Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Nardi, Tiziana (2007) Molecular Approaches for the Individuation and Characterization of Technological and Quality Traits in Microorganisms of enological interest. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF - Versione sottomessa
4Mb

Abstract (inglese)

The genus Saccharomyces includes microorganisms important for many technological applications, particularly in the industry of fermented foods. In the enological field, yeast strains currently used in wine fermentations (belonging to Saccharomyces sensu stricto group) were selected from natural spontaneous fermentations and are specifically adapted to the winery’s environment. Some of their essential properties that are at the basis of strain selection are the capability of these
yeasts to transform carbohydrates into alcohol by fermentation, with high transformation efficiency and remarkable tolerance to high alcohol levels. Yeasts belonging to the S. sensu stricto group are also adapted to grow in grape musts with high sugar content, low pH, limited nitrogen, lipids and vitamins concentrations and presence of added sulphites.
During the selection programs of wine yeasts, the first stages of the experimental work regard the collection of several hundred isolates that are screened with the aim to find those that possess important enological properties. In most of the cases, this equivalent to establish that these strains belong to the Saccharomyces sensu stricto complex. For that reason, the availability of a molecular test that could rapidly, ditely
and easily identifies these enological yeast would be extremely useful. In the first part of this work the analysis of yeast ITS region on rDNA was proposed as screening method. Using a tailor-made profile database, more then 350 natural isolates
collected from marks of Prosecco and Moscato grape were subjected to molecular identification. As the protocol needs several time consuming experimental steps (amplification and digestion) a new method was proposed. For this purpose an
original pair of primers, designed within the variable D1/D2 region of the 26S subunit of ribosomal yeast RNA, was constructed. These generate an amplification fragment
specific for the Saccharomyces sensu stricto species, while no signal was obtained from Saccharomyces sensu lato strains or from another 18 selected species commonly found in enological environments. A second pair of primers was also
constructed, within the 18S rRNA gene, composed of perfectly conserved sequences common for all 42 yeast species examined, which generate a common band for all strains. This was used as a positive experimental control in multiplex PCR analysis.
The new method, and also ITS analysis, allow a “genotypic characterization” of enological strains that is required to start a “technological characterization” for the definition of the enological traits. The innovative DNA-microarray technology that has become a standard tool for the analysis of genome-wide expression profiles, can be used to investigate, from a molecular point of view, the differences in the expression
of technological and quality characters of enological yeast in laboratory and also winery conditions. For this purpose in the second part of the work, using microarray technology, an investigation of yeast metabolic shifts at transcriptional level in both laboratory and industrial conditions was faced up. Two commercial yeast strains widely used in wineries, Lallemand 71B and Lallemand EC1118, have been compared during fermentation of both 1 l and 100 l natural white must. These strains have different behaviours and attitudes: 71B is known to be a strong producer of fermentative aromas, EC1118 is an efficient fermenter, quite neutral from an aromatic
point of view. Comparing the two strains, the metabolic pathway of sulphured amino acids production displayed an higher expression level in 71B, together with the sulphite efflux responsible gene SSU1. Moreover, genes involved in the production of fermentative aromas, such as esters and higher alcohols, showed a slightly higher expression in 71B: all these evidences have been confirmed by Real-time PCR, another high throughput tool for expression analysis. The up-regulated genes during the scale-up experiment, on the other hand, seem to be linked to anaerobiosis stress response, probably due to small differences in fermentation conditions which have been sensed by yeast.
As final remark, this study tries to give a contribution for understanding the genetic basis of the differences that are found in fermentation performances of wine yeasts in winery conditions. Furthermore it may help in assessing the eproducibility of yeast behaviours during alcoholic fermentation, when a laboratory scale is used.

Abstract (italiano)

Il genere Saccharomyces include microrganismi importanti per molti processi tecnologici, in particolare nell’industria alimentare e delle fermentazioni. In campo enologico, i ceppi di lievito generalmente utilizzati per la fermentazione del vino
(appartenenti al gruppo dei Saccharomyces sensu stricto) sono stati selezionati nel tempo a partire da fermentazioni spontanee e sono ceppi specificamente adattati alle condizioni di cantina. Alcune caratteristiche essenziali, che sono alla base dei criteri per la loro stessa selezione, sono la capacità di trasformare efficientemente i carboidrati in alcol attraverso la fermentazione ed una notevole resistenza all’etanolo.
I lieviti appartenenti al gruppo dei S. sensu stricto sono in grado di crescere in mosto d’uva, dove il livello di zuccheri è molto alto, il pH basso, azoto, lipidi e vitamine sono
presenti in scarse quantità e spesso vengono aggiunti solfiti prima sella fermentazione. Nei programmi che prevedono la selezione di lieviti da utilizzare in ambiente enologico, nelle prime fasi sperimentali, vengono raccolti centinaia di isolati
naturali che sono poi sottoposti a caratterizzazione con lo scopo di evidenziare quelli che posseggono importati caratteristiche tecnologiche. Nella maggior parte dei casi, ciò significa selezionare solo ceppi appartenenti alla categoria tassonomica
Saccharomyces sensu stricto. Per questo motivo è estremamente utile disporre di un test genetico che permetta di distinguere rapidamente e in modo inequivocabile lieviti di potenziale interesse tecnologico. Nella prima parte di questo lavoro è stata verificata la possibilità di utilizzare l’analisi della regione ITS, contenuta nel DNA ribosomale, come metodo per determinare l’identità di isolati naturali. Dopo aver costruito un raccolta dei profili elettroforetici dei principali lieviti enologici, sono stati sottoposti ad identificazione, mediante confronto, 350 isolati naturali provenienti da vinacce di Moscato e Prosecco destinate alla produzione della Grappa. Questo metodo, ampiamente utilizzato in letteratura, richiede l’impiego di tempo per l’esecuzione che male si adatta alle già citate esigenze di un programma di selezione. Per questo motivo è stata proposta una nuova metodica la cui messa a punto ha previsto la produzione di una coppia di primers per amplificazione PCR,
disegnata all’interno della regione variabile D1/D2 della subunità 26S dell’RNA ribosomiale del lievito, con la quale si ottiene un frammento di DNA specifico per le sette specie appartenenti al gruppo Saccharomyces sensu stricto, mentre non si osserva nessuna amplificazione nei ceppi Saccharomyces sensu lato né in altre 18 specie tra le più diffuse in ambiente enologico, saggiate come controlli. E’ stata
inoltre disegnata una seconda coppia di primers, nella regione di DNA codificante l’rRNA 18S, composta di sequenze perfettamente conservate nelle 42 specie di lieviti enologici esaminate: questa coppia genera un amplificato di circa 900 pb comune per tutti i ceppi ed è stata usata come controllo positivo di reazione per la messa a punto di un protocollo di multiplex PCR. Il nuovo metodo proposto, insieme all’analisi ITS, permette di ottenere una “caratterizzazione su basi genetiche” dei ceppi enologici che sicuramente è richiesta
per affrontare, in una fase successive, la “caratterizzazione tecnologica” che ha lo scopo di valutare le proprietà enologiche possedute dai singoli ceppi. La tecnologia DNA-microarray che è ormai diventata uno strumento di riferimento per una analisi
simultanea dell’intera espressione genica di un individuo, può essere utilizzata per valutare le differenze presenti tra ceppi enologici nell’espressione di caratteri tecnologici e di qualità. Per questo scopo, la seconda parte del lavoro sperimentale,
ha riguardato l’investigazione, proprio mediante la tecnologia DNA-microarray, dei cambiamenti a livello trascrizionale che si verificano in due ceppi commerciali di lievito durante la vinificazione condotta in condizioni di laboratorio e su scala pilota in cantina. Sono stati scelti due lieviti comunemente utilizzati in enologia (71B e EC1118, Lallemand), analizzati e confrontati durante fermentazioni in volumi di 1 litro e 100 litri utilizzando mosto naturale bianco. Questi ceppi hanno attitudini e caratteristiche enologiche differenti: 71B è noto per essere un forte produttore di aromi fermentativi mentre EC1118 è dotato di notevole vigore fermentativo ma è più neutro dal punto di vista aromatico. Dal confronto dei due ceppi è emersa una
sostanziale differenza nella regolazione della via metabolica di produzione degli aminoacidi solforati (maggiormente attiva nel ceppo 71B), come anche del gene responsabile per l’efflusso dei solfiti (SSU1). Inoltre è stato osservato che i geni
coinvolti nella produzione di aromi secondari (esteri ed alcoli superiori) mostrano una sensibile differenza di espressione, seppur meno marcata che nei casi precedenti.
Tutti i risultati ottenuti sono stati confermati tramite analisi in Real-time PCR, tecnica molecolari di ultima generazione ampiamente utilizzata per lo studio dell’espressione genica. Confrontando i due volumi impiegati per le vinificazione, i geni sovra-espressi sono risultati essere legati alla risposta allo stress, in particolare alle differenti condizioni di anaerobiosi che si sono verificate a causa delle dimensioni diverse delle
masse da vinificare. Questa situazione ha prodotto minime difformità nelle condizioni di fermentazione che sono state percepite dal lievito.
I risultati ottenuti permettono di affermare che questo lavoro ha contribuito ad aumentare la comprensione delle basi genetiche che determinano le differenti caratteristiche di fermentazione associate ai lieviti enologici e a definire il livello di riproducibilità delle loro performance in condizioni di laboratorio e di cantina.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Corich, Viviana
Correlatore:Giacomini, Alessio
Dottorato (corsi e scuole):Ciclo 19 > Corsi per il 19simo ciclo > VITICOLTURA, ENOLOGIA E MARKETING DELLE IMPRESE VITIVINICOLE
Data di deposito della tesi:NON SPECIFICATO
Anno di Pubblicazione:02 Gennaio 2007
Parole chiave (italiano / inglese):Saccharomyces, fermentation, winemaking, gene expression, yeast selection
Settori scientifico-disciplinari MIUR:Area 07 - Scienze agrarie e veterinarie > AGR/16 Microbiologia agraria
Struttura di riferimento:Dipartimenti > Dipartimento di Biotecnologie Agrarie
Codice ID:3001
Depositato il:08 Feb 2010 15:22
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Abramova N, Cohen BD, Sertil O, Davies KJA and CV Lowry. 2001. Regulatory mechanisms controlling expression of the DAN/TIR mannoprotein genes during anaerobic remodeling of the cell wall in Saccharomyces cerevisiae. Genetics 157,1169–1177. Cerca con Google

2. Aguilera A. Chavez S, Malagon F. 2000. Mitotic recombination in yeast: elements controlling its incidence. Yeast 16, 731–754. Cerca con Google

3. Aigle M, Erbs D and M Moll. 1984. Some molecular structures in the genome of lager brewing yeasts. J. Am Soc Brew Chem 42, 1-7 Cerca con Google

4. Alexandre H, Ansanay-Galeote V, Dequin S, Blondin B. 2001. Global gene expression during short-term ethanol stress in Saccharomyces cerevisiae. FEBS Lett 498, 98–103. Cerca con Google

5. Amerine. 1980. in Methods for Analysis of Musts and Wines. (Ed) MA Amerine, CS Ough. John Wiley and Sons, New York Cerca con Google

6. Aranda, A., Querol, A., del Olmo, M., 2002. Correlation between acetaldehyde and ethanol resistance and expression of HSP genes in yeast strains isolated during the biological aging of sherry wines. Arch Microbiol 177, 304–312. Cerca con Google

7. Ausbel FM, Brent R, Kingston RE, Moore, JG. 1989. Current Protocols in Molecular Biology, John Wiley & sons, New York. Cerca con Google

8. Avery SV, Howlett NG, Radice S. 1996. Copper toxicity towards Saccharomyces cerevisiae: dependence on plasma membrane fatty acid composition. Appl Environ Microbiol 62, 3960-3966. Cerca con Google

9. Avram D, Leid M and Bakalinsky AT. 1999. Fzf1p of Saccharomyces cerevisiae is a positive regulator of SSU1 transcription and its first zinc finger region is required for DNA binding. Yeast 15, 473–480. Cerca con Google

10. Azumi M and Goto-Yamamoto N. 2001. AFLP analysis of type strains and laboratory and industrial strains of Saccharomyces sensu stricto and its application to phenetic clustering. Yeast 18, 1145 - 1154 Cerca con Google

11. Backhus, L.E., DeRisi, J., Brown, P.O., Bisson, L.F., 2001. Functional genomic analysis of commercial wine strains of Saccharomyces cerevisiae under differing nitrogen conditions. FEMS Yeast Res 1413, 1 – 15. Cerca con Google

12. Bakalinsky, A.T., Snow, R., 1990. The chromosomal constitution of wine strains of Saccharomyces cerevisiae. Yeast 6, 367– 382. Cerca con Google

13. Barnett JA, Payne RW and Yarrow D. 1990. Yeasts: Characteristics and Identification, 2nd edn. Cambridge, UK: Cambridge University Press. Cerca con Google

14. Barre P, Vézinhet F, Dequin S, Blondin B. 1993. Genetic improvement of wine yeast. In Wine Microbiology and Biotechnology, Fleet GH (ed). Harwood Academic: Reading; 421-447. Cerca con Google

15. Barre, P., Vézinhet, F., Dequin, S., Blondin, B., 1992. Genetic improvement of wine yeast. In: Fleet, H. (Ed.), Wine Microbiology and Biotechnology. Harwood Academic Publishers, Chur, Switzerland, pp. 265–287. Cerca con Google

16. Bauer, F.F., Pretorius, I.S., 2000. Yeast stress response and fermentation efficiency: how to survive the making of wine—a review. S Afr J Enol Vitic 21, 27–51. Cerca con Google

17. Beltran G, Torija MJ, Nova M, Ferrer N, Poblet M, Guillamon JM, Rozes N and Mas A. 2002. Analysis of yeast populations during alcoholic fermentation : a six year follow-up study. Syst Appl Microbiol 25, 287–293. Cerca con Google

18. Bely L, Sablayrolles J, Barre P. 1990 Description of alcoholic fermentation kinetics: its variability and significance. Am J Enol Viticult 40, 319-324. Cerca con Google

19. Benıtez T, Martınez P, Codon AC. 1996. Genetic constitution of industrial yeast. Microbiologia 12, 371–384. Cerca con Google

20. Bisson LF. 1993. Yeast metabolism of sugars. In Wine Microbiology and Biotechnology, Fleet GH (ed). Harwood Academic: Reading; 55-75. Cerca con Google

21. Blondin B and Dequin S. 1998. Yeast, wine and genetic engineering. Biofutur 182,16–20 Cerca con Google

22. Blondin B, Ratomahenina R, Arnaud A and Galzy P. 1983. Purification and properties of the b-glucosidase of a yeast capable of fermenting cellobiose to ethanol: Dekkera intermedia Van der Walt. Eur J Appl Microbiol Biotechnol 17, 1–6. Cerca con Google

23. Boulton B, Singleton VL, Bisson LF, Kunkee RE. 1996. Yeast and biochemistry of ethanol fermentation. In Principles and Practices of Winemaking, Boulton B, Singleton VL, Bisson LF, Kunkee RE (eds). Chapman and Hall: New York; 139-172. Cerca con Google

24. Brandolini V, Romano P, Maietti A, Caruso M, Tedeschi P., Mazzotta D. 2002. Automated multiple development method for determination of glycerol produced by wine yeasts. World J Microb Biot 18, 481–485. Cerca con Google

25. Briones AI, Ubeda J, Grando MS. 1996. Differentiation of Saccharomyces cerevisiae strains isolated from fermenting musts according to their karyotype patterns. Int J Food Microbiol 28, 369-377. Cerca con Google

26. Bustin SA. 2002. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol 29, 23–39. Cerca con Google

27. Cameron JR, Loh EY and Davis RW. 1979. Evidence for transposition of dispersed repetitive DNA families in yeast. Cell 16, 739-751. Cerca con Google

28. Canal-Llauberes R-M. 1993. Enzymes in winemaking. In Wine Microbiology and biotechnology, Fleet GH (ed).Harwood Academic: Reading; 477-506. Cerca con Google

29. Caridi A, Cufari A, Ramondino D. 2002. Isolation and clonal preselection of enological Saccharomyces. J Gen Appl Microbiol 48,261–267 Cerca con Google

30. Casaregola S, Nguyen HV, Lapathitis G, Kotyk A & Gaillardin C (2001) Analysis of the constitution of the beer yeast genome by PCR, sequencing and subtelomeric sequence hybridization. Int J Syst Evol Microbiol 51, 1607-1618. Cerca con Google

31. Cavalieri, D., Townsend, J.P., Hartl, D.L., 2000. Manifold anomalies in gene expression in a vineyard isolate of Saccharomyces cerevisiae revealed by DNA microarray analysis. Proc Natl Acad Sci USA 24, 12369– 12374. Cerca con Google

32. Cavazza A, Grando MS & Zini C (1992) Rilevazione della flora microbica in mosti e vini. Vignevini 9, 17-20. Cerca con Google

33. Charoenchai C, Fleet GH and PA Henschke. 1997. Screening of non-Saccharomyces wine yeasts for the presence of extracellular hydrolytic enzymes. Australian Journal of Grape and Wine Research 3, 2–8. Cerca con Google

34. Chen Z, Han M. 2000. Building a protein interaction map: research in the post-genome era. Bioessays. 22, 503-6. Cerca con Google

35. Ciani M and Rosini G. 1990. Selection of strains of Saccharomyces cerevisiae of ‘‘Sagrantino’’ D.O.C. for their wine-making properties: preliminary results. Ital J Food Sci 3,165–172 Cerca con Google

36. Cocolin L, Bisson LF, Mills DA. 2000. Direct profiling of the yeast dynamics in wine fermentations. FEMS Microbiol. Lett 189, 81–87. Cerca con Google

37. Codòn, A.C., Gasent-Ramı´rez, J.M., Benìtez, T., 1995. Factors which affect the frequency of sporulation and tetrad formation in Saccharomyces cerevisiae baker’s yeasts. Appl Environ Microbiol 61, 630– 638. Cerca con Google

38. Colagrande O, Silva A, Fumi MD. 1994. Recent applications of biotechnology in wine production. Biotechnol Prog 10, 2-18. Cerca con Google

39. Cole VC and Noble AC. 1995. Flavor chemistry and assessment. In Fermented Beverage Production, Lea AGH, Piggott JR (eds). Blackie Academic and Professional: London; 361-385. Cerca con Google

40. Constantí M, Poblet M, Arola L, Mas A and Guillamón JM. 1997. Analysis of yeast populations during alcoholic fermentation in a newly established winery. Am J Enol Vitic 48, 339-344. Cerca con Google

41. Cottrell M, Viljoen JM, Kock JLFand Lategan PM. 1986. The long-chain fatty acid compositions of species representing the genera Saccharomyces, Schwanniomyces and Lipomyces. J gen microbiol 132, 2401-2403 Cerca con Google

42. Coutinho PM and Henrissat B. 1999. Carbohydrate-active enzymes server at URL:http://afmb.cnrs-mrs.fr/~cazy/CAZY/index.html. Vai! Cerca con Google

43. Cuinier C and Levau JY.1979. Vignes Vins, 283, 44-49. Cerca con Google

44. de Barros Lopes M, Bellon JR, Shirley NJ & Ganter PF. 2002. Evidence for multiple interspecific hybridization in Saccharomyces sensu stricto species. FEMS Yeast Res 1, 323-331. Cerca con Google

45. de Barros Lopes M, Laden A, Henschke PA, Langridge P. 1996. PCR differentiation of commercial yeast strains using intron splice site primers. Appl Environ Microbiol 62, 4514-4520. Cerca con Google

46. Degré R. 1993. Selection and commercial cultivation of wine yeast and bacteria. In Wine Microbiology and Biotechnology, Fleet GH (ed). Harwood Academic: Reading; 421-447. Cerca con Google

47. Delfini C, Pessione E, Garcia Moruno E and C Giunta. 1992. Localization of volatile acidity reducing factors in grape. J Ind Microbiol 11, 19-22 Cerca con Google

48. Dequin S, Salmon JM, Nguyen HV, Blondin B. 2003. Wine yeasts. In: Boekhout T, Robert B (eds) Yeasts in food, beneficial and detrimental aspects. Berhr’s Verlag, Hamburg, Germany, pp 389–412 Cerca con Google

49. Dequin S. 2001 The potential of genetic engineering for improving brewing, wine-making and baking yeasts. Appl Microbiol Biotechnol 56,577–588 Cerca con Google

50. DeRisi J, Iyer VR, Brown PO. 1997. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 24, 680–686. Cerca con Google

51. DeRisi J, van den Hazel B, Marc P, Balzi E, Brown P, Jacq C, Goffeau A. 2000. Genome microarray analysis of transcriptional activation in multidrug resistance yeast mutants. FEBS Lett. 470, 156–160. Cerca con Google

52. Dheda K, Huggett JF, Bustin SA, Johnson MA, Rook G, Zumla A. 2004. Validation of housekeeping genes for normalizing RNA expression in real-time PCR. Biotechniques 37, 112–119. Cerca con Google

53. Dickinson JR, Laterman MM, Danner DJ, Pearson BM, Sanz P, Harrison SJ & Hewlins MJE. 1997. A 13C nuclear magnetic resonance investigation of the metabolism of leucine to isoamyl alcohol in Saccharomyces cerevisiae. J Biol Chem 272, 26871–26878. Cerca con Google

54. Didier G, Brezellec P, Remy E, Henaut A. 2002. GeneANOVA gene expression analysis of variance. Bioinformatics 18,490–491 Cerca con Google

55. Didion T, Grausland M, Kielland-Brandt C and HA Andersen. 1996. Amino acids induce expression of BAP2, a branched-chain amino acid permease gene in Saccharomyces cerevisiae. J Bacteriol, 178, 2025-2029. Cerca con Google

56. Dlauchy D, Tornai-Lehoczki J, Peter G. 1999. Restriction enzyme analysis of PCR amplified rDNA as a taxonomic tool in yeast identification. Syst Appl Microbiol 22, 445-53. Cerca con Google

57. Drawert F and Bednar J. 1983. On the electrophoretical differentiation and classification of proteins. I. Comparative Investigation of Yeast Proteins of Various Genera by Means of Isoelectric Focusing in Polyacrylamide Gels. J Agric Food Chem 27, 3-5 Cerca con Google

58. Dubourdieu D, Darriet P, Ollivier C, Boidron JN and Ribereau-Gayon P. 1988. Role de la levure Saccharomyces cerevisiae dans l’hydrolyse enzymatique des heterosides terpeniques du jus de raisin. C. R. Acad. Sci. Paris, Ser. III, 489– 493. Cerca con Google

59. Dujon B. 1996. The yeast genome project: what did we learn? Trends Genet 12, 263–270. Cerca con Google

60. Eden A, Simchen G, Benvenisty N. 1996, Two yeast homologues of ECA39, a target for c-Myc regulation, code for cytosolic and mitochondrial branched-chain amino acid aminotransferases.. J Biol Chem, 271, 20242-20245 Cerca con Google

61. Eden A, Van Nedervelde L, Drukker M, Benvenisty N, Debourg A. 2001. Involvement of branched-chain amino acid aminotransferases in the production of fusel alcohols during fermentation in yeast. Appl Microbiol Biotechnol, 55, 296-300. Cerca con Google

62. Erasmus DJ, van der Merwe GK and HJ van Vuuren. 2003. Genome-wide expression analyses: Metabolic adaptation of Saccharomyces cerevisiae to high sugar stress. FEMS Yeast Res, 3, 375-399. Cerca con Google

63. Esteve-Zarzoso B, Belloch C, Uruburu F, and A Querol. 1999. Identification of yeasts by RFLP analysis of the 5.8S rRNA gene and the two ribosomal internal transcribed spacers. Int J Syst Bacteriol 49, 329–337. Cerca con Google

64. Estruch F. 2000. Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast. FEMS Microbiol Rev 24, 469–486. Cerca con Google

65. Fernandez-Espinar MT, Lopez V, Ramon D, Bartra E and Querol A. 2001. Study of the authenticity of commercial wine yeasts strains by molecular techniques. Int J Food Microbiol 70, 1 – 10. Cerca con Google

66. Fia G, Giovani G and Rosi I. 2005. Study of b-glucosidase production by wine-related yeasts during alcoholic fermentation. A new rapid fluorimetric method to determine enzymatic activity. J Appl Microbiol 99, 509–517 Cerca con Google

67. Fleet GH and Heard GM. 1990. Yeast growth during fermentation. In Wine Microbiology and Biotechnology ed. Fleet, G.H. pp. 27-75. Switzerland: Harwood Academic Press. Cerca con Google

68. Fleet GH and Heard GM. 1993. Yeasts growth during fermentation. In Wine Microbiology and Biotechnology, Fleet GH (ed). Harwood Academic: Reading; 27-54. Cerca con Google

69. Fleet GH. 1993. The microorganisms of winemaking isolation, enumeration and identification. In Wine Microbiology and Biotechnology, Fleet GH (ed). Harwood Academic: Reading; 1-25. Cerca con Google

70. Fleet GH. 1998. The microbiology of alcoholic beverages. In Microbiology of Fermented Foods, vol 1, Wood BJB (ed). Blackie Academic and Professional: Glasgow; 217-262. Cerca con Google

71. Fleet GH. 2003. Yeast interactions and wine flavour. Int J Food Microbiol, 86, 11-22. Cerca con Google

72. Frezier V and Dubourdieu D. 1991. Incidence du levurage sur l’ecologie des souches de Saccharomyces cerevisiae au cours de la vinification dans deux crus du Bordelais. Journal International des Sciences de la Vigne et du Vin 25, 63–70. Cerca con Google

73. Frezier V. Dubourdieu D. 1992. Ecology of yeast strain Saccharomyces cerevisiae during spontaneous fermentation in a Bordeaux winery. Am J Enol Vitic 43, 375– 380. Cerca con Google

74. Fugelsang KC. 1997. Wine Microbiology. Chapman and Hall: New York. Cerca con Google

75. Fujii T, Kobayashi O, Yoshomoto H, Furukawa S, Tamai Y. 1997. Effect of aeration and unsaturated fatty acids on expression of the Saccharomyces cerevisiae alcohol acetyltransferase gene. Appl Environ Microbiol 63, 910-915. Cerca con Google

76. Fujii T, Nagasawa N, Iwamatsu A, Bogaki T, Tamai Y, Hamachi M. 1994. Molecular cloning, sequence analysis, and expression of the yeast alcohol acetyltransferase gene. Appl Environ Microbiol 60, 2786-2792. Cerca con Google

77. Fujii T, Yoshimoto H, Tamai Y. 1996. Acetate ester production by Saccharomyces cerevisiae lacking the ATF1 gene encoding the alcohol acetyltransferase. J Ferment Bioeng 81, 538-542. Cerca con Google

78. Fukuda K, Yamamoto N, Kiyokawa Y, Yanagiuchi T, Wakai J, Kitamoto K, Inoue Y and A Kimura. 1998. Brewing properties of sake yeast whose EST2 gene encoding isoamyl acetate-hydrolyzing esterase was disrupted. J Ferment Bioeng 85,101–106. Cerca con Google

79. Fukuda K, Yamamoto N, Kiyokawa Y, Yanagiuchi T, Wakai J, Kitamoto K, Inoue Y and A Kimura.. 1998. Balance of activities of alcohol acetyltransferase and esterase in Saccharomyces cerevisiae is important for production of isoamyl acetate. Appl Environ Microbiol 64,4076–4078. Cerca con Google

80. Gagiano M, Van Dyk D, Bauer FF, Lambrechts MG, Pretorius IS. 1999a. Msn1p/Mss10p, Mss11p and Muc1p are part of a signal transduction pathway downstream of Mep2p regulating invasive growth and pseudohyphal differentiation in Saccharomyces cerevisiae. Mol Microbiol 31, 103-116. Cerca con Google

81. Gagiano M, Van Dyk D, Bauer FF, Lambrechts MG, Pretorius IS. 1999b. Divergent regulation of the evolutionary closely related promoters of the Saccharomyces cerevisiae STA2 and MUC1 genes. J Bacteriol 181, 6497-6508. Cerca con Google

82. Gainvors A, Frezier V, Lemaresquier H, Lequart C, Aigle M, Belarbi A. 1994. Detection of polygalacturonase, pectin-lyase and pectin-esterase activities in a Saccharomyces cerevisiae strain. Yeast. 10, 1311-9. Cerca con Google

83. Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO. 2000. Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11, 4241–4257. Cerca con Google

84. Gil JV, Manzanares P, Genoves S, Valles S and Gonzalez-Candelas L. 2005. Over-production of the major exoglucanase of Saccharomyces cerevisiae leads to an increase in the aroma of wine. Int J Food Microbiol, 103, 57-68. Cerca con Google

85. Giudici P and Zambonelli C. 1992. Biometric and Genetic Study on Acetic Acid Production for Breeding of Wine Yeast. Am J Enol Vitic 43,370-374 Cerca con Google

86. Giudici P, Solieri L, Pulvirenti AM, Cassanelli S. 2005. Strategies and perspectives for genetic improvement of wine yeasts. Appl Microbiol Biotechnol 66, 622-628 Cerca con Google

87. Goto-Yamamoto N. Kitano K. Shiki K. Yoshida Y. Suzuki T. Iwata T. Yamane Y. and Hara S. 1998. SSU1-R, a sulphite resistance gene of wine yeast, is an allele of SSU1 with a different upstream sequence. J. Ferment. Bioeng. 86, 427-433. Cerca con Google

88. Grando MS,Ubeda J and AI Brioneset. 1994. Rapd analysis of wine Saccharomyces cerevisiae strains differentiated by pulsed field gel electrophoresis. Biotechnol Tech 8, 557-560. Cerca con Google

89. Green SR and Gray PP. 1950. A differential procedure applicable to bacteriological investigation in brewing. Wallerstein Lab Comm 13, 357-366. Cerca con Google

90. Guerra JB, Araujo RAC, Pataro C, Franco GR. 2001. Genetic diversity of Saccharomyces cerevisiae strains during the 24 h fermentative cycle for the production of the artisanal Brazilian cachaça. Lett Appl Microbiol, 33, 106-111 Cerca con Google

91. Guillamon J M, Barrio E. Querol A. 1996. Characterization of wine yeast strains of the Saccharomyces genus on the basis of molecular markers. Syst. Appl Microbiol 19, 122-132 Cerca con Google

92. Hammond JRM. 1996. Yeast genetics. In Brewing Microbiology, Priest FG, Campbell I (eds). Chapman and Hall: London; 45-82. Cerca con Google

93. Hansen J, Kielland-Brandt MC. 1997. Brewer's yeast. In Yeast Sugar Metabolism, Zimmermann FK, Entian K-D (eds). Technomic Publishing: Lancaster, PA; 503-526. Cerca con Google

94. Hauser, N.C., Fellenberg, K., Gil, R., Bastuck, S., Hoheisel, J.D., Jeffries, T.W., 2001. Whole genome analysis of wine yeast strain. Comp Funct Genom 2, 69–79. Cerca con Google

95. Heard G. 1999. Novel yeasts in wine looking to the future. Food Australia 51, 347-352. Cerca con Google

96. Hennequin C, Thierry A, Richard GF, Lecointre G, Nguyen HV, Gaillardin C and Dujon B. 2001. Microsatellite typing as a new tool for identification of Saccharomyces cerevisiae strains. J Clin Microbiol 39, 551-559. Cerca con Google

97. Henschke PA, Jiranek V. 1993. Yeasts metabolism of nitrogen compounds. In Wine Microbiology and Biotechnology, Fleet GH (ed). Harwood Academic: Reading; 77-164. Cerca con Google

98. Henschke PA. 1997. Wine yeast. In Yeast Sugar Metabolism, Zimmermann FK, Entian K-D (eds). Technomic Publishing: Lancaster, PA; 527-560. Cerca con Google

99. Hohmann and Mager 2003. Yeast Stress Responses. S. Hohmann (Eds.), Springer press. Cerca con Google

100. Huggett , Dheda K, Bustin SA and A Zumla. 2005. Real-time RT-PCR normalisation; strategies and considerations. Genes Immun 6, 279-284. Cerca con Google

101. Hughes TR, Marton MJ, Jones AR, 2000a. Functional discovery via a compendium of expression profiles. Cell 102, 109–126. Cerca con Google

102. Hughes TR, Roberts CJ, Dai H, et al., 2000b. Widespread aneuploidy revealed by DNA microarray expression profiling. Nat Genet 25, 333–33 Cerca con Google

103. Inoue Y, Trevanichi S, Fukuda K, Izawa S, Wakai Y . 1997. Roles of Esterase and Alcohol Acetyltransferase on Production of Isoamyl Acetate in Hansenula mrakii. J Agric Food Chem 45,644 -649. Cerca con Google

104. James SA, Collins MD and Roberts IN. 1996.Use of an rRNA internal transcribed spacer region to distinguish phylogenetically closely related species of the genera Zygosaccharomyces and Torulaspor. Int J Syst Bacteriol 46, 189-194 Cerca con Google

105. Jiranek V, Langridge P, Henschke PA. 1995a. Regulation of hydrogen sulfide liberation in wine-producing Saccharomyces cerevisiae strains by assimilable nitrogen. Appl Environ Microbiol 61, 461-467. Cerca con Google

106. Jiranek V, Langridge P, Henschke PA. 1995b. Amino acid and ammonium utilization by Saccharomyces cerevisiae wine yeasts from a chemically defined medium. Am J Enol Vitic 46, 75-83. Cerca con Google

107. Kispal G, Steiner H, Court DA, Rolinski B & Lill R. 1996. Mitochondrial and cytosolic branched-chain amino acid transaminases from yeast, homologues to the myc oncogeneregulated Eca39 potein. J Biol Chem 271, 24458–24464. Cerca con Google

108. Krejer-van Rij. 1984. in The Yeast, A Taxonomic Study. Elsevier, Amsterdam, The Netherlands Cerca con Google

109. Kunkee RE, Amerine MA. 1970. Yeast in wine-making. In The Yeast, vol 3, Yeast Technology, Rose AH, Harrison JS (eds). Academic Press: New York; 5-57. Cerca con Google

110. Kunkee RE, Bisson LF. 1993. Wine-making yeasts. In: Rose, A.H., Harrison, J.H. (Eds.), Yeast Technology. Academic Press Limited, London, pp. 69–125. Cerca con Google

111. Kurtzman CP and Robnett CJ. 1998. Indentification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Anton Leeuw Int J G 73, 331-371. Cerca con Google

112. Kurtzman CP and Robnett CJ. 2003. Phylogenetic relationships among yeasts of the ‘Saccharomyces complex’ determined from multigene sequence analyses. FEMS Yeast Res 3, 417-432. Cerca con Google

113. Kurtzman CP and Fell JW. 1998a. The Yeasts, A Taxonomic Study, 4th edn. Elsevier Science: Amsterdam. Cerca con Google

114. Kurtzman CP and Fell JW. 1998b. Definition, classification and nomenclature of the yeasts. In The Yeasts, A Taxonomic Study, 4th edn. Kurtzman CP, Fell JW (eds). Elsevier Science: Amsterdam; 3-5. Cerca con Google

115. Kurtzman CP. 2003. Phylogenetic circumscription of Saccharomyces, Kluyveromyces and other members of the Saccharomycetaceae, and the proposal of the new genera Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and Zygotorulaspora. FEMS Yeast Res 4, 233-245. Cerca con Google

116. Lafon-Lafourcade S and Joyeux A. 1979. Conn. Vigne Vin, 4, 295-310. Cerca con Google

117. Lagunas R.1986. Misconceptions about the energy metabolism of Saccharomyces cereviisiae. Yeast 2, 221–228. Cerca con Google

118. Lambrechts, M.G. and Pretorius, I.S. 2000 Yeast and its importance to wine aroma. S Afr J Enol Vitic 21, 97-129 Cerca con Google

119. Lavellee F, Salvas Y, Lamy S, Thomas DY, Degre R and Dulau L. 1994. PCR and DNA fingerprinting used as quality control in the production of wine yeast strains Am J Enol Vitic 45, 86-91. Cerca con Google

120. Legras JL and Karst F. 2003. Optimisation of interdelta analysis for Saccharomyces cerevisiae strain characterisation. FEMS Microbiol. Lett. 221, 249-255. Cerca con Google

121. Lema C, Garcia-Jares C, Orriols I, Angulo L. 1996. Contribution of Saccharomyces and non-Saccharomyces populations to the production of some components of Albarino wine aroma. Am J Enol Vitic 47, 206– 216. Cerca con Google

122. Lilly M, Bauer F, Styger G, Lambrechts MG and Pretorius IS. 2006. The effect of increased branched-chain amino acid transaminase activity in yeast on the production of higher alcohols and on the flavour profiles of wine and distillates. FEMS Yeast Res 6, 726-743. Cerca con Google

123. Lilly M, Lambrechts MG and Pretorius IS. 2000. The effect of increased yeast alcohol acetyltransferase activity on the sensorial quality of wine and brandy. Appl Environ Microbiol 66, 744-753. Cerca con Google

124. Livak KJ and Schmittgen TD. 2001. Analysis of relative gene expression data using rea-time quantitative PCR And the Ct method. Methods 25,402-408. Cerca con Google

125. Lodder JL, Kreger-Van Rij NJW. 1952. The Yeasts, A Taxonomic Study, 1st edn. Elsevier North-Holland: Amsterdam. Cerca con Google

126. Lodder JL. 1970. The Yeasts, A Taxonomic Study, 2nd edn. Elsevier North-Holland: Amsterdam. 95. Cerca con Google

127. Longo E and Vézinhet F. 1993. Chromosomal rearrangements during vegetative growth of a wild strain of Saccharomyces cerevisiae. Appl Environ Microbiol 59, 322– 326. Cerca con Google

128. Lopez V, Fernandez-Espinar MT, Barrio E, Ramon D, and A Querol. 2002. A new PCR-based method for monitoring inoculated wine fermentations. Int J Food Microbiol 81, 63–71. Cerca con Google

129. Lopez V, Querol A, Ramon D and Fernandez-Espinar MT. 2001. A simplified procedure to analyse mitochondrial DNA from industrial yeasts. Int J Food Microbiol 68, 75-81. Cerca con Google

130. Lurton I, Snakkers G, Roulland C, Galy B, Versavaud A. 1995. Influence of the fermentation yeast strain on the composition of wine spirits. J Sci Food Agric 67, 485–491. Cerca con Google

131. Malcorps P, Cheval JM, Jamil S, Dufour JP. 1991. A new model for the regulation of ester synthesis by alcohol acetyltransferase in Saccharomyces cerevisiae during fermentation. J Am Soc Brew Chem 49, 47-53. Cerca con Google

132. Malcorps P and Dufour JP. 1987. Ester synthesis by Saccharomyces cerevisiae: localisation of acetyl-CoA: isoamylalcohol acetyltransferase (AT). Proc Eur Brew Conv 21, 377-384. Cerca con Google

133. Malfeito-Ferreira M, St. Aubyn A and Loureiro V. 1989. Long-chain fatty acid composition as a tool for differentiating spoilage wine yeasts. Mycotaxon 36, 35-42 Cerca con Google

134. Manzanares P, Ramon D and Querol A. 1999. Screening of non-Saccharomyces wine yeasts for the production of -D-xylosidase activity. Int J Food Microbiol 46, 105–112. Cerca con Google

135. Manzanares P, Rojas V, Genoves S and Valles S. 2000. A preliminary search for anthocyanin--D-glucosidase activity in non-Saccharomyces wine yeasts. Int J Food Sci Technol 35, 95–103. Cerca con Google

136. Manzano M, Cocolin L, Iacumin L, Cantoni C and Comi G. 2005. A PCR-TGGE (Temperature Gradient Gel Electrophoresis) technique to asses differentiation among enological Saccharomyces cerevisiae strains. Int. J. Food Microbiol 101, 333–339. Cerca con Google

137. Manzano M, Cocolin L, Longo B & Comi G. 2004. PCR-DGGE differentiation of strains of Saccharomyces sensu stricto. Anton Leeuw Int J G 85, 23-27. Cerca con Google

138. Marks VD, GK van der Merwe and HJJ van Vuuren. 2003. Transcriptional profiling of wine yeast in fermenting grape juice: regulatory effect of diammonium phosphate. FEMS Yeast Res. 3,269–287. Cerca con Google

139. Martinez-Pastor MT, Marchler G, Schuller C, Marchler-Bauer A, Ruis H, Estruch F. 1996. The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J 15, 2227-35. Cerca con Google

140. Martinez-Rodriguez A, Carrascosa AV, Barcenilla JM, Pozo-Bayon MA, Polo MC. 2001. Autolytic capacity and foam analysis as additional criteria for the selection of yeast strains for sparkling wine production. Food Microbiol 18,183–191. Cerca con Google

141. Martini A. 1993. The origin and domestication of the wine yeast Saccharomyces cerevisiae. J Wine Res 4, 165-176. Cerca con Google

142. Martini A. 2003. Biotechnology of natural and winery-associated strains of Saccharomyces cerevisiae. Int Microbiol, 6, 207-209. Cerca con Google

143. Marullo P, Bely M, Masneuf-Pomarede I, Aigle M, Dubourdieu D. 2004. Inheritable nature of oenological traits is demonstrated by meiotic segregation of industrial wine yeast strains. FEMS Yeast Res 4,711–719 Cerca con Google

144. Masneuf I, Aigle M and D Dubourdieu. 1995. Development of PCR/RFLP tool for Saccharomyces cerevisiae/Saccharomyces bayanus identification in oenology. Yeast 11,S571. Cerca con Google

145. Masneuf I, Aigle M and Dubourdieu D. 1996. Development of a polymerase chain reaction/restriction fragment length polymorphism method for Saccharomyces cerevisiae and Saccharomyces bayanus identification in enology. FEMS Microbiol Lett 138, 239–244. Cerca con Google

146. Mason BA and Doufour JP. 2000. Alcohol acetyltransferases and the significance of ester synthesis in yeast. Yeast 16,1287-1298. Cerca con Google

147. Mateo JJ and Di Stefano R. 1997. Description of the b-glucosidase activity of wine yeasts. Food Microbiol 14, 583–591. Cerca con Google

148. McMahon H, Zoecklein BW, Fugelsang K and Jasinski Y. 1999. Quantification of glycosidase activities in selected yeasts and lactic acid bacteria. J Ind Microbiol Bioty 23, 198–203. Cerca con Google

149. Melero R. 1992. Fermentacion controlada y selecion de levaduras vınicas. Rev. Esp. Cienc. Tecnol. Aliment. 32, 371–379. Cerca con Google

150. Meyen, J. 1838. Wiegmann Arch. Naturgesch. 4, Bd. 2, 100. Cerca con Google

151. Michnick S, Roustan J-L, Remize F, Barre P, Dequin S. 1997. Modulation of glycerol and ethanol yields during alcoholic fermentation in Saccharomyces cerevisiae strains overexpressed or disrupted for GPD1 encoding glycerol 3- phosphate dehydrogenase. Yeast 13, 783-793. Cerca con Google

152. Minetoki T, Bogaki T, Iwamatsu A, Fujii T, Himachi M. 1993. The purification, properties and internal peptide sequence of alcohol acetytransferase isolated from Saccharomyces cerevisiae Kyokai no.7. Biosci Biotechnol Biochem 57, 2094-2098. Cerca con Google

153. Monteiro FF and LF Bisson. 1991. Amino acids utilization and urea formation during vinification. Am J Enol Vitic 42,199-208. Cerca con Google

154. Mortimer RK, Romano P, Suzzi G, Polsinelli M. 1994. Genome renewal: a new phenomenon revealed from a genetic study of 43 strains of Saccharomyces cerevisiae derived from natural fermentation of grape musts. Yeast 10, 1543-1552. Cerca con Google

155. Mortimer, R.K., Polsinelli, M., 1999. On the origins of wine yeast. Res Microbiol 150, 199–204. Cerca con Google

156. Nadal D, Colomer B and Pina B. 1996. Molecular polymorphism distribution in phenotypically distinct populations of wine yeast strains. Appl Environ Microbiol 62, 1944-1950. Cerca con Google

157. Nagasawa N, T Bogaki, A Iwamatsu, M Hamachi, and C Kumagai. 1998. Cloning and nucleotide sequence of the alcohol acetyltransferase II gene (ATF2) from Saccharomyces cerevisiae Kyokai No. 7. Biosci Biotechnol Biochem 62,1852–1857. Cerca con Google

158. Naumov GI, James SA, Naumova ES, Louis EJ and Roberts IN. 2000a. Three new species in the Saccharomyces sensu stricto complex: Saccharomyces cariocanus, Saccharomyces kudriavzevii and Saccharomyces mikatae. Int J Syst Evol Microbiol 50, 1931-1942 Cerca con Google

159. Naumov GI, Masneuf I, Naumova ES, Aigle M and Dubourdieu D. 2000b. Association of Saccharomyces bayanus var. uvarum with some French wines: genetic analysis of yeast populations. Res Microbiol 151, 683-691 Cerca con Google

160. Naumov GI. 1996. Genetic identification of biological species in the Saccharomyces sensu stricto complex. J Ind Microbiol 17, 295–302. Cerca con Google

161. Nebreda AR, Villa TG, Villanueva JR and del Rey F. 1986. Cloning of genes related to exo-h-glucanase production in Saccharomyces cerevisiae: characterization of an exo--glucanase structural gene. Gene 47, 245– 259. Cerca con Google

162. Ness F, Lavellee F, Dubourdieu D, Aigle M and Dulau L. 1993. Identification of yeast strains using the polymerase chain reaction. J Sci Food Agric 62, 89-94. Cerca con Google

163. Nevoigt E and Stahl U. 1997. Osmoregulation and glycerol metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 21, 231-41. Cerca con Google

164. Nguyen HV and Gaillardin C. 2005. Evolutionary relationships between the former species Saccharomyces uvarum and the hybrids Saccharomyces bayanus and Saccharomyces pastorianus; reinstatement of Saccharomyces uvarum (Beijerinck) as a distinct species. FEMS Yeast Res 5, 471–483. Cerca con Google

165. Nguyen HV, Lépingle A & Gaillardin C. 2000. Molecular typing demonstrates homogeneity of Saccharomyces uvarum and reveals the existence of hybrids between S. uvarum and S. cerevisiae, including the S. bayanus type strain CBS 380. Syst Appl Microbiol 23, 71–85. Cerca con Google

166. Nickerson, WJ. 1953. Reduction of inorganic substances by yeasts. I. Extracellular reduction of sulfite by species of Candida. J Infect Dis. 93, 43-56. Cerca con Google

167. Noble AC. 1994. Wine flavour. In Understanding Natural Flavours, Piggott JR, Patterson A (eds). Blackie Academic and Professional: Glasgow; 228-242. Cerca con Google

168. Novel Enzymes with Medium-chain Fatty Acid Ethyl Ester Synthesis and Hydrolysis Capacity, J Biol Chem 281, 4445-4456 Cerca con Google

169. Nykanen L, and I Nykanen. 1977. Production of esters by different yeast strains in sugar fermentations. J Inst Brew 83,30–31. Cerca con Google

170. Nykanen L. 1986. Formation and occurrence of flavour compounds in wine and distilled alcoholic beverages. Am J Enol Vitic 37, 84-96. Cerca con Google

171. Owens P and A Noble. 1997. Effect of Storage at Elevated Temperatures on Aroma of Chardonnay Wines. Am J Enol Vitic 48, 310-316. Cerca con Google

172. Pallmann CL, Brown JA, Olineka TL, Cocolin L, Mills DA & Bisson L. 2001. Use of WL medium to profile native flora fermentations. Am J Enol Vitic 52, 198-203. Cerca con Google

173. Park H, Bakalinsky AT. 2000. SSU1 mediates sulphite efflux in Saccharomyces cereviisiae. Yeast 16, 881–888. Cerca con Google

174. Perez-Coello MS, Perez AIB, Iranzo JFU, Alvarez PJM. 1999. Characteristics of wines fermented with different Saccharomyces cerevisiae strains isolated from the La Mancha region. Food Microbiol 16,563–573 Cerca con Google

175. Perez-Ortin JE, Garcia Martinez J, Alberola TM. 2002a. DNA chips for yeast biotechnology. The case of wine yeasts. J Biotechnol 98, 227-241. Cerca con Google

176. Perez-Ortin JE, Querol A, Puig S and Barrio E. 2002b. Molecular Characterization of a Chromosomal Rearrangement Involved in the Adaptive Evolution of Yeast Strains. Genome Res, 12, 1533-1539. Cerca con Google

177. Phister T G, and DA Mills. 2003. Real-time PCR assay for detection and enumeration of Dekkera bruxellensis in wine. Appl Environ Microbiol 69, 7430–7434. Cerca con Google

178. Piper PW, K Talreja, B Panaretou, P Moradas-Ferreira, K Byrne, UM Praekelt, P Meacock, M Recnacq and H. Boucherie. 1994. Induction of major heat-shock proteins of Saccharomyces cerevisiae, including plasma membrane Hsp30, by ethanol levels above a critical threshold. Microbiology 140,3031–3038. Cerca con Google

179. Pramateftaki PV, Lanaridis P and Typas MA. 2000. Molecular identification of wine yeasts at species or strain level: a case study with strains from two vine-growing areas of Greece. J Appl Microbiol 89, 236–248. Cerca con Google

180. Pretorius IS & Hoj PB. 2005. Grape and wine biotechnology: Challenges, opportunities and potential benefits. Aust J Grape Wine Res 11, 83–108. Cerca con Google

181. Pretorius IS and Van der Westhuizen TJ. 1991. The impact of yeast genetics and recombinant DNA technology on the wine industry. S Afr J Enol Vitic 12, 3-31 Cerca con Google

182. Pretorius IS, Bauer FF. 2002. Meeting the consumer challenge through genetically customized wine-yeast strains. Trends Biotechnol 20,426–432 Cerca con Google

183. Pretorius IS, du Toit M, van Rensburg P. 2003. Designer yeasts for the fermentation industry of the 21st century. Food Technol Biotech 41,3–10 Cerca con Google

184. Pretorius IS. 1999. Engineering designer genes for wine yeasts. Aust NZ Wine Indust J 14, 42-47. Cerca con Google

185. Pretorius IS. 2000 Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking. Yeast 16, 675–729 Cerca con Google

186. Puig S, Querol A, Barrio E and Perez-Ortin JE. 2000. Mitotic recombination and genetic changes in Saccharomyces cerevisiae during wine fermentation. Appl Environ Microbiol 66, 2057-2061. Cerca con Google

187. Pulvirenti A, Nguyen HV, Caggia C, Giudici P, Rainieri S and Zambonelli C. 2000. Saccharomyces uvarum, a proper species within Saccharomyces sensu stricto. FEMS Microbiol Lett 192, 191-196. Cerca con Google

188. Pulvirenti A, Solieri L, Gullo M, De Vero L, Giudici P. 2004. Occurrence and dominance of yeast species in sourdough. Lett Appl Microbiol 38, 113-7. Cerca con Google

189. Querol A and Ramon D. 1996. The application of molecular techniques in wine microbiology. Trends Food Sci Technol 7, 73-78 Cerca con Google

190. Querol A, Barrio E, Huerta T and Ramon D. 1992. Molecular monitoring of wine fermentations conducted by active dry yeast strains. Appl Environ Microbiol 58, 2948-2953. Cerca con Google

191. Querol A, Barrio E, Ramon D. 1992. A comparative study of different methods of yeast strain characterisation. Syst Appl Microbiol 15, 439–446. Cerca con Google

192. Querol A, Belloch C, Fernandez-Espinar MT and Barrio E. 2003. Molecular evolution in yeast of biotechnological interest. Int Microbiol, 6, 201-205 Cerca con Google

193. Querol A, Fernandez-Espinar MT, del Olmo M and Barrio E. 2003. Adaptive evolution of wine yeast. Int J Food Microbiol, 86, 3-10 Cerca con Google

194. Quesada MP and JL Cenis. 1995. Use of random amplified polymorphic DNA (RAPD-PCR) in the characterization of wine yeasts. Am J Enol Vitic 46,204–208. Cerca con Google

195. Rachidi N, Barre P, Blondin B. 1999. Multiple Ty-mediated chromosomal translocations lead to karyotype changes in a wine strain of Saccharomyces cerevisiae. Mol Gen Genet 261, 841-850. Cerca con Google

196. Rachidi N, Barre P, Blondin B. 2000. Examination of the transcriptional specificity of an enological yeast. A pilot experiment on the chromosome-III right arm. Curr Genet 37, 1–11. Cerca con Google

197. Rainieri S, Pretorius IS. 2000. Selection and improvement of wine yeasts. Ann Microbiol 50,15–31 Cerca con Google

198. Rainieri S, Zambonelli C and Kaneko Y. 2003. Saccharomyces sensu stricto: systematics, genetic diversity and evolution. J Biosci Bioeng 1, 1–9. Cerca con Google

199. Rainieri S, Zambonelli C, Kaneko Y. 2003. Saccharomyces sensu stricto: systematics, genetic diversity and evolution. J Biosci Bioeng. 1-9. Cerca con Google

200. Rainieri S, Zambonelli, C and Kaneko Y. 1999. Saccharomyces sensu stricto: Systematic, genetic diversity and evolution. J Biosci Bioeng, 96, 1-9. Cerca con Google

201. Ramırez M, Hernandez LM and Larriba G. 1989. A similar protein portion for two exoglucanases secreted by Saccharomyces cerevisiae. Arch Microbiol 151, 391–398. Cerca con Google

202. Rankine, 1967. Formation of higher alcohols by wine yeast, and relation to taste and thresholds. J Sci Food Agric 18, 585. Cerca con Google

203. Rapp A and Mandery H. 1986. Wine aroma. Experientia 42, 873–884. Cerca con Google

204. Rapp A. 1998. Volatile flavour of wine: correlation between instrumental analysis and sensory perception. Nahrung 42, 351– 363. Cerca con Google

205. Reed G and Chan SL. 1979. Evaluating commercial active dry wine yeasts by fermentation activity. Am J Enol Vitic 29,165–168 Cerca con Google

206. Reess M. 1870. Botanische Untersuchungen uber die Alkoholgarungspilze. A. Felix, Leipzig. Cerca con Google

207. Regodon JA, Perez F, Valdes ME, deMiguel C and M Ramirez. 1997. A simple and effective procedure for selection of wine yeast strains. Food Microbiol, 14, 247–254 Cerca con Google

208. Reiser V, Ammerer G and Ruis, H. 1999. Nucleocytoplasmic traffic of MAP kinases. Gene Expression, 247–254. Cerca con Google

209. Remize F, Roustan JL, Sablayrolles JM, Barre P, Dequin S. 1999. Glycerol overproduction by engineered Saccharomyces cerevisiae wine yeast strains leads to substantial changes in by-product formation and to a stimulation of fermentation rate in stationary phase. Appl Environ Microbiol 65, 143-149. Cerca con Google

210. Rep M, Reiser V, Gartner U, Thevelein JM, Hohmann S, Ammerer G and Ruis H. 1999. Osmotic stress-induced gene expression in Saccharomyces cerevisiae requires Msn1p and the novel nuclear factor Hot1p. Mol Cell Biol 5474–5485. Cerca con Google

211. Ribereau-Gayon J, Peynaud E, Ribereau-Gayon P and Sudraud P. 1975. Traité d’oenologie Vol. 2 TSciences et techniques du vin. Dunaud, Paris. Cerca con Google

212. Ribereau-Gayon P, Dubourdieu D, Doneche B & Lonvaud A. 2000. Biochemistry of alcoholic fermentation and metabolic pathways of wine yeasts. Handbook of Enology, Vol. 1, The Microbiology of Wine and Vinifications. John Wiley and Sons, New York, NY, pp. 51–74. Cerca con Google

213. Ribereau-Gayon P, Dubourdieu D, Doneche B & Lonvaud A. 2006. Cytology, taxonomy and ecology of grape and wine yeasts. Handbook of Enology, Vol. 1, The Microbiology of Wine and Vinifications. John Wiley and Sons, New York, NY, pp. 1–52. Cerca con Google

214. Riccio P, Rossano R, Vinella M, Domizio P, Zito F, Sansevrino F, D’Elia A and Rosi I. 1999. Extraction and immobilization in one step of two -glucosidases released from a yeast strain of Debaryomyces hansenii. Enzyme Microb Technol 24, 123–129. Cerca con Google

215. Riou C, Nicaud J, Barre P, Gaillardin C. 1997. Stationary phase gene expression in Saccharomyces cerevisiae during wine fermentation. Yeast 13, 903-915. Cerca con Google

216. Romano P and Suzzi G. 1993. Sulfur dioxide and wine microorganisms. In Wine microbiology and biotechnology (ed. G.H.Fleet), pp. 373–394, Harwood Academic Publishers, Chur, Switzerland. Cerca con Google

217. Romano P, 1997. Metabolic characteristics of wine strains during spontaneous and inoculated fermentation. Food Technol Biotech 35, 255– 260. Cerca con Google

218. Romano P, Monteleone E, Paraggio M, Marchese R, Caporale G, Carlucci A. 1998. A methodological approach to the selection of Saccharomyces cerevisiae wine strains. Food Technol Biotech 36,69–74 Cerca con Google

219. Robinson MD, Grigull J, Mohammad N, Hughes TR. 2002. FunSpec: a web-based cluster interpreter for yeast. BMC Bioinform 3,35–39 Cerca con Google

220. Romano, P. 2005. Proprietà tecnologiche e di qualità delle specie di lieviti vinari. In Microbiologia del vino.Vincenzini et al (ed) Edizioni Ambrosiana. Cerca con Google

221. Rosi I, Vinella M and Domizio P. 1994. Characterization of -glucosidase activity in yeasts of oenological origin. J Appl Bacteriol 77, 519–527. Cerca con Google

222. Rosini G. 1984. Assessment of dominance of added yeast in wine fermentation and origin of Saccharomyces cerevisiae in wine-making. J Gen Appl Microbiol 30, 249–256. Cerca con Google

223. Rossignol T, Dulau L, Julien A and B. Blondin. 2003. Genome-wide monitoring of wine yeast gene expression during alcoholic fermentation. Yeast 20,1369–1385 Cerca con Google

223a. Rossignol T, Postare O, Storai J and Blondin B. 2006. Analysis of the genomic response of a wine yeast to rehydration and inoculation. Appl Microbiol Biotechnol 71, 699–712 Cerca con Google

224. Sabate J, Cano J, Esteve-Zarzoso B and Guillamon JM. 2002. Isolation and identification of yeasts associated with vineyard and winery by RFLP analysis of ribosomal genes and mitochondrial DNA. Microbiol Res 157, 267–274. Cerca con Google

225. Saerens S, Verstrepen KJ, Van Laere S, Voet A, Van Dijck P, Delvaux FR and Thevelein JM. 2006. The Saccharomyces cerevisiae EHT1 and EEB1 Genes encode novel enzymes with medium-chain fatty acid Ethyl Ester synthesis and hydrolysis capacity. J Biol Chem 281, 4446-4456. Cerca con Google

226. Salmon J-M. 1997. Enological fermentation kinetics of an isogenic ploidy series derived from an industrial Saccharomyces cerevisiae strain. J Ferment Bioeng 83, 253-260. Cerca con Google

227. Sambrook J, Fritsch EF and Maniatis T. 1989. Molecular Cloning: a Laboratory Manual 2nd edn. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press. Cerca con Google

228. Sanchez A, Villanueva JR and Villa TG. 1982. Saccharomyces cerevisiae secretes 2 exo--glucanases. FEBS Lett. 138, 209– 212. Cerca con Google

229. Sangorrin M, Zajonskovsky I, van Broock M and Caballero A. 2002. The use of killer biotyping in an ecological survey of yeast in an old patagonian winery. World J Microb Biot 18, 115–120. Cerca con Google

230. Scanes KT, Hohmann S, Prior BA. 1998. Glycerol production by the yeast Saccharomyces cerevisiae and its relevance to wine: a review. S Afr J Enol Vitic 19, 17-22. Cerca con Google

231. Schilter B and Constable A. 2002. Regulatory control of genetically modified (GM) foods: likely developments. Toxicol Lett 127, 341–349 Cerca con Google

232. Schreier, P., 1979. Flavour composition of wines: a review. CRC Cr Rev Food Sci 12, 59–111. Cerca con Google

233. Schuller D and Casal M, 2005. The use of genetically modifies Saccharomyces cerevisiae strains in the wine industry. Appl Microbiol Biotechnol 68, 292-304 Cerca con Google

234. Schuller D, Valero E, Dequin S and Casal M. 2003. Survey of molecular methods for the typing of wine yeast strains. FEMS Microbiol Lett 231, 19–26. Cerca con Google

235. Schütz M and Gafner J. 1993. Analysis of yeast diversity during spontaneous and induced alcoholic fermentations. J Appl Bacteriol 75, 551– 558. Cerca con Google

236. Shimizu K. 1993. Killer yeasts. In Wine Microbiology and Biotechnology, Fleet GH (ed). Harwood Academic: Reading; 243-264. Cerca con Google

237. Sniegowski PD, Dombrowski PG and Fingerman E. 2002. Saccharomyces cerevisiae and Saccharomyces paradoxus coexist in a natural woodland site in North America and display different levels of reproductive isolation from European conspecifics. FEMS Yeast Res. 1,299-306. Cerca con Google

238. Snow R. 1983. Genetic improvement of wine yeast. In Yeast Genetics - Fundamental and Applied Aspects, Spencer JFT, Spencer DM, Smith ARW (eds). Springer-Verlag: New York; 439-459. Cerca con Google

239. Soufleros E and A Bertrand. 1979. Role de la "souche de levure" dans la production des substances volatiles en cours de la fermentation du jus de raisin. Connaiss. Vigne Vin 13,181-198. Cerca con Google

240. Spagna G, Barbagallo RN, Palmeri R, Restuccia C and Giudici P. 2002. Properties of endogenous -glucosidase of a Pichia anomala strain isolated from Sicilian musts and wines. Enzyme Microb Technol 31, 1036–1041. Cerca con Google

241. Spagna G, Barbagallo RN, Palmeri R, Restuccia C and Giudici P. 2002. Properties of endogenous -glucosidase of a Saccharomyces cerevisiae strain isolated from Sicilian musts and wines. Enzyme Microb Technol 31, 1030–1035. Cerca con Google

242. Suomalainen H and E Oura. 1971. Yeast nutrition and solute uptake In: Rose AH, Harrison JS.(eds), The Yeasts, Vol. 2. Academic Press, London/New York Cerca con Google

243. Swiegers JH and Pretorius IS. 2005. Yeast modulation of wine flavour. Adv Appl Microbiol 57: 131–175. Cerca con Google

244. Swiegers JH, Bartowsky EJ, Henschke PA and Pretorius IS. 2005. Yeast and bacterial modulation of wine aroma and flavour. Aust J Grape Wine Res 11, 139–173. Cerca con Google

244. Talla E, Tekaia F, Brino L and Dujon B. 2003. A novel design of whole- genome microarray probes for Saccharomyces cerevisiae which minimizes cross- hybridization. BMC genomics 4, 1-18 Cerca con Google

245. Thompson JD, Higgins DG & Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673-4680. Cerca con Google

246. Thorngate JH. 1997. The physiology of human sensory response to wine: a review. Am J Enol Vitic 48, 271-279 Cerca con Google

247. Tredoux HG, Kock JL, Lategan PM and Muller HB. 1987. A rapid identification technique to differentiate between Saccharomyces cerevisiae strains and other yeast species in the wine Industry. Am J Enol Vitic 38, 161-164. Cerca con Google

248. Tromp A, De Klerk CA. 1988. Effect of copperoxychloride on the fermentation of must and on wine quality. S Afr J Enol Vitic 9, 31-36. Cerca con Google

249. Verstrepen K J, Van Laere S, F. F. Vanderhaegen BM, Derdelinckx J, Winderickx G, Dufour JP, Thevelein M, Pretorius IS, and FR Delvaux. 2001. Expression levels of the yeast Alcohol Acetyltransferase genes ATF1, Lg-ATF1, and ATF2 control the formation of a broad range of volatile esters. Appl Environ Micobiol, 69, 5228–5237 Cerca con Google

250. Van der Walt JP (1970) Saccharomyces Meyen emend Reess. The yeasts: a Taxonomic Study (Lodder J, ed). Elsevier, Amsterdam, The Netherlands. Cerca con Google

251. Varela C, Cardenas J, Melo F and E. Agosin. 2005. Quantitative analysis of wine yeast gene expression profiles under winemaking conditions. Yeast 22,369–383. Cerca con Google

252. Vasserot Y, Chemardin P, Arnaud A and Galzy P. 1990. Evidence for the-glucosidase activity and cellobiose fermentation by various Kloeckera strains. Acta Biotechnol 5, 439–445. Cerca con Google

253. Vasserot Y, Christiaens H, Chemardin P, Arnaud A and Galzy P. 1989. Purification and properties of a -glucosidase of Hanseniaspora vinae Van der Walt and Tscheuschner with the view to its utilization in fruit aroma liberation. J Appl Bacteriol 66, 271–279. Cerca con Google

254. Vaughan-Martini A and Martini A. 1993. A taxonomic key for the genus Saccharomyces. Syst Appl Microbiol 16, 113–119. Cerca con Google

255. Vaughan-Martini A, Martini A. 1995. Facts, myths and legends on the prime industrial microorganism. J Ind Microbiol 14, 514-522. Cerca con Google

256. Vaughan-Martini A, Martini A. 1998. Saccharomyces Meyen ex Reess. In The Yeasts, A Taxonomic Study, 4th edn. Kurtzman CP, Fell JW (eds). Elsevier Science: Amsterdam; 358-371. Cerca con Google

257. Vazquez de Aldana CR, Correa J, San segundo P, Bueno A, Nebreda AR, Mendez E and del Rey F. 1991. Nucleotide sequence of the exo-1,3-h-glucanase-encoding gene, EXG1, of the yeast Saccharomyces cerevisiae. Gene 97, 173–182. Cerca con Google

258. Velculescu VE, Zhang L, Vogelstein B, Kinzler KW. 1995. Serial analysis of gene expression. Science 270, 484-7. Cerca con Google

259. Versavaud A, Courcoux P, Roulland C, Dulau L and Hallet JN. 1995. Genetic diversity and geographical distribution of wild Saccharomyces cerevisiae strains from the wine-producing area of Charentes, France. Appl Environ Microbiol 61, 3521–3529. Cerca con Google

260. Vezinhet F, Blondin B and Hallet J-N. 1990 Chromosomal DNA patterns and mitochondrial DNA polymorphisms as tools for identfication of enological strains of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 32, 568-571. Cerca con Google

261. Vezinhet F, Hallet JN, Valade M and Poulard A. 1992. Ecological survey of wine yeast strains by molecular methods of identification. Am J Enol Vitic 43, 83–86. Cerca con Google

262. Vézinhet F. 1989. Obtention by intragenomic recombination of non-foaming clones from an enological strain of the yeast Saccharomyces cerevisiae. Sci Aliments 9, 253-265. Cerca con Google

263. Vincenzini M, Romano P e Farris GA. 2005. Microbiologia del vino. Edizioni Ambrosiana. Cerca con Google

264. Volschenk H, Viljoen M, Grobler J, Petzold B, Bauer FF, Subden R, Young RA, Lonvaud A, Denayrolles M, Van Vuuren HJJ. 1997. Engineering pathways for malate degradation in Saccharomyces cerevisiae. Nature Biotech 15, 253-257. Cerca con Google

265. White TJ, Burns T, Lee S and Taylor J. 1990 Amplification and sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols. A Guide to Methods and Applications ed. Innis MA, Gelfand DH, Snisky JJ and White TJ. pp. 315–322. San Diego, CA: Academic Press. Cerca con Google

266. Wodicka L, Dong H, Mittmann M, Ho MH, Lockhart DJ, 1997. Genome-wide expression monitoring in Saccharomyces cereviisiae. Nat Biotechnol 15, 1359–1367. Cerca con Google

267. Yarrow, D. 1984. Zygosaccharomyces Barker. In: The Yeasts, A Taxonomic Study, 3rd edn. (Kreger-van Rij, N.J.W., Ed.), pp. 449-465. Elsevier, Amsterdam. Cerca con Google

268. Yuasa N, Nagakawa Y, Hayakawa M and Iimura Y. 2005. Two alleles of the sulphite resistance genes are differentially regulated in Saccharomyces cerevisiae. Biosci Biotechnol Biochem 69, 1584-1588. Cerca con Google

269. Yuasa N, Nagakawa Y, Masayuki H and Iimura Y. 2004. Distribution of the Sulphite resistance gene SSU1-R and the variation in its promoter region in wine yeasts. J Biosci Bioeng 5, 394-397. Cerca con Google

270. Zambonelli C, Passarelli P, Ranieri S, Bertolini L, Giudici P, Castellari L. 1997. Technological properties and temperature response of interspecific Saccharomyces hybrids. J Sci Food Agric 78,7–12 Cerca con Google

271. Zambonelli C, Passarelli P, Ranieri S, Giudici P. 1993. Taxonomic and technological implications of sterility in hybrids from cryotolerant and non cryotolerant Saccharomyces strains. Ann Microbiol 43,217–223 Cerca con Google

272. Zambonelli C. 1988. I lieviti selezionati. In: Zambonelli C (ed) Microbiologia e biotecnologia dei vini. Edagricole, Bologna, pp 123–136 Cerca con Google

273. Zambonelli C. 2003. Microbiologia e Biotecnologia dei Vini. Edizioni Agricole. Cerca con Google

274. Zea L, Moreno J, Ortega JM and Medina M. 1995. Content of free terpenic compounds in cells and musts during vinification with three Saccharomyces cerevisiae races. Am J Enol Vitic 43, 1110– 1114. Cerca con Google

275. Zhang YX, Perry K, Vinci VA, Powell K, Stemmer WPC, Cardayré SB. 2002. Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature 415,644–646 Cerca con Google

276. Zuzuarregui A and M. del Olmo. 2004. Expression of stress response genes in wine strains with different fermentative behavior. FEMS Yeast Res. 4,699–710. Cerca con Google

277. Zuzuarregui A, and M. del Olmo. 2004. Analyses of stress resistance under laboratory conditions constitute a suitable criterion for wine yeast selection. Anton Leeuw Int J G 85,271–280. Cerca con Google

278. Zuzuarregui A, Monteoliva L, Gil C and M. del Olmo. 2006. Transcriptomic and proteomic approach for understanding the molecular basis of adaptation of Saccharomyces cerevisiae to wine fermentation Appl Environ Microbiol, 72, 836-847 Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record