Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Fasolato, Giacomo (2008) Simplified models for morphological evolution of river and lagoon systems. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
3060Kb

Abstract (inglese)

Morphodynamics of sedimentary systems is nowadays a fundamental piece of knowledge for civil and environmental engineers involved in fluvial and lagoonal interventions.
While morphodynamics is in principle an extremely complex discipline, some fundamental results may be achieved with relatively simple models.
Purpose of the present dissertation is providing an analysis of a number of simplified models, discussing the usefulness of their approach and the limits of their applications.
The entire study is especially on the analytical and numerical analysis of simplified one-dimensional formulations of fluvial morphodynamics and two-dimensional formulations of lagoon morphodynamics.

Chapter 1: A general description and literature review of the sedimentation processes and morphological models are introduced.

Chapter 2: Numerical procedures are applied to solve mathematical models that represents hydraulic and morphological aspects of simplified river (Peviani, 2002, Fasolato et al., 2006a).

Chapter 3: The objective of the river model analytical analysis is to study the effects of geometry, hydrology and sediment input unsteadiness and non-uniformities, by explicitly indicating the most important parameters that control their propagation and attenuation along the river (Fasolato et al., 2008a).

Chapter 4: Are analyzed here the validity and limitations of the local uniform water flow hypothesis (Fasolato et al., 2008b), an extremely useful simplification for large time- and space-scale computations and the only one which permits to cope with large unsurveyed watersheds (Ronco et al., 2008a).

Chapter 5: Scope of the study, for the lagoon morphodynamics, is to reproduce and valuate the branching channel generation in a short tidal basin with a long term morphological model. In a schematic lagoon, the network ontogeny and the subsequent morphological bottom evolution are reproduced; consequently the planimetric and altimetrical features are analyzed and compared to the state of the system energy (Fasolato et al., 2008c).

Finally, general results and further developments are discussed, underlining, however, that all simplified the models analyzed in this dissertation require further verifications against experimental or field measurements.


Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Di Silvio, Giampaolo
Correlatore:Wang, Sam
Dottorato (corsi e scuole):Ciclo 20 > Scuole per il 20simo ciclo > SCIENZE DELL'INGEGNERIA CIVILE E AMBIENTALE > IDRODINAMICA E MODELLISTICA AMBIENTALE
Data di deposito della tesi:31 Gennaio 2008
Anno di Pubblicazione:31 Gennaio 2008
Parole chiave (italiano / inglese):River morphodynamics, lagoon morphodynamics, numerical models, simplified long-term models, solid transport
Settori scientifico-disciplinari MIUR:Area 08 - Ingegneria civile e Architettura > ICAR/01 Idraulica
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria Idraulica, Marittima, Ambientale e Geotecnica
Codice ID:292
Depositato il:07 Ott 2008
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Abad J. D., Buscaglia G. C., Garcia M. H. (2007).2D stream hydrodynamic, sediment transport and bed morphology model for engineering applications, Hydrological Processes. Cerca con Google

2. Ackers, P. and White, W. R., (1973). Sediment transport: new approach and analysis, Journal of Hydraulic Engineering, 99(11), 2041-2060. Cerca con Google

3. Agarwal K.K. and Idiculla K.C., (2002). Reservoir sedimentation surveys using Global Positioning System, Central Water Commission Ministry of Water Resources New Delhi. Cerca con Google

4. Armanini, A. and Di Silvio, G. (1988). A one-dimensional model for the transport of a sediment mixture in non equilibrium flow conditions. Journal of Hydraulic Res., Vol.26, no.3. Cerca con Google

5. Armanini, A., Fraccarollo, L., Guarino, L., Martino, R., Bin, Y., (2000). Experimentals analysis of the general features of uniform debris-flow over a loose bed. In: Wieczorek, G.F.,Naeser, D., 2000 Eds, Debris-Flow Hazards Mitigation: Mechanics, Prediction and Assessment. A.A. Balkema, Rotterdam. Cerca con Google

6. Basile, P., Peviani, M.A. (1996). Morphodynamic mathematical model for non-uniform grain-size sediment s: an application to the exceptional flood event of 1987 in the Mallero river (Italy). Internal report of FRIMAR Project. Cerca con Google

7. Beasley D B; Huggins L F; Monke E J (1980). ANSWERS: a model for watershed planning. Transaction of the ASAE, 23(4), 938-944 Cerca con Google

8. Bonfigli, G., Peviani, M.A., Cadore, A. (1994). Sediment transport studies during artificial floods in the frodolfo river: Objective and Methodologies. Published at the symposium man and mountain '94, Ponte di Legno., Italy. Cerca con Google

9. Bretschneider, C.L., (1969). Wave forecasting, In: Myers, J.J. (Ed.), Handbook of Ocean and Underwater Engineering. McGraw-Hill Book, New York. Chap. 11. Cerca con Google

10. Brown, C.B. (1950) Sediment transportation (Chapter 12) . In: H. Rouse, Editor, Engineering Hydraulics, John Wiley and Sons, New York (1950), pp. 796-799. Cerca con Google

11. Brunner G.W. and Gibson S. (2005) Sediment Transport Modeling in HEC RAS World Water Congress 2005 173, 442 Cerca con Google

12. Cao Z., Rodney D., Shinji E. (2002). "Coupled and decoupled numerical modeling of flow and morphological evolution in alluvial rivers". Journal of Hydraulic Engineering, Vol. 128., No. 3. Cerca con Google

13. Cea L. et al., (2007) Depth Averaged Modelling of Turbulent Shallow Water Flow with Wet-Dry Fronts Archives of Computational Methods in Engineering 14, 303 Cerca con Google

14. Correia, L. R. P., Krishnappan, B. G., and Graf, W. H. (1992). Fully coupled unsteady mobile boundary flow model. J. Hydraul. Engng. Vol. 118., No. 3, 476-494. Cerca con Google

15. Coulthard T.J., Hicks D.M., Van De Wiel M.J. (2007) Cellular modelling of river catchments and reaches: Advantages, limitations and prospects. Geomorphology 90 (2007) 192-207. Cerca con Google

16. Cui, Y., Parker, G., and Paola, C. (1996). Numerical simulation of aggradation and downstream fining. J. Hydraul. Res., 34(2), 195—204. Cerca con Google

17. Cui, Y., Parker, G. (2005). "Numerical model of sediment pulses and sediment - supply disturbances in mountain rivers" . Journal of Hydraulic Engineering, Vol. 131., No. 8, 646-656. Cerca con Google

18. Cunge, J.A., Holly, F.M. ans Verwey, A., (1980). Practical aspects of computational river hydraulics . Pitman publishing, London, England. Cerca con Google

19. Curran, J., Wilcock P. R. (2005). Effect of sand supply on transport rates in a gravel-bed channel. Journal of Hydraulic Engineering, Vol. 131, No. 11. Cerca con Google

20. Defina A., (2003). Numerical experiments on bar growth, Water Resources Research, vol. 39(4), pp. ESG2_1-ESG2_12, ISSN: 0043-1397. Cerca con Google

21. Dal Monte L., Di Silvio G. (2003). Ratio between channel-cross section and tidal prism in short lagoons: validity and limits of the "Law of Jarret", 3rd IAHR Symposium on River, Coastal and Estuarine Morphodynamics, 1-5 Sept., Barcelona, Spain, 2003. Cerca con Google

22. Dal Monte L. and G. Di Silvio (2004). Sediment concentration in tidal lagoons. A contribution to long-term morphological modelling. Journal of Marine Systems, Volume 51, Issues 1-4, November 2004, Pages 243-255 Cerca con Google

23. D'Alpaos L. and A. Defina (2007). Mathematical modeling of tidal hydrodynamics in shallow lagoons: A review of open issues and applications to the Venice lagoon. Computers & Geosciences, Volume 33, Issue 4, May 2007, Pages 476-496. Cerca con Google

24. De Vriend H. J., Capobianco M., Chesher T., De Swart H. E., Latteux B., Stive M. J. F. (1993). Approaches to long-term modelling of coastal morphology: a review. Coastal eng. ISSN 0378-3839 , vol. 21, no 1-3 (3 p.1/2), pp. 225-269 Cerca con Google

25. De Vriend, H. J. (1996). Mathematical modelling of meso-tidal barrier island coasts. Part I: Empirical and semi-empirical models, P. L.-F. Liu, Advances in coastal and ocean engineering 2115-149. Cerca con Google

26. De Vries, M. (1965). Considerations about non-steady bed-load transport in open channels. Proc., 11th Int. Congress, Int. Association for Hydraulic Research, Delft, The Netherlands, 3.8.1-3.8.11. Cerca con Google

27. De Vries, M. (1973). "River bed variations-aggradation and degradation". Proc., Int. Seminars of Hydraulics of Alluvial Streams, Int. Association for Hydraulic Research, Delft, The Netherlands, 1-10. Cerca con Google

28. Dietrich, W.E., Montgomery, D.R., (1998). Shalstab: a digital terrain model for mapping shallow landslide potential Gradually varied debris flow along a slope. NCASI Technical Report, 29, February. Cerca con Google

29. Dietrich, W.E., Bellugi, D., Real De Asua, (2001). Validation of the shallow landslide model. Shalstab, for forest management. In:Wigmosta, M.S., Burges, S.J., 2001 Eds, Land Use and Watersheds: Human influence on hydrology and geomorphology in urban and forest areas, Amer. Geoph. Union, Water Science and Application, 2,195-227. Cerca con Google

30. Di Silvio, G., (1989). Modelling of the Morphologic Evolution of Tidal Lagoons and Their Equilibrium Configurations. Proceedings of the XXIII IAHR Congress, Ottawa, Canada, pp. C169- C175. Cerca con Google

31. Di Silvio, G. and Peviani, M.A. (1989). Modelling Short- and Long-term evolution of mountain rivers: an application to the torrente Mallero (Italy). Published at International Workshop on fluvial hydraulics of mountains regions. Trent, Italy. Cerca con Google

32. Di Silvio, G., (1991a). Sediment exchange between stream and bottom, a four layer model. Grain Sorting Seminar, Ascona Switzerland, p. 163-191. Cerca con Google

33. Di Silvio, G., (1991b). Averaging operations in sediment transport modelling: short-step versus long-step morphological simulations. The Transport of Suspended Sediments and its Mathematical Modeling, International IAHR/USF Symposium, Florence, Italy, p. 723 (preprint). Cerca con Google

34. Di Silvio, G. and Peviani, M.A. (1991) Modelling short- and long-term evolution of mountain rivers: an application to the torrent Mallero (Italy)". Lecture Notes in Earth Sciences n. 37, Fluvial Hydraulics of Mountain Regions, A. Armanini and G. Di Silvio Eds., Springer Verlag, 1991, pp. 293-292. Cerca con Google

35. Di Silvio, G., Teatini, P., (1992a). Conterminazione Lagunare, Istituto Veneto di Scienza, Lettere ed Arti, VII, Venezia, Italy. Cerca con Google

36. Di Silvio, G., Teatini, P., (1992b). Effects of non-uniform sediment grainsize in the long-term evolution of tidal lagoons. Coast. Eng. Conf. 142, 51 - 52. Cerca con Google

37. Di Silvio G., Marin A., (1996). Analythical approach to river morphodynamics: effects of space- and time- irregularities and grainsize non-uniformity. FRIMAR, Technical Rep.no.2 University of Padua. Cerca con Google

38. Di Silvio, G., Gregoretti, C., (1997). Gradually varied debris flow along a slope. Proceedings of First International Conference On Debris Flow: Hazards, Mitigation, ASCE, San Francisco. Cerca con Google

39. Di Silvio, G., Padovan, A., (1998). Interaction between marshes, channels and shoals in a tidal lagoon investigated by a 2-D morphological model. 3rd Int. Conf. on Hydroscience and Engineering. Cottbus, Berlin, German, 3, CD-ROM. Cerca con Google

40. Di Silvio, G., (1999). Interaction between marshes, channels and shoals in a tidal lagoon. IAHR Symposium on River, Coastal and Estuarine Morphodynamics. University of Genoa, Italy, pp. 395-704. Cerca con Google

41. Di Silvio, G., Barusolo, G., Sutto, L., (2001). Competing driving factors in estuarine landscape. Proceedings of the 2nd IAHR Symposium on River, Coastal and Estuarine Morphodynamics, Obihiro, Japan, pp. 455-462. Cerca con Google

42. Di Silvio, G., Dal Monte, L., (2003). Ratio between channel crosssection and tidal prism in short lagoons: validità and limits of the "Law of Jarrett". 3rd IAHR Symposium on River. Coastal and Estuarine Morphodynamics, vol. 1. Barcelona, Spain, pp. 52 - 533. Cerca con Google

43. Di Silvio, G. (2006). Sediment sources and causes: Approaches to sediment yield evaluation Proceeding of the International Sediment Initiative Conference (ISIC). Khartoum, 2006 November 12-15, Sudan. Cerca con Google

44. Dou, X., Jia, Y., and Wang, S. S. Y. (1998). An alternative methodologyto study local scour at bridge piers. Proc., 1st Fed. Interagency Hydr. Modeling Conf., Subcommitte on Hydrology of the Interagency Advisory Committee on Water Data, Las Vegas, Nev., Vol. 1, 3(1-8). Cerca con Google

45. Dronkers, J., (1978). Longitudinal dispersion in shallow well-mixed estuaries. Coast. Eng. Conf. 3, 169. Cerca con Google

46. DuBoys, M.P. (1879). Etudes du Regime et l’Action Exercée par les Eaux sur un Lit à Fond de Graviers Indefiniment Affouilable, Annales de Ponts et Chaussés, Ser. 5, 18, 1879. Cerca con Google

47. Egiazaroff, I. V. (1965). Calculation of nonuniform sediment concentrations. J. Hydraul. Div., 91, 225-248. Cerca con Google

48. Engelund, F. and Hansen, E. (1967). A monograph on sediment transport in alluvial streams, Teknisk Forlag, Copenhagen, Denmark. Cerca con Google

49. Fagherazzi S., A. Bortoluzzi, W. E. Dietrich, A. Adami, M. Marani, S. Lanzoni, and A. Rinaldo. (1999). Tidal networks: 1. Automatic network extraction and preliminary scaling features from digital terrain maps, Water Resour. Res., 35, 3891- 3904. Cerca con Google

50. Fasolato, G., Di Silvio G. (2004) Evoluzione del fondo di un bacino lagunare simulata con un modello morfodinamico intermareale bidimensionale. Proceeding of XXIX Convegno di idraulica e costruzioni idrauliche. 7-10 settembre 2004. Trento. Cerca con Google

51. Fasolato et al. (2006a). Morphodynamics of mountain rivers following repeated sediment release from reservoirs. Proceeding of International Conference RiverFlow 2006, September 6-8 Lisboa, Portugal. Cerca con Google

52. Fasolato, G., Ronco P., Di Silvio G. (2006b). Simplified models for simulating morphodynamic processes at different space- and time-scales. Proceeding of the 7th Int. Conf. on Hydroscience and Engineering (ICHE-2006), Sep 10 - Sep 13, Philadelphia, USA. Cerca con Google

53. Fasolato, G., Ronco P., Jia Y. (2007). "Studies on sediment transport and morphodynamic evolution of a river due to sediment flushing operations of an alpine reservoir". Proceeding of the 32nd Int. Congress of IAHR, July 1 - 6, Venice, Italy. Cerca con Google

54. Fasolato, G. and Ronco, P. and Di Silvio, G. (2008a). Boundary conditions in river morphodynamics. An analytical solution. Journal of Hydraulic Research (in review). Cerca con Google

55. Fasolato, G. and Ronco, P. and Di Silvio, G. (2008b). Validity of simplified one-dimensional models. Journal of Hydraulic Engineering ASCE (in review). Cerca con Google

56. Fasolato, G., Dall'Angelo C. Di Silvio, G. (2008c) "A long-term model for the generation and evolution of a tidal network" Atti del Corila (in press) Cerca con Google

57. Gallappatti R. and. Vreugdenhil C.B, (1985). A depth-integrated model for suspended sediment transport. Journal of Hydraulic Research 23 pp. 359-377 Cerca con Google

58. Hirano, M. (1971). River bed degradation with armouring . Trans. of JSCE. 3(2). Cerca con Google

59. Imberger, J. and Di Silvio, G., (1992). Mixing Processes in a shallow lagoon. In: Edge, B.L., Editor, 1992. Coastal Engineering, ASCE, Venice, Italy, pp. 1867-1868. Cerca con Google

60. Jia, Y., and Wang, S. S. Y. (1996). A modeling approach to predict local scour around spur dike-like structures. Proc., 6th FISC, Subcommittee on Sedimentation Interagency Advisory Committee on Water Data, Las Vegas, Nev., Vol. 1, 90-97. Cerca con Google

61. Jia, Y., and Wang, S. S. Y. (1997). CCHE2D model verification tests documentation. Tech. Rep. No. CCHE-TR-97-4, Ctr. for Computational Hydrosci. and Engrg., University of Mississippi, University, Miss. Cerca con Google

62. Jia, Y., and Wang, S.S.Y., (1999). Numerical model for channel flow and morphological change studies. ASCE, Journal of Hydraulic Engineering, Vol. 125, No. 9, pp 924-9 Cerca con Google

63. Jia Y. et al. (2005) Three-Dimensional Numerical Simulation and Analysis of Flows around a Submerged Weir in a Channel Bendway. J. Hydr. Engrg. 131, 682 (12 pages) Cerca con Google

64. Karpik S. R. and Raithby G. D. (1990). Laterally Averaged Hydrodynamics Model for Reservoir Predictions J. Hydr. Engrg., Volume 116, Issue 6, pp. 783-798. Cerca con Google

65. Kassem A.A. and Chaudhry M.H. (2002) Numerical evolution of bed evolution in channel bends, Journal of Hydraulic Engineering, ASCE 128 (5), pp. 507-552. Cerca con Google

66. Kassem, A., Imran, J. and Khan J. A. (2003). Three-Dimensional Modeling of Negatively Buoyant Flow in Diverging Channels J. Hydr. Engrg. 129, 936 Cerca con Google

67. Krone, R. B. (1962). Flume studies of the transport of sediment in estuarial shoaling processes. Cerca con Google

68. Lanzoni, S., Seminara, G., (2002). Long-term evolution and morphodynamic equilibrium of tidal channels. J. Geophys. Res. 107, 1 - 13. Cerca con Google

69. Lanzoni S., Siviglia A., Frascati, A., Seminara G. (2006). Long waves in erodible channels and morphodynamic influence. Water Resources Research, Vol. 42, W06D17. Cerca con Google

70. Lee, D.S., R.D. Kingdon, J.M. Pacyna, A.F. Bouwman, and I. Tegen, (1999). Modelling base cations in European sources, transport and deposition of calcium. Atmos. Environ., 33, 224102256, doi:10.1016/S1352-2310(98)00169-1. Cerca con Google

71. Lyn, D. A. (1987). Unsteady sediment-transport modeling. J. Hydraul. Eng., 113(1), 1-15. Cerca con Google

72. Lyn, D. A., Altinakar, M. (2002). St. Venant-Exner equations for near-critical and transcritical flows. J. Hydraul. Eng., 128(6), 579-587. Cerca con Google

73. Madeo E. (2002). Influenza delle condizioni al contorno sul comportamento morfodinamico di un corso d'acqua. Una soluzione analitica. M.Sc.-Thesis (in Italian) University of Padua. Cerca con Google

74. Maner, S.B. (1958) Factors affecting sediment delivery rates in the red hills physiographic area, Transactions of American Geophysics 39, pp. 669-675. Cerca con Google

75. Marciano R. et al. (2005). Modeling of channel patterns in short tidal basins. Journal of Geophysical Research, vol. 110, January, 2005. Cerca con Google

76. Marin A., Di Silvio G. (1996) "Analysis and evaluation of various simplifying hyphotesis in morphological on dimensional models". FRIMAR, Technical Rep.no.1 University of Padua. Cerca con Google

77. Mehta, A. J. and E. Partheniades, (1975). An investigation of the depossitional properties of flocculated fine sediments. J. Hydr. res. ASCE 13: 361-381. Cerca con Google

78. Mehta, A. J., (1986). Characterization of cohesive sediment properties and transport processes in estuaries. In A. J. Mehta (ed.) Estuarine cohesive sediment dynamics. Lecture Notes Coastal Estuarine Studies 14: 290-325. Cerca con Google

79. Meyer-Peter, E., Müller, R., (1948). Formulas for bed-load transport. Proceedings of Second Meeting of the International Association for Hydraulic Research, pp. 39-64. Cerca con Google

80. Miller, J., (1984). Basic concepts of kinematic-wave models. U.S. Geological Survey, Professional Paper N° 1302, Washington, USA. Cerca con Google

81. Morgan, R.P.C. (1995). Soil Erosion and Conservation, 198 pp. Longmans, New York. Cerca con Google

82. Morris, P. H., Williams, D. J. (1996). Relative celerities of mobile bed flows with finite solids concentrations. J. Hydraul. Eng., 122(6) 311-315. Cerca con Google

83. Morris G.L. and Fan J. (1998). Reservoir Sedimentation Handbook. McGraw-Hill., (746 pp.). Cerca con Google

84. Nagata N. et al. (2005). Three-Dimensional Numerical Model for Flow and Bed Deformation around River Hydraulic Structures. J. Hydr. Engrg. 131, 1074 (14 pages) Cerca con Google

85. Nearing, J.R., Simanton, L.D., Norton, S.J., Bulygin, J. (1999). Soil erosion by surface water flow on a stony, semiarid hillslope. Earth Surface Processes and Landforms, Vol: 24 N: 8, Pg: 677-686. Cerca con Google

86. Nicholas A.P. and Walling D.E., (1998). Numerical modelling of floodplain hydraulics and suspended sediment transport and deposition, Hydrological Processes 12 (1998), pp. 1339-1355. Cerca con Google

87. Okubo, A., (1973). Effects of short line irregularities on streamwise dispersion in estuaries and other embayments. Neth. J. Sea Res. 6, 213-224. Cerca con Google

88. Olsen, N. R. B. (2003). Three dimensional CFD modeling of selfforming meandering channel. J. Hydraul. Eng., 129-10, 366-372. Cerca con Google

89. Ouillon, S., and Dartus, D. (1997). Three-dimensional computation of flow around groyne. J. Hydr. Engrg., ASCE, 123(11), 962-970. Cerca con Google

90. Paola, C. (1988) Subsidence and gravel transport in alluvial basins . In: New Perspectives in Basin Analysis (eds K. L. Kleinspehn and C. Paola) , pp. 231 243. Springer-Verlag, New York. Cerca con Google

91. Paola, C., Heller, P.L., Angevine, C.L. (1992). The large-scale dynamics of grain-size variation in alluvial basins, 1: Theory. Basin Res. , 4, 73 90. Cerca con Google

92. Papanicolaou, A. N., Bdour, A., Wicklein, E. (2004). One-dimensional hydrodynamic/sediment transport model applicable to steep mountain streams. J. Hydraul. Res., 42(4). Cerca con Google

93. Parker, G. P. and Klingeman, P. C. (1982a). On why gravel bed streams are paved. Water Resour. Res., 18-5, 1409-1423. Cerca con Google

94. Parker, G., Klingeman, P. C., and McLean, D. G. (1982b). Bedload and size distribution in paved gravel-bed streams. J. Hydraul. Div., 108, 544-571. Cerca con Google

95. Parker, G. et al. (2000). Probabilistic Exner sediment continuity equation for mixtures with no active layer. Journal of Hydraulic Engineering, Vol. 126, no. 11, November 2000. Cerca con Google

96. Partheniades, E. (1962). A study of erosion and deposition of cohesive soils in salt water, University of California, U.S.A. Cerca con Google

97. Peviani, M.A., Rafaelli, S., Crepaldi L. (1995). Application of trace tecnhique to estimate sediment transport during flood events. Published at the 6th International Symposium on River Sedimentation, New Delhi. India. Cerca con Google

98. Peviani, M. A. (2002). Sviluppo di un modello numerico idrauli-co-morfologico per fiumi a forte pendenza ed analisi dell'evoluzione degli alvei nei tratti pedemontani. Doctoral thesis University of Perugia. Cerca con Google

99. Repetto, R., Tubino (2001). Planimetric instability of channels with variable width. Phys. Chem. Earth (B), vol. 26, pp. 71-76. Cerca con Google

100. Repetto, R., Tubino, M., Paola, C. (2002). "Planimetric instability of channels with variable width". J. Fluid Mech., vol. 457, pp. 79-109. Cerca con Google

101. Ribberink, J. S., Van der Sande, J. T. M. (1985). Aggradation in rivers due to overloading-analytical approaches. J. Hydraul. Res. 23(3), 273-283. Cerca con Google

102. Rinaldo A., S. Fagherazzi, S. Lanzoni, M. Marani, and W. E. Dietrich (1999a), Tidal networks: 2. Watershed delineation and comparative network morphology, Water Resour. Res., 35, 3905-3917. Cerca con Google

103. Rinaldo, A., S. Fagherazzi, S. Lanzoni, M. Marani, and W. E. Dietrich (1999b), Tidal networks: 3. Landscape-forming discharges and studies in empirical geomorphic relationships, Water Resour. Res., 35, 3919-3929. Cerca con Google

104. Roehl, J.E. (1962). Sediment source areas, and delivery ratios influencing morphological factors, International Association of Hydrological Sciences 59, pp. 202-213. Cerca con Google

105. Ronco, P., Fasolato, G., Di Silvio G. (2006). The Case of the Zambezi River in Mozambique: some investigations on solid transport phenomena downstream Cahora Bassa Dam. Proceeding of International Conference RiverFlow 2006, September 6-8 Lisboa, Portugal. Cerca con Google

106. Ronco P. and Fasolato G. and Di Silvio G. (2007) Simulating the profile evolution of large unsurveyed rivers: the case of Zambezi (Austral Africa). Proceeding of the 32nd Int. Congress of IAHR, July 1 - 6, Venice, Italy. Cerca con Google

107. Ronco, P., Fasolato, G., Di Silvio, G. (2008a). "Modelling watershed sediment budget in unsurveyed river". Geomorphology (in review). Cerca con Google

108. Ronco P., Fasolato G., Di Silvio G. (2008b) "Morphological effects on lower Zambezi river of Cahora bassa reservoir" Journal of Hydraulic Engineering - ASCE, (in preparation). Cerca con Google

109. Rosso, R., (2002). Sulla valutazione dei fattori idrologici e geomorfici di innesco delle frane superficiali nei bacini montani. 28° Convegno di Idraulica e Costruzioni Idrauliche, Potenza 16-19 settembre. Cerca con Google

110. Schijf, J.B., Schoönfeld, J.C., (1953). Theoretical considerations on the motion of salt and fresh water. Proc. Minnesota Int. Hydr. Cond. (IAHR/ASCE), Minneapolis, MN. Cerca con Google

111. Seminara, G., Tubino, M., (1993). Debris flow: meccanica, controllo e previsione. Monografia del G.N.D.C.I. Cerca con Google

112. Seminara G. (1997). Equilibrio morfodinamico, stabilità ed evoluzione di correnti a fondo mobile. Proceeding (in Italian) of the meeting "Nuovi sviluppi applicative dell'idraulica dei corsi d'acqua". 27-31th January 1997 Bressanone, Italy. Cerca con Google

113. Seminara G. and Tubino M., (1998). On the formation of estuarine free bars. In: J. Dronkers and M. Scheffers, Editors, Physics of estuaries and coastal seas, Balkema, Rotterdam, pp. 345-353. Cerca con Google

114. Sieben, J. (1997). Modeling of hydraulics and morphology in mountain rivers. PhD thesis, also "Communications on hydraulic and geotechnical engineering". Rep. No. 97-3, Delft Univ. of Technology, Delft, The Netherlands. Cerca con Google

115. Stive, M.J.F.,Wang, Z.B., Capobianco, M., Ruol, P., Bujsman, M.C., (1998). Morphodynamics of a tidal lagoon and adjacent coast. In: Dronkers, J., Sheffers, M.B.A.M. (Eds.), Physics of Estuaries and Coastal Seas. Balkema, Rotterdam, pp. 397-407. Cerca con Google

116. Stockstill, R. L., Berger, R. C., and Ronald, E. N. (1997). Two-dimensional flow model for trapezoidal high velocity channels. J. Hydr. Engrg., ASCE, 123(10), 844-852. Cerca con Google

117. Strom K. et al. (2004) Microforms in Gravel Bed Rivers: Formation, Disintegration, and Effects on Bedload Transport, J. Hydr. Engrg. 130, 554 (14 pages). Cerca con Google

118. Strom K. et al. (2007) Flow Heterogeneity over 3D Cluster Microform: Laboratory and Numerical Investigation , J. Hydr. Engrg. 133, 273 (15 pages). Cerca con Google

119. Surian, N. (2002). Downstream variation in grain size along an Alpine river: analysis of controls and processes. Geomorphology, 43. 137-149. Cerca con Google

120. Tubino, M., Lanzoni, S., (1994). Rheology of debris flow: experimental observations and modelling problems. Excerpta, vol.7, CUEN, Napoli, 210-236. Cerca con Google

121. Van Rijn, L. C. (1984) Sediment transport. Part 2: Suspended load transport. Journal of Hydraulic Engineering 110, 1613-1641. Cerca con Google

122. Vreugdenhil, C.B. (1994). Numerical methods for shallow-water flow. Water Science and Techn. Library Vol. 13, Kluwer Academic Publishers Dordrecht, 262 p. Cerca con Google

123. Walling, D E; Webb, B W (1996). Erosion and sediment yield: global and regional perspectives. IAHS Press. Wallingford, U.K., IAHS Publication No.236, 586pp Cerca con Google

124. Williams, J.R. and Berndt H.D., (1972). Sediment Yield Computed with Universal Equation, Journal of the Hydraulics Division, Vol. 98, No. 12, December 1972, pp. 2087-2098. Cerca con Google

125. Wilson, C. A. M. E., Boxall, J. B., Guymer, I., and Olsen, N. R. B. (2003). Validation of a three dimensional numerical code in the simulation of pseudo-natural meandering flows. J. Hydraul. Eng., 129_10_, 758-768. Cerca con Google

126. Winterwerp J. C. (2002). On the flocculation and settling velocity of estuarine mud. Continental Shelf Research, Volume 22, Issue 9, June 2002, Pages 1339-1360 Cerca con Google

127. Wishmeyer W.D., Smith D.D. (1978). Predicting rainfall erosion losses, a guide to conservation planning Washington D.C., USDA Agricultural Handbook n. 278 Cerca con Google

128. Wright S., Parker G. (2005a) Modeling downstream fining in sand-bed rivers. I: formulation. J. Hydraul. Res., 43(6), 613-620. Cerca con Google

129. Wright S., Parker G. (2005b) Modeling downstream fining in sand-bed rivers. II: application. J. Hydraul. Res., 43(6), 621-631. Cerca con Google

130. Wu, W., Wang, S., Y. and Jia, Y. (2000a). Non uniform sediment transport in alluvial rivers. Journal of Hydraulic Research, Vol. 38, , N. 6. Cerca con Google

131. Wu, W., Rodi, W., and Wenka, T. (2000b). 3D numerical modeling of flow and sediment transport in open channels. J. Hydraul. Eng., 126-1, 4-15. Cerca con Google

132. Wu, W., Vieira D. A, Wang S. S. Y. (2004). One-dimensional numerical model for non-uniform sediment transport under unsteady flows in channel networks. Journal of Hydraulic Engineering, Vol. 130, No. 9. Cerca con Google

133. Ye, J., and McCorquodate, J. A. (1997). "Depth-averaged hydrodynamic model in curvilinear collocated grid." J. Hydr. Engrg., ASCE, 123(5), 380-388. Cerca con Google

134. Yalin, M.S. (1963). An expression for bed load transportation, Proc. ASCE, Vol. 89, HY3, 1963. Cerca con Google

135. Zedler E. A. and Street R. L. (2006) Sediment Transport over Ripples in Oscillatory Flow. J. Hydr. Engrg. 132, 180 (14 pages). Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record