec. 7–10, 1999, pp. 2414–2419. Cerca con Google

[31] K. C. Park, P. H. Chang, and S. H. Kim, “The enhanced compact QP method for redundant manipulators using practical inequality constraints,” in Proc. IEEE International Conference on Robotics and Automation, vol. 1, May 16–20, 1998, pp. 107–114. Cerca con Google

[32] Y. Zhang and S. Mai, “Minimum-Energy Redundancy Resolution of Robot Manipulators Unified by Quadratic Programming and its Online Solution,” in Mechatronics and Automation, 2007. ICMA 2007. International Conference on, 2007, pp. 3232–3237. Cerca con Google

[33] C. Van Loan, “On the method of weighting for equality-constrained least-squares problems,” SIAM Journal on Numerical Analysis, vol. 22, no. 5, pp. 851–864, 1985. Cerca con Google

[34] G. Stewart, “On the weighting method for least squares problems with linear equality constraints,” BIT Numerical Mathematics, vol. 37, no. 4, pp. 961–967, 1997. Cerca con Google

[35] S. Cocuzza, I. Pretto, and F. Angrilli, “Controllo dei disturbi dinamici sulla base di robot per manutenzione in orbita,” in XIX Congresso Nazionale AIDAA, Forlì, Italy, 2007. Cerca con Google

[36] S. Cocuzza, I. Pretto, C. Menon, and F. Angrilli, “Control of Dynamic Attitude Disturbances on Spacecrafts Equipped with Robotic Systems for Orbital Maintenance,” in Proceedings of the 58th International Astronautical Congress, Hyderabad, India, September 2007. Cerca con Google

[37] S. Cocuzza, I. Pretto, and S. Debei, “Optimal Kinematic Control of Redundant Space Robotic Systems for Orbital Manteinance: Simulated Microgravity Tests,” in Proc. 59th International Astronautical Congress, Glasgow, UK, 2008. Cerca con Google

[38] I. Pretto, S. Ruffieux, C. Menon, A. Ijspeert, and S. Cocuzza, “A Point-Wise Model of Adhesion Suitable for Real-Time Applications of Bio-Inspired Climbing Robots,” Journal of Bionic Engineering, vol. 5, pp. 98–105, 2008. Cerca con Google

[39] S. Cocuzza, I. Pretto, and S. Debei, “Novel Reaction Control Techniques for Redundant Space Manipulators: Theory and Simulated Microgravity Tests,” in Proceedings of the 60th International Astronautical Congress, Daejeon, Korea, 2009. Cerca con Google

[40] I. Pretto, S. Cocuzza, and S. Debei, “Tracking of a Base Reaction Profile for a Space Manipulator,” in XX AIDAA Congress, Milano, Italy, 2009. Cerca con Google

[41] S. Cocuzza, I. Pretto, and S. Debei, “New Approaches for Redundancy Resolution in the Reaction Torque Control of Space Manipulators,” in XX AIDAA Congress, Milano, Italy, 2009. Cerca con Google

[42] S. Cocuzza, I. Pretto, and S. Debei, , “A Constrained Least Squares Approach for Reaction Torque Control in Spacecraft/manipulator Systems,” in Proceedings of the Cerca con Google

60th International Astronautical Congress, Daejeon, Korea, 2009. Cerca con Google

[43] I. Pretto, S. Cocuzza, and S. Debei, “Dynamic Coordination Principles for Multiple Spacecraft Mounted Manipulators,” in Proceedings of the 60th International Astronautical Congress, Daejeon, Korea, 2009. Cerca con Google

[44] S. Cocuzza, I. Pretto, and S. Debei, “Least Squares Based Reaction Control of Space Manipulators,” 2010, submitted for journal publication. Cerca con Google

[45] S. Cocuzza, I. Pretto, and S. Debei, “Reaction Torque Control of Redundant Space Robotic Systems for Orbital Maintenance and Simulated Microgravity Tests,” Acta Astronautica, 2010, article in press. Cerca con Google

[46] P. C. Hughes, Spacecraft Attitude Dynamics. Mineola, New York: Dover Publications, Inc., 2004. Cerca con Google

[47] B. Wie, Space Vehicle Dynamics and Control. Reston, Virginia USA: American Institute of Aeronautics and Astronautics, 2008. Cerca con Google

[48] A. Liégeois, “Automatic supervisory control of the configuration and behavior of multibody mechanisms,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 7, no. 12, pp. 868–871, 1977. Cerca con Google

[49] D. E. Whitney, “Resolved motion rate control of manipulators and human prostheses,” IEEE Transactions on Man-Machine Systems, vol. 10, no. 2, pp. 47–53, 1969. Cerca con Google

[50] Y. Nakamura, H. Hanafusa, and T. Yoshikawa, “Task-priority based redundancy control of robot manipulators,” The International Journal of Robotics Research, vol. 6, no. 2, p. 3, 1987. Cerca con Google

[51] H. Bruyninckx and O. Khatib, “Gauss’ principle and the dynamics of redundant and constrained manipulators,” in IEEE International conference on robotics and automation, vol. 3. Citeseer, 2000, pp. 2563–2568. Cerca con Google

[52] S. Cocuzza, “Design and Construction of a Free-Flying 3D Robot for Space Applications and Microgravity Tests,” Ph.D. dissertation, University of Padova, Padova, Italy, 2005. Cerca con Google

[53] S. Cocuzza, C. Menon, and F. Angrilli, “Free-Flying Robot Tested on ESA Parabolic Flights: Simulated Microgravity Tests and Simulator Validation,” in Proceedings of the 58th International Astronautical Congress, Hyderabad, India, 2007. Cerca con Google

[54] S. Cocuzza, C. Bettanini, M. De Cecco, C. Menon, M. Zaccariotto, and F. Angrilli, “Free-Flying Robot 3D Simulator Validation by means of Air-Bearings Table 2D Tests Test-Bed Design,” in Proceedings of the 56th International Astronautical Congress, October 2005. Cerca con Google

[55] S. Cocuzza, C. Menon, A. Aboudan, A. Bulgarelli, and F. Angrilli, “Free-Flying 3D Space Robot Prototype Design and Zero-g Experiments on ESA Parabolic Flights,” in Proceedings of the 55th International Astronautical Congress, Vancouver, Canada, October 2004. Cerca con Google

[56] C. Menon, Y. Li, D. Sameoto, and C. Martens, “Abigaille-I: Towards the development of a spider-inspired climbing robot for space use,” in 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, 2008. BioRob 2008, 2008, pp. 384–389. Cerca con Google

[57] S. Ruffieux, “Modeling and simulating biologically inspired climbing robots,” Master’s thesis, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 2008. Cerca con Google

[58] K. Autumn, A. Dittmore, D. Santos, M. Spenko, and M. Cutkosky, “Frictional adhesion: a new angle on gecko attachment,” Journal of Experimental Biology, vol. 209, no. 18, p. 3569, 2006. Cerca con Google

[59] Y. Li, “Preliminary development of a bio-inspired hexapod climbing robot relying on dry adhesives,” Master’s thesis, Simon Fraser University, Vancouver BC, Canada, 2008. Cerca con Google

[60] K. Haskell and R. Hanson, “An algorithm for linear least squares problems with equality and nonnegativity constraints,” Mathematical Programming, vol. 21, no. 1, pp. 98–118, 1981. Cerca con Google

[61] A. Ben-Israel and T. Greville, Generalized inverses: Theory and applications. Springer Verlag, 2003. Cerca con Google

[62] G. Golub and C. Van Loan, Matrix computations. Johns Hopkins Univ Pr, 1996. Cerca con Google

[63] A. Björck, Numerical methods for least squares problems. Society for Industrial Mathematics, 1996. Cerca con Google

[64] H. Alexander and R. Cannon, “An extended operational-space control algorithm for satellite manipulators,” Journal of the Astronautical Sciences, vol. 38, pp. 473–486, 1990. Cerca con Google

[65] F. Barbagli, D. Prattichizzo, and K. Salisbury, Multi-point Interaction with Real and Virtual Objects, ser. Springer Tracts in Advanced Robotics. Springer-Verlag New York, Inc. Secaucus, NJ, USA, 2005. Cerca con Google

[66] C. D. Brown, Elements of Spacecraft Design, J. S. Przemieniecki, Ed. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2002. Cerca con Google

[67] F. Caccavale and B. Siciliano, “Kinematic Control of Redundant Free-Floating Robotic Systems,” Advanced Robotics, vol. 15, no. 20, pp. 429–448, 2001. Cerca con Google

[68] K. Chang and O. Khatib, “Efficient algorithm for extended operational space inertia matrix,” in Proc. IEEE Intl. Conf. Robotics and Automation. Citeseer, 1999, pp. 350–355. Cerca con Google

[69] F. T. Cheng, T. H. Chen, and Y. Y. Sun, “Resolving manipulator redundancy under inequality constraints,” IEEE Transactions on Robotics and Automation, vol. 10, no. 1, pp. 65–71, Feb. 1994. Cerca con Google

[70] F. T. Cheng, R. J. Sheu, and T. H. Chen, “The improved compact QP method for resolving manipulator redundancy,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 25, no. 11, pp. 1521–1530, Nov. 1995. Cerca con Google

[71] C. L. Chung and S. Desa, “A global approach for using kinematic redundancy to minimize base reactions of manipulators,” Carnegie Mellon University, Tech. Rep. CMU-RI-TR-89-9; NAS 1.26:186825; NASA-CR-186825, 1989. Cerca con Google

[72] W. R. Doggett, W. C. Messner, and J. N. Juang, “Global Minimization of the Robot Base Reaction Force During 3-D Maneuvers,” IEEE Transactions on Robotics and Automation, vol. 16, no. 6, pp. 700–711, Dec. 2000. Cerca con Google

[73] R. Featherstone, “Robot Dynamics Algorithms,” Ph.D. dissertation, University of Edinburgh, Edinburgh, UK, 1984. Cerca con Google

[74] R. Featherstone, Rigid body dynamics algorithms. Springer-Verlag New York Inc, 2008. Cerca con Google

[75] R. Featherstone, “A divide-and-conquer articulated-body algorithm for parallel O(log (n)) calculation of rigid-body dynamics. Part 2: Trees, loops, and accuracy,” The international Journal of Robotics Research, vol. 18, no. 9, p. 876, 1999. Cerca con Google

[76] R. Featherstone, “A divide-and-conquer articulated-body algorithm for parallel O(log (n)) calculation of rigid-body dynamics. Part 1: Basic algorithm,” The International Journal of Robotics Research, vol. 18, no. 9, p. 867, 1999. Cerca con Google

[77] R. Featherstone, Robot dynamics algorithms. Kluwer Academic Publishers, 1987. Cerca con Google

[78] R. Featherstone, “The calculation of robot dynamics using articulated-body inertias,” The International Journal of Robotics Research, vol. 2, no. 1, pp. 13, 1983. Cerca con Google

[79] R. Featherstone, “The calculation of robot dynamics using articulated-body inertias,” International Journal of Robotics Research, vol. 2, no. 1, pp. 13–30, 1983. Cerca con Google

[80] R. Featherstone and D. Orin, “Robot dynamics: Equations and algorithms,” in IEEE International Conference on Robotics and Automation, vol. 1. Citeseer, 2000, pp. 826–834. Cerca con Google

[81] J. Hollerbach and K. Suh, “Redundancy resolution of manipulators through torque optimization,” IEEE Journal of Robotics and Automation, vol. 3, no. 4, pp. 308–316, 1987. Cerca con Google

[82] J. M. Hollerbach, “A recursive Lagrangian formulation of manipulator dynamics and a comparative study of dynamics formulation complexity,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 10, no. 11, pp. 730–736, 1980. Cerca con Google

[83] A. Jain, “Unified formulation of dynamics for serial rigid multibody systems,” Journal of Guidance, Control, and Dynamics, vol. 14, no. 3, pp. 531–542, 1991. Cerca con Google

[84] R. Longman, R. Lindberg, and M. Zedd, “Satellite-mounted robot manipulators – New kinematics and reaction moment compensation,” International Journal of Robotics Research, vol. 6, pp. 87–103, 1987. Cerca con Google

[85] J. Y. S. Luh, M. W.Walker, and R. P. C. Paul, “On-line computational scheme for mechanical manipulators,” Journal of Dynamic Systems, Measurement, and Control, vol. 102, p. 69, 1980. Cerca con Google

[86] A. Maciejewski and C. Klein, “Obstacle avoidance for kinematically redundant manipulators in dynamically varying environments,” The international journal of robotics research, vol. 4, no. 3, p. 109, 1985. Cerca con Google

[87] C. Menon, A. Aboudan, S. Cocuzza, A. Bulgarelli, and F. Angrilli, “Free-flying robot tested on parabolic flights: Kinematic control,” Journal of Guidance Control and Dynamics, vol. 28, no. 4, p. 623, 2005. Cerca con Google

[88] C. Menon, A. Aboudan, S. Cocuzza, A. Bulgarelli, C. Bettanini, M. Marchesi, and F. Angrilli, “Self-balancing free flying 3D underactuated robot for zero-g object capture,” in 54 th International Astronautical Congress of the International Astronautical Federation(IAF), 2003. Cerca con Google

[89] J. Merlet, Parallel robots. Springer-Verlag New York Inc, 2006. Cerca con Google

[90] S. A. A. Moosavian and E. Papadopoulos, “Free-flying robots in space: an overview of dynamics modeling, planning and control,” Robotica, vol. 25, no. 5, pp. 537–547, 2007. Cerca con Google

[91] D. Nenchev, K. Yoshida, and Y. Umetani, “Analysis, design and control of free-flying space robots using fixed-attitude-restricted Jacobian matrix,” in The fifth international symposium on Robotics research. Cambridge, MA, USA: MIT Press, 1990, pp. 251–258. Cerca con Google

[92] K. A. O’Neil, “Divergence of linear acceleration-based redundancy resolution schemes,” IEEE Transactions on Robotics and Automation, vol. 18, no. 4, pp. 625–631, Aug. 2002. Cerca con Google

[93] M. Oda, “Attitude Control Experiments of a Robot Satellite,” Journal of Spacecraft and Rockets, vol. 37, no. 6, pp. 788–794, 2000. Cerca con Google

[94] E. Papadopoulos and S. Dubowsky, “Dynamic singularities in free-floating space manipulators,” ASME J. Dyn. Syst., Meas., Cerca con Google

Contr.,115:1, no. 115, pp. 44–52, 1993. Cerca con Google

[95] E. Papadopoulos and S. A. A. Moosavian, “Dynamics & control of space free-flyers with multiple arms,” Journal of Advanced Robotics, no. 9, pp. 603–624, 1995. Cerca con Google

[96] E. Papadopoulos, I. Tortopidis, and K. Nanos, “Smooth planning for free-floating space robots using polynomials,” in Proc. 2005 IEEE/ICRA Intl. Conf. On Robotics and Automation, 2005, pp. 4283– 4288. Cerca con Google

[97] J. Park, W.-K. Chung, and Y. Youm, “Characterization of instability of dynamic control for kinematically redundant manipulators,” in Proc. IEEE International Conference on Robotics and Automation ICRA ’02, vol. 3, May 11–15, 2002, pp. 2400–2405. Cerca con Google

[98] I. Pretto, “Minimizzazione dei disturbi dinamici sulla base di robot free-flying,” Master’s thesis, Università degli Studi di Padova, 2006. Cerca con Google

[99] M. Raibert, Legged robots that balance. MIT press Cambridge, MA, 1986. Cerca con Google

[100] G. Rodriguez, “Spatial operator approach to flexible manipulator inverse and forward dynamics,” in 1990 IEEE International Conference on Robotics and Automation, Cincinnati, OH, 1990, pp. 845–850. Cerca con Google

[101] G. Rodriguez, A. Jain, and K. Kreutz-Delgado, “A spatial operator algebra for manipulator modeling and control,” The International Journal of Robotics Research, vol. 10, no. 4, pp. 371–381, 1991. Cerca con Google

[102] D. Rohn, C. Lawrence, and J. Miller, “Reaction-compensation technology for microgravity laboratory robots,” Tech. Rep., 1990. Cerca con Google

[103] L. Sciavicco and B. Siciliano, Modelling and control of robot manipulators. Springer Verlag, 2000. Cerca con Google

[104] Y. Umetani and K. Yoshida, “Resolved motion rate control of space manipulators with generalized jacobian matrix,” IEEE Transactions on Robotics and Automation, vol. 5, no. 3, pp. 303–314, June 1989. Cerca con Google

[105] Z. Vafa and S. Dubowsky, “On the dynamics of space manipulators using the virtual manipulator, with applications to path planning,” The Journal of the Astronautical Sciences, no. 38, pp. 441–472, 1990. Cerca con Google

[106] C. W. Wampler, “Manipulator inverse kinematic solutions based on vector formulations and damped least-squares methods,” IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC 16, no. 1, pp. 93–101, 1986. Cerca con Google

[107] Y. S. Xia, G. Feng, and J. Wang, “A primal-dual neural network for online resolving constrained kinematic redundancy in robot motion control,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 35, no. 1, pp. 54–64, Feb. 2005. Cerca con Google

[108] J. X. Xu and W. Wang, “Two optimization algorithm for solving robotics inverse kinematics with redundancy,” in Proc. IEEE International Conference on Control and Automation ICCA 2007, May 2007, pp. 3021–3028. Cerca con Google

[109] K. Yoshida, “Engineering Test Satellite VII Flight Experiments for Space Robot Dynamics and Control: Theories on Laboratory Test Beds Ten Years Ago, Now in Orbit,” The International Journal of Robotics Research, vol. 22, no. 5, pp. 321–335, 2003. Cerca con Google

[110] K. Yoshida, “Practical coordination control between satellite attitude and manipulator reaction dynamics based on computed momentum concept,” in Proc. IEEE/RSJ/GI International Conference on Intelligent Robots and Systems ’94. ’Advanced Robotic Systems and the Real World’ IROS ’94, vol. 3, Sept. 12–16, 1994, pp. 1578–1585. Cerca con Google

[111] Y. Zhang, S. S. Ge, and T. H. Lee, “A unified quadratic-programmingbased dynamical system approach to joint torque optimization of physically constrained redundant manipulators,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 34, no. 5, pp. 2126–2132, Oct. 2004. Cerca con Google

[112] Y. Zhang and J. Wang, “Obstacle avoidance for kinematically redundant manipulators using a dual neural network,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 34, no. 1, pp. 752–759, Cerca con Google

Feb. 2004. Cerca con Google

[113] Y. Zhang and J. Wang, “A dual neural network for convex quadratic programming subject to linear equality and inequality constraints,” Physics Letters A, vol. 298, no. 4, pp. 271–278, 2002. Cerca con Google

[114] Y. Zhang, J. Wang, and Y. Xia, “A dual neural network for redundancy resolution of kinematically redundant manipulators subject to joint limits and joint velocity limits,” IEEE Transactions on Neural Networks, vol. 14, no. 3, pp. 658–667, May 2003. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record