Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Albiero, Mattia (2010) The role of p66Shc knockout in a murine model of diabetic ulcers and peripheral ischemia. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
15Mb

Abstract (inglese)

This thesis studied the role of p66shc in a murine model of ulcers complicated with peripheral ischemia. This study showed that the knockout of p66Shc improved wound healing in the setting of diabetes and ischemia. Moreover, diabetes increases the expression of p66Shc.

Abstract (italiano)

Questa tesi ha studiato il ruolo di p66Shc in un modello murino di ulcere diabetiche complicate da ischemia periferica. Questo studio ha dimostrato che il knockout di p66Shc migliora la guarigione delle ulcere nel contesto di diabete ed ischemia. Il diabete, inoltre, aumenta l'espressione di p66Shc.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Avogaro, Angelo
Dottorato (corsi e scuole):Ciclo 22 > Scuole per il 22simo ciclo > SCIENZE MEDICHE, CLINICHE E SPERIMENTALI > SCIENZE DIABETOLOGICHE
Data di deposito della tesi:NON SPECIFICATO
Anno di Pubblicazione:02 Marzo 2010
Parole chiave (italiano / inglese):Diabete, Stress Ossidativo, p66Shc, Ulcere
Settori scientifico-disciplinari MIUR:Area 06 - Scienze mediche > MED/09 Medicina interna
Struttura di riferimento:Dipartimenti > Dipartimento di Medicina Clinica e Sperimentale
Codice ID:3024
Depositato il:29 Ott 2010 13:38
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Proksch, E.; Brandner, J. M.; Jensen, J. M. The skin: an indispensable barrier, Exp Dermatol 2008, 17, 1063-1072. Cerca con Google

2. Honari, S. Topical therapies and antimicrobials in the management of burn wounds, Crit Care Nurs Clin North Am 2004, 16, 1-11. Cerca con Google

3. Ansel, J. C.; Armstrong, C. A.; Salmon, J. K. The skin as an immune organ, West J Med 1994, 160, 146-152. Cerca con Google

4. Williams, I. R.; Kupper, T. S. Immunity at the surface: homeostatic mechanisms of the skin immune system, Life Sci 1996, 58, 1485-1507. Cerca con Google

5. Streilein, J. W. (1989) Skin-associated lymphoid tissue, chap 2, in Immune Mechanisms of Cutaneous Disease, pp 73-95, marcel Dekker, New York, NY. Cerca con Google

6. Seeley, Stephens, and Tate (1995) Anatomy & Physiology, Mosby, St. Louis Cerca con Google

7. Trent, J. T.; Kirsner, R. S. Wounds and malignancy, Adv Skin Wound Care 2003, 16, 31-34. Cerca con Google

8. Gurtner, G. C.; Werner, S.; Barrandon, Y.; Longaker, M. T. Wound repair and regeneration, Nature 2008, 453, 314-321. Cerca con Google

9. Gurtner, G. C.; Callaghan, M. J.; Longaker, M. T. Progress and potential for regenerative medicine, Annu Rev Med 2007, 58, 299-312. Cerca con Google

10. Martin, P. Wound healing--aiming for perfect skin regeneration, Science 1997, 276, 75-81. Cerca con Google

11. Werner, S.; Grose, R. Regulation of wound healing by growth factors and cytokines, Physiol Rev 2003, 83, 835-870. Cerca con Google

12. Clarck, and Henson (1989) The Molecular and Cellular Biology of Wound Repair, Plenum Press, New York, NY Cerca con Google

13. Grose, R.; Werner, S. Wound-healing studies in transgenic and knockout mice, Mol Biotechnol 2004, 28, 147-166. Cerca con Google

14. Tonnesen, M. G., Worthen, S. G., and Johnston, R. B. (1989) Neutrophil emigration, Activation and Tissue Damage, in The Molecular and Cellular Biology of Wound Repair, Plenum Press, New York, NY. Cerca con Google

15. Leibovich, S. J.; Ross, R. The role of the macrophage in wound repair. A study with hydrocortisone and antimacrophage serum, Am J Pathol 1975, 78, 71-100. Cerca con Google

16. Martin, P.; Leibovich, S. J. Inflammatory cells during wound repair: the good, the bad and the ugly, Trends in cell biology 2005, 15, 599-607. Cerca con Google

17. Greenhalgh, D. G.; Sprugel, K. H.; Murray, M. J.; Ross, R. PDGF and FGF stimulate wound healing in the genetically diabetic mouse, Am J Pathol 1990, 136, 1235-1246. Cerca con Google

18. Grose, R.; Werner, S. Wound healing studies in transgenic and knockout mice. A review, Methods Mol Med 2003, 78, 191-216. Cerca con Google

19. Falanga, V. Wound healing and its impairment in the diabetic foot, Lancet 2005, 366, 1736-1743. Cerca con Google

20. Leibovich, S. J.; Ross, R. A macrophage-dependent factor that stimulates the proliferation of fibroblasts in vitro, Am J Pathol 1976, 84, 501-514. Cerca con Google

21. Singer, A. J.; Clark, R. A. Cutaneous wound healing, N Engl J Med 1999, 341, 738-746. Cerca con Google

22. Mc Pherson, J. M., and Piez, K. A. (1989) Collagen in dermal wound repair, in The Molecular and Cellular Biology of Wound Repair. Cerca con Google

23. Clarck, and Henson (1989) Granulation Tissue Formation, in The Molecular and Cellular Biology of Wound Repair, pp 243-401, Plenum Press, New York, NY. Cerca con Google

24. Clark, R. A.; Nielsen, L. D.; Welch, M. P.; McPherson, J. M. Collagen matrices attenuate the collagen-synthetic response of cultured fibroblasts to TGF-beta, J Cell Sci 1995, 108 ( Pt 3), 1251-1261. Cerca con Google

25. Nissen, N. N.; Polverini, P. J.; Koch, A. E.; Volin, M. V.; Gamelli, R. L.; DiPietro, L. A. Vascular endothelial growth factor mediates angiogenic activity during the proliferative phase of wound healing, Am J Pathol 1998, 152, 1445-1452. Cerca con Google

26. Clark, R. A.; Quinn, J. H.; Winn, H. J.; Lanigan, J. M.; Dellepella, P.; Colvin, R. B. Fibronectin is produced by blood vessels in response to injury, J Exp Med 1982, 156, 646-651. Cerca con Google

27. Gallagher, K. A.; Goldstein, L. J.; Thom, S. R.; Velazquez, O. C. Hyperbaric oxygen and bone marrow-derived endothelial progenitor cells in diabetic wound healing, Vascular 2006, 14, 328-337. Cerca con Google

28. Wu, Y.; Wang, J.; Scott, P. G.; Tredget, E. E. Bone marrow-derived stem cells in wound healing: a review, Wound Repair Regen 2007, 15 Suppl 1, S18-S26. Cerca con Google

29. Bluff, J. E.; Ferguson, M. W.; O'Kane, S.; Ireland, G. Bone marrow-derived endothelial progenitor cells do not contribute significantly to new vessels during incisional wound healing, Exp Hematol 2007, 35, 500-506. Cerca con Google

30. Ilan, N.; Mahooti, S.; Madri, J. A. Distinct signal transduction pathways are utilized during the tube formation and survival phases of in vitro angiogenesis, J Cell Sci 1998, 111 ( Pt 24), 3621-3631. Cerca con Google

31. Opalenik, S. R.; Davidson, J. M. Fibroblast differentiation of bone marrow-derived cells during wound repair, FASEB J 2005, 19, 1561-1563. Cerca con Google

32. Skalli, O., and Gabbiani, G. (1989) The Biology of the myofibroblast. Relationship to wound contraction and fibrocontractive diseases, in The Molecular and Cellular Biology of Wound Repair. Cerca con Google

33. Clark, R. A.; Lanigan, J. M.; DellaPelle, P.; Manseau, E.; Dvorak, H. F.; Colvin, R. B. Fibronectin and fibrin provide a provisional matrix for epidermal cell migration during wound reepithelialization, J Invest Dermatol 1982, 79, 264-269. Cerca con Google

34. LEVENSON, S. M.; GEEVER, E. F.; CROWLEY, L. V.; OATES, J. F.; BERARD, C. W.; ROSEN, H. THE HEALING OF RAT SKIN WOUNDS, Ann Surg 1965, 161, 293-308. Cerca con Google

35. Ramsey, S. D.; Newton, K.; Blough, D.; McCulloch, D. K.; Sandhu, N.; Reiber, G. E.; Wagner, E. H. Incidence, outcomes, and cost of foot ulcers in patients with diabetes, Diabetes Care 1999, 22, 382-387. Cerca con Google

36. Bartus, C. L.; Margolis, D. J. Reducing the incidence of foot ulceration and amputation in diabetes, Curr Diab Rep 2004, 4, 413-418. Cerca con Google

37. Boulton, A. J.; Vileikyte, L.; Ragnarson-Tennvall, G.; Apelqvist, J. The global burden of diabetic foot disease, Lancet 2005, 366, 1719-1724. Cerca con Google

38. Faglia, E.; Clerici, G.; Clerissi, J.; Gabrielli, L.; Losa, S.; Mantero, M.; Caminiti, M.; Curci, V.; Quarantiello, A.; Lupattelli, T.; Luppattelli, T.; Morabito, A. Long-term prognosis of diabetic patients with critical limb ischemia: a population-based cohort study, Diabetes Care 2009, 32, 822-827. Cerca con Google

39. Nabuurs-Franssen, M. H.; Huijberts, M. S.; Nieuwenhuijzen Kruseman, A. C.; Willems, J.; Schaper, N. C. Health-related quality of life of diabetic foot ulcer patients and their caregivers, Diabetologia 2005, 48, 1906-1910. Cerca con Google

40. Jeffcoate, W. J.; Harding, K. G. Diabetic foot ulcers, Lancet 2003, 361, 1545-1551. Cerca con Google

41. Brownlee, M. Biochemistry and molecular cell biology of diabetic complications, Nature 2001, 414, 813-820. Cerca con Google

42. Brownlee, M. The pathobiology of diabetic complications: a unifying mechanism, Diabetes 2005, 54, 1615-1625. Cerca con Google

43. Creager, M. A.; Lüscher, T. F.; Cosentino, F.; Beckman, J. A. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: Part I, Circulation 2003, 108, 1527-1532. Cerca con Google

44. Lüscher, T. F.; Creager, M. A.; Beckman, J. A.; Cosentino, F. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: Part II, Circulation 2003, 108, 1655-1661. Cerca con Google

45. Giugliano, D.; Ceriello, A.; Paolisso, G. Oxidative stress and diabetic vascular complications, Diabetes Care 1996, 19, 257-267. Cerca con Google

46. Droge, W. Free radicals in the physiological control of cell function, Physiol Rev 2002, 82, 47. Cerca con Google

47. Balaban, R. S.; Nemoto, S.; Finkel, T. Mitochondria, oxidants, and aging, Cell 2005, 120, 483-495. Cerca con Google

48. Niedowicz, D. M.; Daleke, D. L. The role of oxidative stress in diabetic complications, Cell Biochem Biophys 2005, 43, 289-330. Cerca con Google

49. D'Autréaux, B.; Toledano, M. B. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis, Nat Rev Mol Cell Biol 2007, 8, 813-824. Cerca con Google

50. Giorgio, M.; Trinei, M.; Migliaccio, E.; Pelicci, P. G. Hydrogen peroxide: a metabolic by-product or a common mediator of ageing signals?, Nat Rev Mol Cell Biol 2007, 8, 722-728. Cerca con Google

51. Du, X.; Matsumura, T.; Edelstein, D.; Rossetti, L.; Zsengellér, Z.; Szabó, C.; Brownlee, M. Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells, J Clin Invest 2003, 112, 1049-1057. Cerca con Google

52. Du, X. L.; Edelstein, D.; Rossetti, L.; Fantus, I. G.; Goldberg, H.; Ziyadeh, F.; Wu, J.; Brownlee, M. Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation, Proc Natl Acad Sci U S A 2000, 97, 12222-12226. Cerca con Google

53. Nishikawa, T.; Edelstein, D.; Du, X. L.; Yamagishi, S.; Matsumura, T.; Kaneda, Y.; Yorek, M. A.; Beebe, D.; Oates, P. J.; Hammes, H. P.; Giardino, I.; Brownlee, M. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage, Nature 2000, 404, 787-790. Cerca con Google

54. Quagliaro, L.; Piconi, L.; Assaloni, R.; Martinelli, L.; Motz, E.; Ceriello, A. Intermittent high glucose enhances apoptosis related to oxidative stress in human umbilical vein endothelial cells: the role of protein kinase C and NAD(P)H-oxidase activation, Diabetes 2003, 52, 2795-2804. Cerca con Google

55. Avogaro, A.; Pagnin, E.; Calò, L. Monocyte NADPH oxidase subunit p22(phox) and inducible hemeoxygenase-1 gene expressions are increased in type II diabetic patients: relationship with oxidative stress, J Clin Endocrinol Metab 2003, 88, 1753-1759. Cerca con Google

56. Desco, M. C.; Asensi, M.; Márquez, R.; Martínez-Valls, J.; Vento, M.; Pallardó, F. V.; Sastre, J.; Viña, J. Xanthine oxidase is involved in free radical production in type 1 diabetes: protection by allopurinol, Diabetes 2002, 51, 1118-1124. Cerca con Google

57. Aliciguzel, Y.; Ozen, I.; Aslan, M.; Karayalcin, U. Activities of xanthine oxidoreductase and antioxidant enzymes in different tissues of diabetic rats, J Lab Clin Med 2003, 142, 172-177. Cerca con Google

58. Jeffcoate, W. J.; Price, P.; Harding, K. G.; International Working Group on Wound Healing and Treatments for People with Diabetic Foot Ulcers Wound healing and treatments for people with diabetic foot ulcers, Diabetes Metab Res Rev 2004, 20 Suppl 1, S78-S89. Cerca con Google

59. Vowden, V. K. (2001) The management of diabetic foot ulcers, Martin Dunitz, London Cerca con Google

60. Avogaro, A.; de Kreutzenberg, S. V.; Fadini, G. Endothelial dysfunction: causes and consequences in patients with diabetes mellitus, Diabetes Res Clin Pract 2008, 82 Suppl 2, S94-S101. Cerca con Google

61. Guzik, T. J.; Mussa, S.; Gastaldi, D.; Sadowski, J.; Ratnatunga, C.; Pillai, R.; Channon, K. M. Mechanisms of increased vascular superoxide production in human diabetes mellitus: role of NAD(P)H oxidase and endothelial nitric oxide synthase, Circulation 2002, 105, 1656-1662. Cerca con Google

62. Harrison, D. G. Cellular and molecular mechanisms of endothelial cell dysfunction, J Clin Invest 1997, 100, 2153-2157. Cerca con Google

63. Jay, D.; Hitomi, H.; Griendling, K. K. Oxidative stress and diabetic cardiovascular complications, Free Radic Biol Med 2006, 40, 183-192. Cerca con Google

64. Urbich, C.; Dimmeler, S. Endothelial progenitor cells: characterization and role in vascular biology, Circ Res 2004, 95, 343-353. Cerca con Google

65. Loomans, C. J.; de Koning, E. J.; Staal, F. J.; Rookmaaker, M. B.; Verseyden, C.; de Boer, H. C.; Verhaar, M. C.; Braam, B.; Rabelink, T. J.; van Zonneveld, A. J. Endothelial progenitor cell dysfunction: a novel concept in the pathogenesis of vascular complications of type 1 diabetes, Diabetes 2004, 53, 195-199. Cerca con Google

66. Tepper, O. M.; Galiano, R. D.; Capla, J. M.; Kalka, C.; Gagne, P. J.; Jacobowitz, G. R.; Levine, J. P.; Gurtner, G. C. Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures, Circulation 2002, 106, 2781-2786. Cerca con Google

67. Werner, N.; Kosiol, S.; Schiegl, T.; Ahlers, P.; Walenta, K.; Link, A.; Böhm, M.; Nickenig, G. Circulating endothelial progenitor cells and cardiovascular outcomes, N Engl J Med 2005, 353, 999-1007. Cerca con Google

68. Case, J.; Ingram, D. A.; Haneline, L. S. Oxidative stress impairs endothelial progenitor cell function, Antioxid Redox Signal 2008, 10, 1895-1907. Cerca con Google

69. Peppa, M.; Stavroulakis, P.; Raptis, S. A. Advanced glycoxidation products and impaired diabetic wound healing, Wound Repair Regen 2009, 17, 461-472. Cerca con Google

70. Obrosova, I. G. Diabetes and the peripheral nerve, Biochim Biophys Acta 2009, 1792, 931-940. Cerca con Google

71. Roy, S.; Khanna, S.; Nallu, K.; Hunt, T. K.; Sen, C. K. Dermal wound healing is subject to redox control, Mol Ther 2006, 13, 211-220. Cerca con Google

72. Botusan, I. R.; Sunkari, V. G.; Savu, O.; Catrina, A. I.; Grünler, J.; Lindberg, S.; Pereira, T.; Ylä-Herttuala, S.; Poellinger, L.; Brismar, K.; Catrina, S. B. Stabilization of HIF-1alpha is critical to improve wound healing in diabetic mice, Proc Natl Acad Sci U S A 2008, 105, 19426-19431. Cerca con Google

73. Ceradini, D. J.; Kulkarni, A. R.; Callaghan, M. J.; Tepper, O. M.; Bastidas, N.; Kleinman, M. E.; Capla, J. M.; Galiano, R. D.; Levine, J. P.; Gurtner, G. C. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1, Nat Med 2004, 10, 858-864. Cerca con Google

74. Ceradini, D. J.; Gurtner, G. C. Homing to hypoxia: HIF-1 as a mediator of progenitor cell recruitment to injured tissue, Trends Cardiovasc Med 2005, 15, 57-63. Cerca con Google

75. Fadini, G. P.; Sartore, S.; Schiavon, M.; Albiero, M.; Baesso, I.; Cabrelle, A.; Agostini, C.; Avogaro, A. Diabetes impairs progenitor cell mobilisation after hindlimb ischaemia-reperfusion injury in rats, Diabetologia 2006, 49, 3075-3084. Cerca con Google

76. Luzi, L.; Confalonieri, S.; Di Fiore, P. P.; Pelicci, P. G. Evolution of Shc functions from nematode to human, Curr Opin Genet Dev 2000, 10, 668-674. Cerca con Google

77. Purdom, S.; Chen, Q. M. Linking oxidative stress and genetics of aging with p66Shc signaling and forkhead transcription factors, Biogerontology 2003, 4, 181-191. Cerca con Google

78. Ventura, A.; Luzi, L.; Pacini, S.; Baldari, C. T.; Pelicci, P. G. The p66Shc longevity gene is silenced through epigenetic modifications of an alternative promoter, J Biol Chem 2002, 277, 22370-22376. Cerca con Google

79. Bonfini, L.; Migliaccio, E.; Pelicci, G.; Lanfrancone, L.; Pelicci, P. G. Not all Shc's roads lead to Ras, Trends Biochem Sci 1996, 21, 257-261. Cerca con Google

80. Migliaccio, E.; Mele, S.; Salcini, A. E.; Pelicci, G.; Lai, K. M.; Superti-Furga, G.; Pawson, T.; Di Fiore, P. P.; Lanfrancone, L.; Pelicci, P. G. Opposite effects of the p52shc/p46shc and p66shc splicing isoforms on the EGF receptor-MAP kinase-fos signalling pathway, EMBO J 1997, 16, 706-716. Cerca con Google

81. Natalicchio, A.; De Stefano, F.; Perrini, S.; Laviola, L.; Cignarelli, A.; Caccioppoli, C.; Quagliara, A.; Melchiorre, M.; Leonardini, A.; Conserva, A.; Giorgino, F. Involvement of the p66Shc protein in glucose transport regulation in skeletal muscle myoblasts, Am J Physiol Endocrinol Metab 2009, 296, E228-E237. Cerca con Google

82. Migliaccio, E.; Giorgio, M.; Mele, S.; Pelicci, G.; Reboldi, P.; Pandolfi, P. P.; Lanfrancone, L.; Pelicci, P. G. The p66shc adaptor protein controls oxidative stress response and life span in mammals, Nature 1999, 402, 309-313. Cerca con Google

83. Pinton, P.; Rimessi, A.; Marchi, S.; Orsini, F.; Migliaccio, E.; Giorgio, M.; Contursi, C.; Minucci, S.; Mantovani, F.; Wieckowski, M. R.; Del Sal, G.; Pelicci, P. G.; Rizzuto, R. Protein kinase C beta and prolyl isomerase 1 regulate mitochondrial effects of the life-span determinant p66Shc, Science 2007, 315, 659-663. Cerca con Google

84. Giorgio, M.; Migliaccio, E.; Orsini, F.; Paolucci, D.; Moroni, M.; Contursi, C.; Pelliccia, G.; Luzi, L.; Minucci, S.; Marcaccio, M.; Pinton, P.; Rizzuto, R.; Bernardi, P.; Paolucci, F.; Pelicci, P. G. Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis, Cell 2005, 122, 221-233. Cerca con Google

85. Orsini, F.; Migliaccio, E.; Moroni, M.; Contursi, C.; Raker, V. A.; Piccini, D.; Martin-Padura, I.; Pelliccia, G.; Trinei, M.; Bono, M.; Puri, C.; Tacchetti, C.; Ferrini, M.; Mannucci, R.; Nicoletti, I.; Lanfrancone, L.; Giorgio, M.; Pelicci, P. G. The life span determinant p66Shc localizes to mitochondria where it associates with mitochondrial heat shock protein 70 and regulates trans-membrane potential, J Biol Chem 2004, 279, 25689-25695. Cerca con Google

86. Bernardi, P.; Petronilli, V.; Di Lisa, F.; Forte, M. A mitochondrial perspective on cell death, Trends Biochem Sci 2001, 26, 112-117. Cerca con Google

87. Matsuoka, T.; Wada, J.; Hashimoto, I.; Zhang, Y.; Eguchi, J.; Ogawa, N.; Shikata, K.; Kanwar, Y. S.; Makino, H. Gene delivery of Tim44 reduces mitochondrial superoxide production and ameliorates neointimal proliferation of injured carotid artery in diabetic rats, Diabetes 2005, 54, 2882-2890. Cerca con Google

88. Trinei, M.; Giorgio, M.; Cicalese, A.; Barozzi, S.; Ventura, A.; Migliaccio, E.; Milia, E.; Padura, I. M.; Raker, V. A.; Maccarana, M.; Petronilli, V.; Minucci, S.; Bernardi, P.; Lanfrancone, L.; Pelicci, P. G. A p53-p66Shc signalling pathway controls intracellular redox status, levels of oxidation-damaged DNA and oxidative stress-induced apoptosis, Oncogene 2002, 21, 3872-3878. Cerca con Google

89. Nemoto, S.; Finkel, T. Redox regulation of forkhead proteins through a p66shc-dependent signaling pathway, Science 2002, 295, 2450-2452. Cerca con Google

90. Berniakovich, I.; Trinei, M.; Stendardo, M.; Migliaccio, E.; Minucci, S.; Bernardi, P.; Pelicci, P. G.; Giorgio, M. p66Shc-generated oxidative signal promotes fat accumulation, J Biol Chem 2008, 283, 34283-34293. Cerca con Google

91. Harman, D. Aging: a theory based on free radical and radiation chemistry, J Gerontol 1956, 11, 298-300. Cerca con Google

92. Finkel, T.; Holbrook, N. J. Oxidants, oxidative stress and the biology of ageing, Nature 2000, 408, 239-247. Cerca con Google

93. Nemoto, S.; Takeda, K.; Yu, Z. X.; Ferrans, V. J.; Finkel, T. Role for mitochondrial oxidants as regulators of cellular metabolism, Mol Cell Biol 2000, 20, 7311-7318. Cerca con Google

94. Nemoto, S.; Finkel, T. Ageing and the mystery at Arles, Nature 2004, 429, 149-152. Cerca con Google

95. Nemoto, S.; Combs, C. A.; French, S.; Ahn, B. H.; Fergusson, M. M.; Balaban, R. S.; Finkel, T. The mammalian longevity-associated gene product p66shc regulates mitochondrial metabolism, J Biol Chem 2006, 281, 10555-10560. Cerca con Google

96. Napoli, C.; Martin-Padura, I.; de Nigris, F.; Giorgio, M.; Mansueto, G.; Somma, P.; Condorelli, M.; Sica, G.; De Rosa, G.; Pelicci, P. Deletion of the p66Shc longevity gene reduces systemic and tissue oxidative stress, vascular cell apoptosis, and early atherogenesis in mice fed a high-fat diet, Proc Natl Acad Sci U S A 2003, 100, 2112-2116. Cerca con Google

97. Martin-Padura, I.; de Nigris, F.; Migliaccio, E.; Mansueto, G.; Minardi, S.; Rienzo, M.; Lerman, L. O.; Stendardo, M.; Giorgio, M.; De Rosa, G.; Pelicci, P. G.; Napoli, C. p66Shc deletion confers vascular protection in advanced atherosclerosis in hypercholesterolemic apolipoprotein E knockout mice, Endothelium 2008, 15, 276-287. Cerca con Google

98. Francia, P.; delli Gatti, C.; Bachschmid, M.; Martin-Padura, I.; Savoia, C.; Migliaccio, E.; Pelicci, P. G.; Schiavoni, M.; Lüscher, T. F.; Volpe, M.; Cosentino, F. Deletion of p66shc gene protects against age-related endothelial dysfunction, Circulation 2004, 110, 2889-2895. Cerca con Google

99. Camici, G. G.; Schiavoni, M.; Francia, P.; Bachschmid, M.; Martin-Padura, I.; Hersberger, M.; Tanner, F. C.; Pelicci, P.; Volpe, M.; Anversa, P.; Lüscher, T. F.; Cosentino, F. Genetic deletion of p66(Shc) adaptor protein prevents hyperglycemia-induced endothelial dysfunction and oxidative stress, Proc Natl Acad Sci U S A 2007, 104, 5217-5222. Cerca con Google

100. Yamamori, T.; White, A. R.; Mattagajasingh, I.; Khanday, F. A.; Haile, A.; Qi, B.; Jeon, B. H.; Bugayenko, A.; Kasuno, K.; Berkowitz, D. E.; Irani, K. P66shc regulates endothelial NO production and endothelium-dependent vasorelaxation: implications for age-associated vascular dysfunction, J Mol Cell Cardiol 2005, 39, 992-995. Cerca con Google

101. Lee, S. K.; Kim, H. S.; Song, Y. J.; Joo, H. K.; Lee, J. Y.; Lee, K. H.; Cho, E. J.; Cho, C. H.; Park, J. B.; Jeon, B. H. Alteration of p66shc is associated with endothelial dysfunction in the abdominal aortic coarctation of rats, FEBS Lett 2008, 582, 2561-2566. Cerca con Google

102. Menini, S.; Iacobini, C.; Ricci, C.; Oddi, G.; Pesce, C.; Pugliese, F.; Block, K.; Abboud, H. E.; Giorgio, M.; Migliaccio, E.; Pelicci, P. G.; Pugliese, G. Ablation of the gene encoding p66Shc protects mice against AGE-induced glomerulopathy by preventing oxidant-dependent tissue injury and further AGE accumulation, Diabetologia 2007, 50, 1997-2007. Cerca con Google

103. Menini, S.; Amadio, L.; Oddi, G.; Ricci, C.; Pesce, C.; Pugliese, F.; Giorgio, M.; Migliaccio, E.; Pelicci, P.; Iacobini, C.; Pugliese, G. Deletion of p66Shc longevity gene protects against experimental diabetic glomerulopathy by preventing diabetes-induced oxidative stress, Diabetes 2006, 55, 1642-1650. Cerca con Google

104. Zaccagnini, G.; Martelli, F.; Fasanaro, P.; Magenta, A.; Gaetano, C.; Di Carlo, A.; Biglioli, P.; Giorgio, M.; Martin-Padura, I.; Pelicci, P. G.; Capogrossi, M. C. p66ShcA modulates tissue response to hindlimb ischemia, Circulation 2004, 109, 2917-2923. Cerca con Google

105. Carpi, A.; Menabò, R.; Kaludercic, N.; Pelicci, P.; Di Lisa, F.; Giorgio, M. The cardioprotective effects elicited by p66(Shc) ablation demonstrate the crucial role of mitochondrial ROS formation in ischemia/reperfusion injury, Biochim Biophys Acta 2009, 1787, 774-780. Cerca con Google

106. Rota, M.; LeCapitaine, N.; Hosoda, T.; Boni, A.; De Angelis, A.; Padin-Iruegas, M. E.; Esposito, G.; Vitale, S.; Urbanek, K.; Casarsa, C.; Giorgio, M.; Lüscher, T. F.; Pelicci, P. G.; Anversa, P.; Leri, A.; Kajstura, J. Diabetes promotes cardiac stem cell aging and heart failure, which are prevented by deletion of the p66shc gene, Circ Res 2006, 99, 42-52. Cerca con Google

107. Sowers, J. R. Hypertension, angiotensin II, and oxidative stress, N Engl J Med 2002, 346, 1999-2001. Cerca con Google

108. Graiani, G.; Lagrasta, C.; Migliaccio, E.; Spillmann, F.; Meloni, M.; Madeddu, P.; Quaini, F.; Padura, I. M.; Lanfrancone, L.; Pelicci, P.; Emanueli, C. Genetic deletion of the p66Shc adaptor protein protects from angiotensin II-induced myocardial damage, Hypertension 2005, 46, 433-440. Cerca con Google

109. Di Stefano, V.; Cencioni, C.; Zaccagnini, G.; Magenta, A.; Capogrossi, M. C.; Martelli, F. p66ShcA modulates oxidative stress and survival of endothelial progenitor cells in response to high glucose, Cardiovasc Res 2009, 82, 421-429. Cerca con Google

110. Pagnin, E.; Fadini, G.; de Toni, R.; Tiengo, A.; Calò, L.; Avogaro, A. Diabetes induces p66shc gene expression in human peripheral blood mononuclear cells: relationship to oxidative stress, J Clin Endocrinol Metab 2005, 90, 1130-1136. Cerca con Google

111. Pandolfi, S.; Bonafè, M.; Di Tella, L.; Tiberi, L.; Salvioli, S.; Monti, D.; Sorbi, S.; Franceschi, C. p66(shc) is highly expressed in fibroblasts from centenarians, Mech Ageing Dev 2005, 126, 839-844. Cerca con Google

112. Pellegrini, M.; Finetti, F.; Petronilli, V.; Ulivieri, C.; Giusti, F.; Lupetti, P.; Giorgio, M.; Pelicci, P. G.; Bernardi, P.; Baldari, C. T. p66SHC promotes T cell apoptosis by inducing mitochondrial dysfunction and impaired Ca2+ homeostasis, Cell Death Differ 2007, 14, 338-347. Cerca con Google

113. Pacini, S.; Pellegrini, M.; Migliaccio, E.; Patrussi, L.; Ulivieri, C.; Ventura, A.; Carraro, F.; Naldini, A.; Lanfrancone, L.; Pelicci, P.; Baldari, C. T. p66SHC promotes apoptosis and antagonizes mitogenic signaling in T cells, Mol Cell Biol 2004, 24, 1747-1757. Cerca con Google

114. Finetti, F.; Pellegrini, M.; Ulivieri, C.; Savino, M. T.; Paccagnini, E.; Ginanneschi, C.; Lanfrancone, L.; Pelicci, P. G.; Baldari, C. T. The proapoptotic and antimitogenic protein p66SHC acts as a negative regulator of lymphocyte activation and autoimmunity, Blood 2008, 111, 5017-5027. Cerca con Google

115. Capitani, N.; Lucherini, O. M.; Sozzi, E.; Ferro, M.; Giommoni, N.; Finetti, F.; De Falco, G.; Cencini, E.; Raspadori, D.; Pelicci, P. G.; Lauria, F.; Forconi, F.; Baldari, C. T. Impaired expression of p66Shc, a novel regulator of B-cell survival, in chronic lymphocytic leukemia, Blood 2010, [Epub ahead of print]. Cerca con Google

116. Tomilov, A. A.; Bicocca, V.; Schoenfeld, R. A.; Giorgio, M.; Migliaccio, E.; Ramsey, J. J.; Hagopian, K.; Pelicci, P. G.; Cortopassi, G. A. Decreased superoxide production in macrophages of long-lived p66Shc-knockout mice, J Biol Chem 2009, . Cerca con Google

117. Fallon, J. A.; Dorr, B.; Cochrane, R. L.; Klandorf, H. Interspecies comparison of pentosidine accumulation and its correlation with age in birds, The Auk 123 (3), 870-876. Cerca con Google

118. Heeschen, C.; Aicher, A.; Lehmann, R.; Fichtlscherer, S.; Vasa, M.; Urbich, C.; Mildner-Rihm, C.; Martin, H.; Zeiher, A. M.; Dimmeler, S. Erythropoietin is a potent physiologic stimulus for endothelial progenitor cell mobilization, Blood 2003, 102, 1340-1346. Cerca con Google

119. Fadini, G. P.; Baesso, I.; Albiero, M.; Sartore, S.; Agostini, C.; Avogaro, A. Technical notes on endothelial progenitor cells: ways to escape from the knowledge plateau, Atherosclerosis 2008, 197, 496-503. Cerca con Google

120. Stojadinovic, O.; Brem, H.; Vouthounis, C.; Lee, B.; Fallon, J.; Stallcup, M.; Merchant, A.; Galiano, R. D.; Tomic-Canic, M. Molecular pathogenesis of chronic wounds: the role of beta-catenin and c-myc in the inhibition of epithelialization and wound healing, Am J Pathol 2005, 167, 59-69. Cerca con Google

121. Schäfer, M.; Werner, S. Oxidative stress in normal and impaired wound repair, Pharmacol Res 2008, 58, 165-171. Cerca con Google

122. Takahashi, T.; Kalka, C.; Masuda, H.; Chen, D.; Silver, M.; Kearney, M.; Magner, M.; Isner, J. M.; Asahara, T. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization, Nat Med 1999, 5, 434-438. Cerca con Google

123. King, H.; Aubert, R. E.; Herman, W. H. Global burden of diabetes, 1995-2025: prevalence, numerical estimates, and projections, Diabetes Care 1998, 21, 1414-1431. Cerca con Google

124. Wear-Maggitti, K.; Lee, J.; Conejero, A.; Schmidt, A. M.; Grant, R.; Breitbart, A. Use of topical sRAGE in diabetic wounds increases neovascularization and granulation tissue formation, Ann Plast Surg 2004, 52, 519-21; discussion 522. Cerca con Google

125. Yue, D. K.; Swanson, B.; McLennan, S.; Marsh, M.; Spaliviero, J.; Delbridge, L.; Reeve, T.; Turtle, J. R. Abnormalities of granulation tissue and collagen formation in experimental diabetes, uraemia and malnutrition, Diabet Med 1986, 3, 221-225. Cerca con Google

126. Goova, M. T.; Li, J.; Kislinger, T.; Qu, W.; Lu, Y.; Bucciarelli, L. G.; Nowygrod, S.; Wolf, B. M.; Caliste, X.; Yan, S. F.; Stern, D. M.; Schmidt, A. M. Blockade of receptor for advanced glycation end-products restores effective wound healing in diabetic mice, Am J Pathol 2001, 159, 513-525. Cerca con Google

127. Lerman, O. Z.; Galiano, R. D.; Armour, M.; Levine, J. P.; Gurtner, G. C. Cellular dysfunction in the diabetic fibroblast: impairment in migration, vascular endothelial growth factor production, and response to hypoxia, Am J Pathol 2003, 162, 303-312. Cerca con Google

128. Lobmann, R.; Pap, T.; Ambrosch, A.; Waldmann, K.; König, W.; Lehnert, H. Differential effects of PDGF-BB on matrix metalloproteases and cytokine release in fibroblasts of Type 2 diabetic patients and normal controls in vitro, J Diabetes Complications 2006, 20, 105-112. Cerca con Google

129. Sen, C. K.; Roy, S. Redox signals in wound healing, Biochim Biophys Acta 2008, 1780, 1348-1361. Cerca con Google

130. Sen, C. K. Wound healing essentials: let there be oxygen, Wound Repair Regen 2009, 17, 1-18. Cerca con Google

131. Senel, O.; Cetinkale, O.; Ozbay, G.; Ahçioğlu, F.; Bulan, R. Oxygen free radicals impair wound healing in ischemic rat skin, Ann Plast Surg 1997, 39, 516-523. Cerca con Google

132. Maulik, N.; Das, D. K. Redox signaling in vascular angiogenesis, Free Radic Biol Med 2002, 33, 1047-1060. Cerca con Google

133. Sen, C. K.; Khanna, S.; Babior, B. M.; Hunt, T. K.; Ellison, E. C.; Roy, S. Oxidant-induced vascular endothelial growth factor expression in human keratinocytes and cutaneous wound healing, J Biol Chem 2002, 277, 33284-33290. Cerca con Google

134. Aicher, A.; Zeiher, A. M.; Dimmeler, S. Mobilizing endothelial progenitor cells, Hypertension 2005, 45, 321-325. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record