Sede Amministrativa: Università degli Studi di Padova

Dipartimento di Farmacologia ed Anestesiologia

SCUOLA DI DOTTORATO DI RICERCA IN SCIENZE FARMACOLOGICHE
INDIRIZZO: FARMACOLOGIA, TOSSICOLOGIA E TERAPIA
XXII CICLO

TOSSICITA’ SISTEMICA DEGLI ANESTETICI LOCALI.
TRATTAMENTO CON EMULSIONE LIPIDICA.

Direttore della Scuola: Ch.mo Prof. Rosa Maria Gaion
Coordinatore d'indirizzo: Ch.mo Prof. Rosa Maria Gaion
Supervisore: Ch.mo Prof. Carlo Ori

Dottorando: Guido Di Gregorio
INDICE

Abstract 5
Riassunto 7
Anestetici locali. Generalità e meccanismo d’azione 9
Tossicità sistemica severa degli anestetici locali 15
L’emulsione lipidica nel trattamento della tossicità degli anestetici locali 23
Modello sperimentale di arresto cardiaco da overdose di bupivacaina. Emulsione lipidica versus farmaci ACLS 28
 1. Emulsione lipidica versus adrenalina 29
 2. Emulsione lipidica versus vasopressina 35
Discussione 41
Schema di trattamento 47
Bibliografia 49
ABSTRACT

Background: Lipid emulsion infusion reverses cardiovascular compromise due to local anesthetic overdose in laboratory and clinical settings. The author compared the efficacy of resuscitation from bupivacaine-induced asystole using lipid emulsion infusion versus epinephrine, vasopressin, combination of epinephrine and vasopressin, and saline control in a prospective randomized animal study.

Methods: Bupivacaine was infused in male Sprague-Dawley rats anesthetized with isoflurane, producing asystole in all subjects. Rats were ventilated with 100% oxygen, given chest compression, and randomized to receive 30% lipid emulsion, vasopressin, epinephrine alone or combined with vasopressin, and saline. Treatment boluses were repeated at 2.5 and 5 minutes for a native rate-pressure product less than 20% baseline. Electrocardiogram and arterial blood pressure were monitored continuously and at 10 min arterial blood gas, central venous oxygen saturation and blood lactate were measured.

Results: Lipid infusion resulted in higher rate-pressure product, pH and central venous oxygen saturation than in vasopressors groups and in control group at 10 min. Metrics indicated better tissue perfusion in lipid group than in the others group. Epinephrine treatment caused persistent ventricular ectopy in all subjects. Vasopressin and epinephrine were associated with developing of pulmonary edema.

Conclusion: Lipid emulsion in this rat model provide superior hemodynamic and metabolic recovery from bupivacaine-induced cardiac arrest than do vasopressors. Vasopressin and epinephrine were associated with adverse outcomes. Systolic pressure was not an useful metric in the vasopressors group. Further studies are required to optimize the clinical management of systemic local anesthetic toxicity.
RIASSUNTO

E’ stato precedentemente dimostrato il recupero di attività cardiaca spontanea dopo l’infusione di una emulsione lipidica (30% soy oil emulsion) in seguito ad arresto cardiaco bupivacaina-indotto sia in vivo sia in modelli sperimentali di cuore isolato. Numerosi case reports sono stati pubblicati sull’utilizzo clinico dell’emulsione lipidica nella rianimazione di pazienti in arresto cardiaco in seguito ad overdose di anestetico locale.

Le linee guida 2005 dell’American Heart Association (AHA/ACLS resucitation protocol) prevedono l’utilizzo di una dose di 40 U di vasopressina, al posto della prima o seconda dose di epinefrina, come farmaco di prima linea nel trattamento dell’arresto cardiaco.

Abbiamo studiato l’efficacia dell’emulsione lipidica versus i farmaci suggeriti dai protocolli ACLS in un modello sperimentale di arresto cardiaco bupivacaina-indotto in ratti. Sono stati analizzati parametri emodinamici, metabolici ed elettrocardiografici. L’emulsione lipidica è risultata superiore, in termini di sopravvivenza, parametri emodinamici e metabolici, all’adrenalina, alla vasopressina e alla loro associazione nel trattamento dell’arresto cardiaco indotto da un’overdose di bupivacaina. Ulteriori studi sono necessari per confermare queste osservazioni e soprattutto per determinare eventuali implicazioni sul piano clinico.
ANESTETICI LOCALI. GENERALITA’ E MECCANISMO D’AZIONE.

Gli anestetici locali possiedono caratteristiche chimiche comuni: tutte le molecole si compongono di tre gruppi chimici:

- una struttura aromaticca non satura (acido benzoico o para – aminobenzoico) che conferisce liposolubilità alla molecola;
- una catena intermedia costituita da un legame estereo (-COO-) o amidico (-CONH);
- un derivato aminico terziario (più raramente secondario) dell’alcool etilico o dell’acido acetico che conferisce alla molecola le sue proprietà di base debole e spiega la sua idrofilia.

Sulla base del tipo di catena intermedia essi vengono suddivisi in esterei ed amidici: le molecole contenenti gruppi esterei sono caratterizzate da una breve durata d’azione poiché i legami esterei vengono velocemente idrolizzati dalle colinesterasi plasmatiche; tali sostanze sono inoltre instabili in soluzione (1). I farmaci contenenti il legame amidico vanno incontro invece ad un metabolismo epatico lento che spiega la loro azione prolungata e la comparsa di metaboliti attivi. Dal momento che il legame amidico è molto più stabile di quello estereo, la soluzione resiste al calore ed alle variazioni di pH (2). Gli anestetici locali sono basi deboli: la parte aminica conferisce alla molecola le caratteristiche di una base che può pertanto combinarsi con un acido per formare un sale idrosolubile. Per quanto riguarda l’impiego terapeutico, gli anestetici locali sono abitualmente forniti, per motivi di solubilità e di stabilità, come sali, in genere cloruri. Nell’organismo tali molecole possono trovarsi come basi non ionizzate o come cationi; le proporzioni relative di queste due forme sono in funzione del rispettivo pK e pH dei liquidi corporei secondo l’equazione di Henderson-Hasselbach. Poiché il pKa degli anestetici locali è compreso tra 8 e 9, la frazione più consistente nei liquidi corporei, a pH fisiologico, è rappresentata dalla
forma ionizzata (cationica). Essa è ritenuta la forma più attiva in sede recettoriale poiché non facilmente metabolizzabile a livello dei canali ionici bloccati; la frazione non ionizzata è, peraltro, determinante per il passaggio rapido attraverso le membrane biologiche. Da ciò si deduce come la loro attività sia notevolmente influenzata dal pH (3,4).

La liposolubilità, il legame proteico e il pKa rappresentano, quindi, fattori farmacologici fondamentali di ciascun AL. La liposolubilità condiziona la potenza degli AL. Gli anestetici a maggiore liposolubilità sono anche i più potenti; ciò dipende dalla capacità di attraversare la matrice fosfolipidica delle membrane cellulari.

Il legame proteico ha un effetto significativo sulla durata del blocco. Una grossa percentuale di AL legata alle proteine è l'espressione di una grande affinità di legame per le proteine recettoriali. Gli AL a maggiore potenza hanno anche la maggiore durata d'azione.

Il pKa è definito come il pH al quale il 50% di un AL è presente in forma ionizzata ed il 50% in quella non-ionizzata. Il pKa è importante nel determinare l'onset di un AL. Anestetici con un pKa prossimo al pH fisiologico avranno un onset più rapido perché presenti in soluzione in maggior parte nella quota non-ionizzata (base). Al crescere del pK prevarrà in soluzione la quota ionizzata responsabile di un onset lento. La forma basica, liposolubile, è responsabile dell'interazione con i componenti del doppio strato lipidico cellulare e condiziona la diffusione perinervosa, mentre la quota ionizzata idrofila, dopo l'ingresso cellulare dell'AL, ne determina l'effetto farmacologico.

Gli anestetici locali producono un'inibizione reversibile a livello regionale dalla conduzione dell'impulso nervoso sensitivo, evitando la trasmissione dell'informazione sensitiva al SNC senza perdita di coscienza. La conduzione degli impulsi lungo le
Fibre nervose dipende dalla modificazione del gradiente elettrico transmembrana, il quale, a sua volta, è controllato dal movimento ionic, soprattutto degli ioni sodio e potassio, attraverso la membrana cellulare. Uno stimolo di intensità sufficiente riduce il potenziale di riposo dal valore di -90mV (potenziale di riposo) a quello di -60mV (potenziale soglia) e scatena la fase rapida di depolarizzazione spontanea. La depolarizzazione di membrana della fibra nervosa amielinica si trasmette alla regione limitrofa propagando lo stimolo in maniera continua per tutta la lunghezza della fibra stessa; nel caso invece di fibre mieliniche, la conduzione viene definita “saltatoria”, poiché si propaga da un nodo di Ranvier al successivo, la depolarizzazione è pertanto accelerata. Il ritorno della membrana allo stato di riposo o, meglio, al suo potenziale naturale, viene definito ripolarizzazione. La depolarizzazione compare a seguito del passaggio del sodio dallo spazio extracellulare a quello intracellulare, attraverso canali specifici che attraversano lo spessore della membrana cellulare; il flusso di ioni potassio dallo spazio intracellulare a quello extracellulare, invece, è responsabile della ripolarizzazione; il passaggio transmembrana di tali ioni è sotto il controllo della pompa sodio-potassio.

Il meccanismo d’azione degli anestetici locali consiste nel blocco selettivo dei canali del sodio. Gli anestetici attraversano probabilmente lo strato lipoproteico della membrana e penetrano all'interno dei canali del sodio, legandosi a siti recettoriali specifici, di cui uno situato all'interno e l'altro all'esterno del canale. Non è comunque escluso che gli anestetici locali possano agire anche espandendo la membrana cellulare della fibra nervosa e, quindi, modificando la geometria del canale del sodio, ovvero variandone il diametro (5).

L’anestetico locale nell’organismo umano è presente in due forme:

- una forma indissociata liposolubile
- una forma dissociata, cationica, idrosolubile
Entrambe le forme contribuiscono all’azione degli anestetici locali: solo la forma indissociata, liposolubile, attraversa la membrana ed è perciò responsabile della penetrazione dell’anestetico locale nelle guaine dei nervi e nelle membrane assonali. La forma cationica gioca il ruolo principale, essendo quella che, legandosi reversibilmente con i recettori presenti nel canale del sodio ed inibendone la conduttanza, esplica l’azione vera e propria del farmaco.

Concentrazioni crescenti di anestetico locale a livello della fibra nervosa abbassano progressivamente l’ampiezza del potenziale d’azione, ritardano la velocità di depolarizzazione, elevano la soglia di eccitazione, rallentano la velocità di conduzione dell’impulso ed allungano il periodo refrattario. Tali modificazioni progrediscono finché anche le più piccole correnti locali si abbassano al di sotto della soglia di eccitazione ed il nervo viene in questo modo bloccato.

L’assorbimento sistemico dell’anestetico locale, dal sito di somministrazione, è influenzato da:

a. dose somministrata;
b. sede di iniezione;
c. legame farmaco-tessuti;
d. presenza di sostanze vasocostrittrici;
e. proprietà fisico-chimiche e farmacologiche del farmaco.

Lo stato di vascolarizzazione dei tessuti influenza la permanenza del farmaco in situ: l’iperemia del distretto interessato, a causa di fenomeni infiammatori, può determinare concentrazioni del farmaco simili a quelle prodotte da iniezione endovenosa diretta. Sostanze ad azione vasocostrittrice, quali l’adrenalina ed altre catecolamine, sono in grado di ridurre l’assorbimento sistemico dell’anestetico locale dalla sede di somministrazione diminuendo il flusso ematico distrettuale in tali aree;
questo effetto è evidente soprattutto con anestetici a durata d’azione breve-intermedia. Nel plasma gli anestetici locali si legano alle proteine in modo proporzionale alla loro liposolubilità. Questi farmaci attraversano rapidamente strutture lipidiche come le membrane cellulari, la barriera emato-encefalica e la placenta, raggiungendo a livello tissutale una concentrazione superiore a quella ematica.

Il metabolismo degli anestetici locali ha luogo nel plasma o nel fegato; solo in piccola parte vengono escreti immodificati con le urine. La Mepivacaina e la Bupivacaina, ad esempio, entrambi anestetici locali amidici, subiscono un metabolismo epatico: il primo subisce a questo livello un metabolismo pressoché totale, infatti nelle urine rinveniamo soltanto dall’1% al 6% del prodotto iniziale; il secondo, particolarmente liposolubile, estremamente legato alle proteine plasmatiche e resistente all'idrolisi, subisce una dealkilazione con formazione di un metabolita la cui tossicità è di gran lunga minore di quella della molecola di base.
TOSSICITÀ SISTEMICA SEVERA DEGLI AL

L’interesse del mondo scientifico alla tossicità degli AL ha vissuto una serie di picchi temporali che hanno coinciso con l’iniziale introduzione della cocaina nell’ambito clinico nel 1884 (6), successivamente con i primi reports di tossicità associata alla bupivacaina (7), fino ai nostri giorni con l’introduzione di nuove strategie terapeutiche (8).

Mulroy et al. (9) hanno riportato l’incidenza di tossicità sistemica da anestetico locale in ~7.5-20/10000 blocchi nervosi periferici ed in ~1/10000 anestesie peridurali. Auroy et al. (10) hanno condotto una larga survey tra gli anestesisti francesi sulle complicanze dell’anestesia regionale, ed hanno riportato un’incidenza di convulsioni indotte da AL di 0-25/10000 blocchi nervosi periferici, ma, sorprendentemente, nessun arresto cardiaco è stato riportato in questo studio. Al contrario in un più recente studio Lee at al. (11), analizzando l’American Society of Anesthesiologists (ASA) Closed Claims Database dal 1980 al 2000, riportano che “local anesthetic toxicity is a major cause of death or brain damage in these claims”. Appare chiaro, quindi, come una stima precisa dell’incidenza della tossicità severa sistemica degli AL sia estremamente difficile e che sia, verosimilmente, più elevata di quanto riportato in peer literature.

La tossicità sistemica (neurologica e cardiovascolare) degli anestetici locali è in funzione della concentrazione plasmatica massimale di AL (Cp max) e dell’intervallo di tempo in cui si raggiunge la Cp Max (T max). Si comprende quindi che questi incidenti si verifichino in seguito ad un’accidentale iniezione intravascolare (arteriosa o venosa) di AL o in seguito ad un più lento assorbimento sistemico di un volume di
La sede di somministrazione dell’AL altera la velocità di assorbimento e quindi il successivo picco plasmatico: con la stessa dose di AL, ad esempio, si avrà un picco plasmatico maggiore per un blocco intercostale che per un blocco epidurale (Fig. 1) (12). In generale, l’uso di un vasocostrittore riduce l’assorbimento sistemico di AL, ma è stato dimostrato che l’aggiunta di adrenalina (1:100000 o 1:200000) riduce approssimativamente del 50% il picco plasmatico di lidocaina in seguito ad una
infiltrazione sottocutanea, ma di solo il 20-30% dopo un blocco intercostale, epidurale o del plesso brachiale (13).

Fig. 1 Concentrazioni plasmatiche crescenti di AL per i diversi blocchi regionali

A livello plasmatico gli AL sono in parte legati a proteine, principalmente all’α₁-glicoproteina acida e secondariamente all’albumina. La forma non legata alle proteine è aumentata in corso di gravidanza (14) ed in caso di ipoprotidemia. La propensione della forma non ionizzata diminuisce in corso di sepsi, in condizioni di infiammazione o di acidosi.

Manifestazioni cliniche severe di tossicità degli AL possono verificarsi in pazienti con shunt cardiaco destro-sinistro anche per minime concentrazioni di AL intravascolari, verosimilmente dovuto all’effetto di first-pass uptake polmonare degli AL (15).

La clearance degli AL amidici è strettamente dipendente dal flusso ematico epatico e dalla funzionalità epatica, pertanto proporzionalmente picchi plasmatici più elevati si avranno in pazienti con insufficienza epatica e/o cardiaca, o durante l’utilizzo di farmaci che inibiscono il metabolismo epatico (betabloccanti, H₂-antagonisti). L’insufficienza renale aumenta il volume di distribuzione degli AL e l’accumulo di metaboliti degli AL.
La manifestazione clinica principale di tossicità neurologica sono le crisi convulsive, dovute all’inibizione di *pathways* eccitatori a livello dell’amigdala da parte dell’AL. Le convulsioni possono essere precedute da prodromi: confusione, agitazione, vertigini, allucinazioni visive e uditive, frusci all’orecchio, nistagmo, cefalea, parestesie e formicolii alle estremità. Con l’aumentare della concentrazione cerebrale di AL possono presentarsi tremori e fascicolazioni dei muscoli facciali e degli arti fino alla crisi generalizzata tonico-clonica tipo grande male. Con ulteriore incremento del livello cerebrale si progrede ad uno stato di depressione del sistema nervoso centrale con coma ed arresto respiratorio. Generalmente la concentrazione convulsivante di un anestetico locale è inversamente proporzionale alla PaCO₂ del paziente (15): un aumento della PaCO₂ o una diminuzione del pH provoca un abbassamento della soglia convulsivante ed un aumento dell’incidenza di tossicità severa sistemica degli AL. Verosimilmente, l’ipercapnia aumenta il flusso ematico cerebrale che induce un aumento dell’*uptake* dell’AL nel cervello. Inoltre il legame alle proteine plasmatiche è diminuito in caso di ipercapnia o acidosi, aumentando quindi la frazione di AL non legato (16).

Il sistema cardiovascolare è generalmente più resistente agli effetti degli AL che il sistema nervoso centrale (CNS), da cui, manifestazioni cliniche neurologiche di tossicità degli AL si presentano a livelli plasmatici di AL più basse che quelle cardiovascolari, questa caratteristica è definita dal *circulatory collapse/CNS excitation ratio*, tipico di ogni anestetico locale. Infatti la bupivacaina ha un *circulatory collapse/CNS excitation ratio* più basso di altri meno potenti AL aminoamidici (ropivacaina, levobupivacaina).

La cardiotoxicità degli AL è concentrazione plasmatica-dipendente e provoca depressione della contrattilità miocardica con diminuzione del cardiac output e
profonda ipotensione; alterazione della conduzione elettrica intracardiaca, responsabile di bradicardia sinusal, dell’allungamento degli intervalli PQ, QT e del complesso QRS, di blocco atrio-ventricolare fino all’asistolia; può generare inoltre disturbi del ritmo cardiaco per fenomeni di rientro tipo tachicardia sopraventricolare, tachicardia ventricolare e fibrillazione ventricolare. Gli effetti sulla muscolatura liscia dei vasi periferici ha un’azione bifasica: a basse concentrazioni plasmatiche gli AL possono causare vasocostrizione, a concentrazioni più alte inducono una diminuizione delle resistenze periferiche, a concentrazioni estremamente elevate producono una profonda vasodilatazione per azione diretta sulla muscolatura liscia vasale (17).

Se seguiamo la logica del filosofo William of Ockham per cui è inutile ricercare spiegazioni più complesse quando una più semplice funziona, l’inibizione dei canali del sodio potrebbe essere l’unico meccanismo alla base della cardiotossicità della bupivacaine e di altri AL. Ma numerosi studi dimostrano gli AL legano altri targets molecolari oltre ai canali del Na, come i canali voltaggio-dipendenti del potassio e del calcio, i canali del potassio hERG, i canali del K ATP-dipendenti, i recettori NMDA, i recettori β-adrenergici, recettori nicotinici, i canali del K e del Ca proteina G-mediati. L’azione degli AL a livello di uno o di tutti questi siti d’azione potrebbe contribuire alla loro tossicità (18-21).

Molti studi hanno dimostrato che la bupivacaina ha un minor margine di sicurezza della ropivacaina, mentre la levobupivacaina occupa una posizione intermedia (Tab. 2).

Uno studio in vitro condotto su cuori isolati di coniglio ha dimostrato che la bupivacaina, la levobupivacaina e la ropivacaina prolungano l’intervallo QRS con un rapporto 1:0.4:0.3 (22).
In un altro lavoro Santos at al. (23) hanno dimostrato che la dose cumulativa di AL necessaria ad indurre convulsioni e arresto cardio circolatorio in un modello sperimentale sulle pecore era minore per la bupivacaina, a seguire la levobupivacaina e la dose maggiore per la ropivacaina, mentre l’incidenza di aritmie ventricolare era simile nei tre gruppi (Fig. 2).

<table>
<thead>
<tr>
<th>Ranking LA cardiotoxicity</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prilocaine</td>
<td>lowest cardiotoxicity</td>
</tr>
<tr>
<td>Lidocaine</td>
<td></td>
</tr>
<tr>
<td>Mepivacaine</td>
<td></td>
</tr>
<tr>
<td>Ropivacaine</td>
<td></td>
</tr>
<tr>
<td>Levobupivacaine</td>
<td></td>
</tr>
<tr>
<td>Racemic bupivacaine</td>
<td></td>
</tr>
<tr>
<td>R(+)-bupivacaine</td>
<td></td>
</tr>
<tr>
<td>Etidocaine</td>
<td></td>
</tr>
<tr>
<td>Tetracaine</td>
<td>highest cardiotoxicity</td>
</tr>
</tbody>
</table>

Fig. 2 Dose media di bupivacaina, levobupivacaina e ropivacaina richiesta per indurre convulsioni o arresto cardiocircolatorio in un modello sperimentale animale. Anesthesiology 2001;95:1256-64 (23)
L’EMULSIONE LIPIDICA NEL TRATTAMENTO DELLA TOSSICITÀ DEGLI ANESTETICI LOCALI

La soluzione lipidica proposta nel trattamento della tossicità sistemica severa da anestetici locali è costituita da una emulsione di lipidi di soia purificati e fosfolipidi di tuorlo d’uovo purificati; tale prodotto viene usato nella pratica clinica per fornire energia ed acidi grassi essenziali negli adulti che necessitano di nutrizione parenterale. In commercio esistono diverse formulazioni, alcune sono costituite da acidi grassi a catena lunga (Intralipid®) altre da acidi grassi a catena media e lunga (50/50) (Liposyn®, Medialipid®). Mazoit at al. hanno studiato le diverse formulazioni di emulsione lipidica nel trattamento della tossicità degli anestetici locali ed hanno concluso che le formulazioni costituite da acidi grassi a catena lunga sono ~2.5 volte più efficaci di quelle costituite da una miscela di acidi grassi 50/50 catena lunga e media (25).

Le basi teoriche e i fondamenti sperimentali dell’utilizzazione di una miscela lipidica nel trattamento di intossicazioni da varie sostanze risalgono a diverse decadi fa. Russell e Westfall, già nel 1962, dimostrarono che la somministrazione endovenosa di soluzioni di olio di mais o di cotone riduceva la durata dell’anestesia indotta da 20 mg/kg di tiopentone nei ratti (26).

Circa dieci anni dopo Kriegistein studiò gli effetti della somministrazione di una emulsione lipidica sulla concentrazione ematica libera di cloropromazina in un modello sperimentale sui conigli e concluse: “From the present results it might be concluded that a fat emulsion in blood can take up lipophilic drugs, reduce their fraction dissolved in plasma water and thus decrease their actual availability at sites of action. Whether this effect may be used for therapeutic management of poisoning due to chlorpromazine or other lipophilic drugs remains to be shown” (27).
La storia che ha portato all’identificazione e all’attuale applicazione clinica dell’emulsione lipidica come potenziale antidoto per la tossicità severa sistemica degli anestetici locali è particolarmente intrigante e sembra essere indipendente da questi primi studi ma deriva piuttosto da una serie di astute osservazioni, sperimentazioni di laboratorio e da una serie di eventi clinici.

Nel 1997, infatti, Weinberg, riportò un evento di cardiotossicità dovuto, verosimilmente, alla somministarzione per via sottocutanea di soli 22 mg di bupivacaina in una paziente con deficit di carnitina e postulò che questa anomalia metabolica potesse aumentare la tossicità della bupivacaina favorendo l’accumulo di acidi grassi nei mitocondri (28); in uno studio successivo, Weinberg dimostrò che la bupivacaina è in grado di inibire la carnitina/acylcarnitina traslocasi, enzima chiave per l’uptake di acidi grassi nei mitocondri (29), pertanto ipotizzò che la somonistrazione di emulsione lipidica potesse aumentare la cardiotossicità della bupivacaina attraverso l’inibizione del metabolismo mitocondriale ed il successivo accumulo di acidi grassi nel citoplasma. Ma sorprendentemente negli esperimenti che eseguì per dimostrare tale ipotesi ottenne dei risultati diametralmente opposti: la LD$_{50}$ della bupivacaina risultava aumentata di circa il 48% nei ratti pre-trattati con emulsione lipidica (30) (Fig.3).

![Fig. 3 L'infusione di lipidi rendeva i ratti più resistenti all'asistolia indotta da bupivacaina.](image)
Alla luce di questi inaspettati ed incoraggianti risultati, Weinberg dimostrò l’efficacia dell’emulsione lipidica nel trattamento della arresto cardiaco indotto da un bolo di bupivacaina in un modello sperimentale animale in vivo: il protocollo di studio prevedeva la somministrazione a cani in anestesia generale di 10 mg/kg in bolo di bupivacaina fino all’arresto cardiaco e la successiva rianimazione con massaggio cardiaco interno e l’infusione di un bolo di 4 ml/kg seguito da un’infusione continua di 0.5 ml/kg/min di emulsione lipidica (n=6) o di soluzione fisiologica (gruppo controllo) (n=6). Tutti i cani (n=6) trattati con emulsione lipidica recuperarono rapidamente normali parametri emodinamici mentre nessuno degli animali di controllo (n=6) sopravvisse (31).

In un successivo studio Weinberg dimostrò che l’infusione di emulsione lipidica produceva un più rapido ritorno a contrazione spontanea in cuori di ratto isolati in asistolia indotta ad un bolo di bupivacaina ed inoltre, usando bupivacaina radio-marcata ed microbiopsie, dimostrò che l’emulsione lipidica accelerava la rimozione di bupivacaina dal tessuto cardiaco (Fig. 4) (32). Questi risultati suggerirono uno dei possibili meccanismi d’azione dell’emulsione lipidica, “lipid sink”, per cui la tossina (bupivacaina) è rimossa dal tessuto cardiaco legandosi alla fase lipidica plasmatica creata dall’infusione dell’emulsione lipidica stessa.

![Fig. 4 L’infusione di lipidi accelera il ritorno a contrattilità spontanea e la rimozione di bupivacaina in cuori isolati di ratto.](image-url)
Rosenblatt et al., nel 2006, pubblicarono il primo report dell’utilizzo clinico dell’emulsione lipidica nel trattamento di un evento severo di cardiotoxicità da anestetico locale (33): convulsioni e arresto circulatorio in un paziente di 58 anni in seguito alla somministrazione di 20 ml di bupivacaina 0.5% e 20 ml di mepivacaina 1.5% per via interscalenica per il blocco del plesso brachiale, nonostante circa 20 minuti di rianimazione secondo ACLS, il ritorno a circolazione spontanea con normali parametri emodinamici si ottenne solo dopo la somministrazione di 100 ml di emulsione lipidica (Intralipid®) 20%.

Tale case report può essere considerato una pietra miliare nell’evoluzione dell’emulsione lipidica nel trattamento della tossicità degli anestetici locali rappresentando la traslazione dei risultati di laboratorio nella pratica clinica.

Negli ultimi anni numerosi altri case reports, pubblicati su peer literature (34-44) o riportati sull’educational website www.lipidrescue.org, hanno validato l’utilizzo clinico dell’emulsione lipidica nel trattamento della tossicità severa sistemica degli anestetici locali.

Diversi studi di laboratorio hanno dimostrato, inoltre, l’efficacia dell’emulsione lipidica nel trattamento della cardiotoxicità severa indotta da altre classi di farmaci, in particolare clomipramina (45) e verapamil (46).

Sirianni et al. hanno, invece, descritto l’utilizzo dell’emulsione lipidica nel trattamento di un arresto cardiaco dovuto ad un’overdose di bupropione e lamitrogene a scopo suicidario. La paziente recuperò attività cardiaca spontanea e normali parametri emodinamici solo dopo l’infusione di un bolo di 100 ml di soluzione lipidica al 20%, nonostante i precedenti tentativi di rianimazione con procedure standard ACLS, defibrillazioni multiple e dosi massimali di vasopressori (47).
L’efficacia dell’emulsione lipidica è stata riportata anche in caso di arresto cardiaco indotto da aloperidolo (48), e nella rianimazione di un cucciolo di cane che aveva ingerito quantità tossiche di moxidectina, un potente antiparassitario (49). È interessante notare che bupivacaina, bupropione, aloperidolo e moxidectina hanno un simile coefficiente di partizione ottanolo/acqua, un dato questo che avvalorerebbe la teoria meccanicistica del “lipid sink”, e giustificherebbe l’utilizzo dell’emulsione lipidica nel trattamento della tossicità di svariate sostanze lipofile.

I meccanismi dell’efficacia dell’emulsione lipidica nel trattamento della tossicità degli anestetici locali non sono stati ancora completamente chiariti, ma verosimilmente uno degli effetti dominanti dell’emulsione lipidica è quello di formare una fase lipidica plasmatica e sottrarre le tossine lipofile dai target tissutali o dal plasma stesso, pertanto riducendo la loro concentrazione nei siti d’azione (lipid sink theory) (30-31).

Un altro meccanismo proposto prevede che il rapido sovraccarico di lipidi (fat load) fornito dall’infusione dell’emulsione lipidica stessa potrebbe superare l’inibizione della carnitina/acilcarnitina traslocasi indotto dalla bupivacaina nei cardiociti, e costituire, quindi, un reintegro energetico per il miocardio (50-51).

Alcuni case reports pubblicati (34,36,44) suggeriscono l’utilità dell’infusione di emulsione lipidica anche nel trattamento dei segni e sintomi neurologici di tossicità degli anestetici locali (alterazione dello stato di coscienza, convulsioni, agitazione).

Questo dato ha un importante valore scientifico: la risoluzione della sintomatologia neurologica in seguito all’infusione di emulsione lipidica non supporta il meccanismo metabolico proposto (anagonismo degli effetti metabolici inibitori della bupivacaina), in quanto il cervello non usa come substrati energetici i lipidi, ma avvalora piuttosto la teoria della rimozione delle tossine lipofile dal sito effettore (lipid sink).
MODELLO SPERIMENTALE DI ARRESTO CARDIACO DA OVERDOSE DI BUPIVACAINA. EMULSIONE LIPIDICA VERSUS FARMACI ACLS.

E’ stato precedentemente dimostrato il recupero di attività cardiaca spontanea dopo l’infusione di una emulsione lipidica in seguito ad arresto cardiaco bupivacaina-indotto sia in vivo (30,31) sia in modelli sperimentali di cuore isolato (32,50).

Numerosi case reports sono stati pubblicati sull’utilizzo clinico dell’emulsione lipidica, e sulla sua efficacia, nella rianimazione di pazienti in arresto cardiaco in seguito ad overdose di anestetico locale (34-44).

Le linee guida 2005 dell’American Heart Association (AHA/ACLS resuscitation protocol) prevedono l’utilizzo di adrenalina e/o vasopressina, come farmaci di prima linea nel trattamento dell’arresto cardiaco (52), anche se la cardiotossicità degli anestetici locali è spesso resistente alla terapia con vasopressori, e in molti casi l’emulsione lipidica si è dimostrata efficace dove il trattamento secondo i protocolli ACLS aveva fallito. Questa ambiguità è problematica per i medici che si trovano a fronteggiare un arresto cardiaco indotto da anestetico locale e devono scegliere tra i farmaci suggeriti dai protocolli ACLS o l’emulsione lipidica e il rispettivo timing di utilizzo.

Presso i laboratori del Dipartimento di Anestesiologia dell’University of Illinois a Chicago (USA) diretti dal Prof. Weinberg, abbiamo realizzato due modelli sperimentali in vivo su ratti per testare l’efficacia dell’emulsione lipidica rispetto all’adrenalina e/o alla vasopressina nel trattamento dell’arresto cardiaco da overdose di bupivacaina, analizzando il ritorno a circolazione spontanea, i parametri emodinamici e metabolici.
I protocolli di ricerca sono stati approvati dall’Animal Care Committee and Biological Resources Laboratory at the University of Illinois e dall’Institutional Animal Care and Utilization Committee of the Jesse Brown VA Medical Center.

1. EMULSIONE LIPIDICA VERSUS ADRENALINA

Materiali e Metodi
In ratti maschi Sprague-Dawley, peso compreso tra 350-420 gr, in anestesia generale con isoflurane, previa intubazione tracheale e ventilazione meccanica (tidal volume 2.5 ml, frequenza respiratoria 65-70/min), sono stati posizionati un catetere in vena giugulare sinistra, per somministrazione farmaci e prelievi ematici, ed un catetere in arteria carotide destra per monitoraggio pressione arteriosa in continuo ed emogasanalisi arteriosa. Elettrocardiogramma e pressione arteriosa invasiva sono stati registrati in continuo per tutta la durata dell’esperimento. Prelievi ematici arteriosi e venosi sono stati eseguiti prima della somministrazione di bupivacaina (baseline) e a 10 minuti (fine dell’esperimento) per emogasanalisi, misurazione della saturazione d’ossigeno venosa centrale (S_{cvp}) e dei lattati sierici.

Previa interruzione della somministrazione di isoflurane, un bolo di 20 ml/kg in 20 secondi di bupivacaina è stato infuso e.v.. Al termine dell’infusione di bupivacaina tutti gli animali hanno presentato asistolia (TIME 0) ed il massaggio cardiaco esterno è stato iniziato, interrotto solo ogni 10 secondi per valutare il rate-pressure product spontaneo (RPP= frequenza cardiaca x pressione arteriosa sistolica) ed l’intervallo QRS all’elettrocardiogramma. La ventilazione meccanica con ossigeno al 100% è stata continuata per tutto l’esperimento.
L'infusione dei tre diversi trattamenti endovenosi, assegnati precedentemente per via randomizzata (n=5 per ogni gruppo), è iniziata al TIME 0 secondo il seguente schema:

GRUPPO L: INTRALIPID 30% bolo 5 ml/kg + i.c. 0.5ml/kg/min

GRUPPO E: EPINEFRINA bolo 30 µg/kg in 0.2 ml SF

GRUPPO S: SOLUZIONE FISIOLOGICA bolo 5 ml/kg + i.c. 0.5ml/kg/min

Boli dei tre diversi trattamenti sono stati ripetuti a 2.5 minuti o a 5 minuti (dal TIME 0) per RPP spontaneo minore del 20% di quello registrato prima dell’infusione della bupivacaina (baseline) (Fig. 5). L’endpoint primario dello studio è stato il ritorno a circolazione spontanea (ROSC) definito come un RPP maggiore del 20% di quello alla baseline.

Gli esperimenti sono stati interrotti a 10 minuti e gli animali sacrificati.

![Fig. 5 Tipico esperimento gruppo LIPID. Tracciato della pressione arteriosa.](image)

Tutti i dati sono stati analizzati usando GraphPad Prism 4. I parametri alla baseline sono stati analizzati usando one-way analysis of variance e Bonferroni posttest. Tutti gli altri parametri sono stati analizzati usando two-way analysis of variance e Bonferroni posttest (\(P<0.05\)).
Risultati
Non è stata rilevata differenza statisticamente significativa nei valori dei parametri emodinamici e metabolici (frequenza cardiaca, pressione arteriosa, RPP, intervallo QRS, valori emogasanalitici, S_{cvp}, lattati) analizzati alla baseline tra i tre gruppi di trattamento in studio.

Il ritorno a circolazione spontanea, a 10 min (fine dell’esperimento), è stato ottenuto in 5 su 5 animali nel gruppo L, in 4 su 5 nel gruppo E ed in soli 2 su 5 nel gruppo S.

La pressione sistolica negli animali del gruppo L è aumentata gradualmente da valori inferiori a quelli del gruppo E al tempo 2.5 min, a valori nettamente superiori a quelli del gruppo E ($P<0.01$) ed S ($P<0.001$) alla fine dell’esperimento (Fig. 6).

![Fig. 6 Pressione sistolica vs tempo (0-10 min). (media±SEM).](image)

differenza statisticamente significativa con il gruppo S;
* differenza statisticamente significativa con il gruppo E.

Un simbolo = $P<0.05$; due simboli $P<0.01$; tre simboli $P<0.001$.

La media del RPP nel gruppo L è risultato significativamente maggiore di quella nel gruppo S a 7.5 min ($P<0.001$) e a 10 min ($P<0.001$) e significativamente maggiore di quella nel gruppo E a 10 min ($P<0.001$). Gli animali trattati con epinefrina hanno sviluppato un RPP significativamente maggiore di quello nel gruppo di controllo (S) solo a 5 min e 7.5 min ($P<0.05$). Alla fine dell’esperimento (10 min) non è stata

31
calcolata nessuna differenza statisticamente significativa tra RPP nel gruppo E e nel gruppo S (Fig. 7).

![Graph showing RPP over time](image1.png)

Fig. 7 *Rate-pressure product* vs tempo (0-10 min). (media±SEM).

differenza statisticamente significativa con il gruppo S;
* differenza statisticamente significativa con il gruppo E.
Un simbolo = $P<0.05$; due simboli $P<0.01$; tre simboli $P<0.001$.

Durante tutti gli esperimenti i tracciati elettrocardiografici sono stati registrati, in particolare è stato analizzato l’intervallo QRS. L’intervallo QRS nei gruppi di trattamento con adrenalina e con soluzione fisiologica è risultato significativamente allungato rispetto al gruppo L ($P<0.001$). La media dei valori di QRS nel gruppo E è rientrata a valori non statisticamente differenti da quelli registrati alla baseline al tempo 5 min e alla fine dell’esperimento (10 min) (Fig. 8).

![Graph showing QRS interval over time](image2.png)

Fig. 8 Intervallo QRS vs tempo (0-10 min). (media±SEM).

differenza statisticamente significativa con il gruppo S;
Un simbolo = $P<0.05$; due simboli $P<0.01$; tre simboli $P<0.001$
Non sono state registrate variazioni dell’intervallo QRS nel gruppo di trattamento con emulsione lipidica durante tutto l’esperimento. Sono stati registrati, inoltre, numerosi battiti ectopici ventricolari ed extrasistolie in tutti gli animali trattati con adrenalina.

L’arresto cardiaco indotto dall’overdose di bupivacaina e la successiva rianimazione ha portato ad un certo grado di acidosi in tutti e tre i gruppi, ma il pH nel gruppo epinefrina era significativamente inferiore a quello nel gruppo L (P<0.01) e gruppo S (P<0.05) a 10 min.

Anche la saturazione d’ossigeno venosa centrale è diminuita in tutti i gruppi nel corso dell’esperimento, ma il valore medio della S_{cvp} nel gruppo E è stato significativamente inferiore ai valori degli altri due gruppi a 10 min (gruppo L $P<0.001$; gruppo S $P<0.01$) (Fig. 9).

Fig. 9 pH arterioso e S_{cvp} alla baseline e alla fine dell’esperimento (media±SEM).
* # differenza statisticamente significativa con il gruppo S;
* * differenza statisticamente significativa con il gruppo E.
Un simbolo $= P<0.05$; due simboli $P<0.01$; tre simboli $P<0.001$.

33
I valori dei lattati sierici sono stati misurati in tutti gli animali dei gruppi L ed E (n=5) ma solo in 3 animali del gruppo S (n=3) per problemi tecnici dell’apparecchiatura. Al tempo 10 min è stato trovato un incremento dei livelli dei lattati sierici in tutti e tre i gruppi, anche se il valore medio nel gruppo L è stato significativamente inferiore di quello del gruppo di trattamento con adrenalina (P<0.01). Non è stata registrata nessuna differenza statisticamente significativa tra i valori di lattati nel gruppo S (n=3) rispetto ai gruppi L ed E (n=5) (Fig. 10).

Fig. 10 Lattati sierici alla baseline e alla fine dell’esperimento (media±SEM).
* differenza statisticamente significativa con il gruppo E.
Un simbolo = P<0.05; due simboli P<0.01; tre simboli P<0.001.
2. EMULSIONE LIPIDICA VERSUS VASOPRESSINA

Materiali e Metodi

Il protocollo sperimentale di questo secondo studio è simile al precedente.

Ratti maschi Sprague-Dawley, di peso 415 ± 18.8 gr, in anestesia generale con isoflurane, sono stati intubati per via tracheale e sono stati ventilati meccanicamente con un tidal volume 2.5 ml ed una frequenza respiratoria 65-70/min. Sono stati posizionati, quindi, un catetere in vena giugulare sinistra, per somministrazione farmaci e prelievi ematici, ed un catetere in arteria carotide destra per monitoraggio pressione arteriosa in continuo e prelievi ematici. Elettrocardiogramma e pressione arteriosa carotidea sono stati registrati in continuo per tutta la durata dell’esperimento.

La somministrazione di isoflurane è stata interrotta ed un bolo di 20 ml/kg in 20 secondi di bupivacaina è stato infuso e.v.. Al termine dell’infusione tutti gli animali hanno presentato asistolia (TIME 0), è stato iniziato il massaggio cardiaco esterno, interrotto ogni 10 secondi per valutare il rate-pressure product spontaneo (RPP= frequenza cardiaca x pressione arteriosa sistolica) ed l’intervallo QRS all’elettrocardiogramma. La ventilazione meccanica con ossigeno al 100% è stata continuata per tutto l’esperimento.

L’infusione dei tre diversi trattamenti endovenosi, assegnati precedentemente per via randomizzata (n=6 per ogni gruppo), è iniziata al TIME 0 secondo il seguente schema:

- **GRUPPO L**: INTRALIPI 30% bolo 5 ml/kg (in 30 sec) + i.c. 1 ml/kg/min
- **GRUPPO V**: VASOPRESSINA bolo 0.4 U/kg
- **GRUPPO V+E**: VASOPRESSINA + EPINEFRINA bolo 0.4 U/kg + bolo 30 µg/kg

Boli dei tre diversi trattamenti sono stati ripetuti a 2.5 minuti o a 5 minuti (dal TIME 0) per RPP spontaneo minore del 20% di quello registrato prima dell’infusione della
bupivacaina (baseline). L’endpoint primario dello studio è stato il ritorno a circolazione spontanea (ROSC) definito come un RPP maggiore del 20% di quello alla baseline.

Prelievi ematici arteriosi e venosi sono stati eseguiti all’inizio dell’esperimento (baseline) e a 10 minuti (fine dell’esperimento) per emogasanalisi, misurazione della saturazione d’ossigeno venosa centrale (S_{CVP}) e dei lattati sierici. Alla fine dell’esperimento i polmoni sono stati pesati, essiccati poi a 65° C per 48 ore e ripesati per calcolare il rapporto wet-to-dry del peso polmonare.

Gli esperimenti sono stati interrotti a 10 minuti e gli animali sacrificati.

Tutti i dati sono stati analizzati usando GraphPad Prism 4. Tutti i altri parametri sono stati analizzati usando two-way analysis of variance e Bonferroni posttest ($P<0.05$). I parametri alla baseline ed il rapporto wet-to-dry del peso dei polmoni sono stati analizzati usando one-way analysis of variance e Bonferroni posttest.

Risultati

Non è stata rilevata differenza statisticamente significativa nei valori dei parametri emodinamici e metabolici analizzati alla baseline tra i tre gruppi di trattamento in studio.

Tutti gli animali nel gruppo L, solo uno su sei del gruppo V e tre del gruppo V+E hanno ottenuto il ritorno a circolazione spontanea, definito come un RPP maggiore del 20% di quello alla baseline.

La media del RPP del gruppo L è risultato significativamente maggiore di quella del gruppo V a 7.5 min ($P<0.01$) e a 10 min ($P<0.001$) e significativamente maggiore di quella del gruppo V+E a 10 min ($P<0.001$). La frequenza cardiaca media del gruppo di trattamento con emulsione lipidica è risultata significativamente superiore a quella degli altri due gruppi durante tutto l’esperimento ($P<0.001$ a 10 min per V e V+E).
pressione sistolica negli animali del gruppo L è aumentata gradualmente, mentre la pressione sistolica media del gruppo V+E è stata significativamente elevata per tutto l’esperimento, comunque tra i due gruppi al tempo 10 min non è stata calcolata differenza statisticamente significativa (Fig. 11).

![Rate-Pressure Product](image)

![Heart Rate](image)

![Systolic Blood Pressure](image)

Fig. 11 Parametri emodinamici vs tempo (0-10 min). (media±SEM).

differenza statisticamente significativa V+E vs V;
+ differenza statisticamente significativa L vs V+E;
* differenza statisticamente significativa L vs V.

Un simbolo = $P<0.05$; due simboli $P<0.01$; tre simboli $P<0.001$.
Il complesso QRS, diversamente dallo studio precedente, è risultato allungato in tutti e tre i gruppi di trattamento a 2.5 min rispetto al valore di baseline. Nel gruppo L il QRS è rientrato a valori non differenti da quelli di partenza a 5 min, mentre nei gruppi V e V+E è rimasto significativamente aumentato per tutto l’esperimento (a 10 min L vs V = \textit{P}<0.001; L vs V+E = \textit{P}<0.05) (Fig. 12, in alto).

QRS duration

![Graph showing QRS duration over time](image)

Wet to Dry lung weight Ratio

![Graph showing wet to dry lung weight ratio](image)

Fig. 12 Grafico in alto: Intervallo QRS vs tempo (0-10 min). (media±SEM).
Grafico in basso: Rapporto wet-to-dry peso polmonare a 10 min.
differenza statisticamente significativa V+E vs V;
+ differenza statisticamente significativa L vs V+E;
* differenza statisticamente significativa L vs V.
Un simbolo = \textit{P}<0.05; due simboli \textit{P}<0.01; tre simboli \textit{P}<0.001.

Abbiamo osservato che tutti gli animali trattati con vasopressina da sola o in associazione con l’epinefrina (gruppi V e V+E) hanno sviluppato edema polmonare appena dopo l’infusione del primo bolo di trattamento, identificato da liquido
rossastro (ematico) nel tubo tracheale e attraverso il rapporto wet-to-dry del peso polmonare, che è risultato significativamente maggiore nei gruppi V e V+E rispetto al gruppo L (Fig. 12, in basso).

Il pH ematico alla fine dell’esperimento è risultato significativamente minore nei gruppi V e V+E che nel gruppo L (a 10 min, L vs V $P<0.01$; L vs V+E $P<0.001$) (Fig. 13).

Fig. 13 pH, Lattati e S_{cvo2} alla baseline e a 10 min (media±SEM).
+ differenza statisticamente significativa L vs V+E;
* differenza statisticamente significativa L vs V. Tre simboli $P<0.001$.

Il valore medio dei lattati sierici e della saturazione d’ossigeno venosa centrale alla fine dell’esperimento, nel gruppo di trattamento con emulsione lipidica, era sovrapponibile ai valori alla baseline ($P>0.05$). La concentrazione dei lattati nei gruppi V e V+E (n=5 per problemi tecnici con apparecchiature) è stata significativamente superiore a quella del gruppo L (a 10 min, L vs V $P<0.001$; L vs V+E $P<0.001$) (Fig.13). La S_{cvp}, a 10 min, è stata significativamente inferiore nei gruppi V e V+E rispetto al gruppo L (L vs V $P<0.001$; L vs V+E $P<0.001$) (Fig.13).
Discussione

I risultati ottenuti dimostrano la superiorità dell’emulsione lipidica, rispetto all’adrenalina, alla vasopressina e alla loro associazione nel trattamento della cardiotossicità severa indotta da un overdose di bupivacaina nel modello sperimentale animale presentato.

Una serie di case reports (34-44) recentemente pubblicati documentano l’efficacia dell’emulsione lipidica nel trattamento della cardiotossicità degli anestetici locali, una complicanza, potenzialmente fatale, dell’anestesia loco-regionale. La tossicità severa degli anestetici locali è, spesso, resistente alle terapie rianimatorie standard, a causa, verosimilmente, dei diversi livelli molecolari (canali ionici cardiaci, metabolismo mitocondriale) d’azione di queste sostanze (29, 53-57).

L’utilizzo di adrenalina e/o vasopressina è raccomandato nelle linee guida dell’American Heart Association (52) nel trattamento dell’asistolia, nell’attività elettrica senza polso e nella fibrillazione ventricolare, tipiche nella cardiotossicità severa degli anestetici locali.

L’adrenalina è un farmaco universalmente usato nel trattamento dell’arresto cardiocircolatorio in tutte le sue forme per i ben noti effetti cronotropi e ionotropi positivi, di vasocostrizione, di transitorio aumento del cardiac output e della pressione di perfusione coronarica, nonostante in nessun trial clinico la sua efficacia sia stata dimostrata superiore a placebo (56).

L’efficacia della vasopressina è stata ampiamente studiata in diverse condizioni di shock, con contrastanti risultati sia in studi sperimentali di laboratorio che in trials clinici, dando vita ad un intenso dibattito scientifico sulla sua utilità nella rianimazione cardio-polmonare (56-58). Un recente studio clinico prospettico non ha dimostrato superiorità della combinazione di adrenalina e vasopressina rispetto alla sola adrenalina nel trattamento dell’arresto cardiaco (out of hospital), in questo trial...
clinico, inoltre, la sopravvivenza alla dimessione è risultata decisamente bassa per entrambi i trattamenti (<3%) (59).

I nostri risultati contrastano con quelli, pubblicati in due differenti studi (63, 64) da Mayr et al. che hanno dimostrato l’efficacia del trattamento con epinefrina (da sola o in combinazione con vasopressina) rispetto al trattamento con emulsione lipidica nell’arresto cardiaco indotto da bupivacaina ed asfissia in un modello sperimentale su maiali. Importanti differenze nei protocolli sperimentali possono spiegare tali differenze nei risultati prodotti. Il modello sperimentale usato da Mayr et al. prevede l’infusione di una dose di bupivacaina (5 mg/kg), nettamente inferiore a quella usata nel nostro studio (20 mg/kg), e l’interruzione della ventilazione (asfissia) fino all’arresto cardiaco. La bupivacaina quindi non può essere considerata la causa, o la sola causa, di arresto cardiaco. L’asfissia rappresenta un importante <i>confounding factor</i>, che è stato eliminato nel nostro studio usando una dose di bupivacaina sufficientemente elevata da rendere impossibile la rianimazione dell’animale con la sola ventilazione ed il massaggio cardiaco. Nel nostro studio l’unica causa di arresto cardiaco è l’overdose di anestetico locale.

Nei lavori di Mayr et al., ma anche in altri studi sul trattamento della cardiotoxicità della bupivacaina (60-64), la pressione arteriosa sistolica è stata considerata l’unico parametro per definire il ritorno a circolazione spontanea. Tuttavia, nei nostri esperimenti, la sola “ipertensione” sistolica osservata inizialmente, a 2.5 min e 5 min, nel gruppo di trattamento con adrenalina, da sola o in associazione alla vasopressina, non predigere per un ottimale recupero di attività circolatoria spontanea e di un ottimale perfusione tissutale periferica, come documentato dai valori degli altri parametri emodinamici e metabolici studiati.

Nel nostro studio abbiamo considerato come parametro di ritorno a circolazione spontanea il <i>rate-pressure product</i> (RPP), che può essere considerato una misura
indiretta del lavoro cardiaco e correla con le alterazioni indotte dalla frequenza cardiaca sulla pressione arteriosa sistolica e viceversa. Abbiamo inoltre studiato una serie di parametri metabolici (pH, lattati, S_{cvp}) che descrivono la perfusione tissutale. Analizzando i dati dei gruppi V e V+E, abbiamo trovato una correlazione forte (r di Pearson > - 0.6) tra frequenza cardiaca e RPP ed il pH ed una correlazione debole (r di Pearson = - 0.33) tra pressione sistolica e pH, questi risultati suggeriscono che in questo modello sperimentale la pressione sistolica è stato il meno informativo dei parametri studiati (Fig.14).

Fig. 14 Correlazioni tra parametri emodinamici e pH a 10 min.
Un risultato metodologicamente importante del nostro studio è che la combinazione di parametri emodinamici e metabolici descrive meglio il recupero di attività circolatoria che la sola pressione sistolica. Abbiamo trovato infatti una correlazione forte (r di Pearson > 0.75) tra tutti i parametri emodinamici ed il pH nel gruppo di trattamento con emulsione lipidica, ciò indica che il recupero di attività cardio-circolatoria porta ad una adeguata perfusione tissutale. Correlazioni forti sono state trovate anche nei gruppi V e V+E (HR vs pH e RPP vs pH, rispettivamente), ma, paradossalmente sono negative, il che indica che il recupero di attività cardiaca si è avuta a spese della perfusione tissutale globale (Fig. 14).

Aumentati livelli di lattati e valori di saturazione venosa centrale diminuiti rappresentano markers, anche se indiretti, di ipoperfusione tissutale (65). Rivers et al. hanno inoltre dimostrato che una saturazione venosa centrale minore del 30% al termine di una rianimazione cardio-polmonare è associata con una mortalità del 100% (66). Negli animali trattati con adrenalina e/o vasopressina la saturazione venosa centrale alla fine dell’esperimento era drammaticamente ridotta (Fig.9,13). L’incremento dei valori di lattati alla fine della rianimazione nei gruppi di trattamento con adrenalina può essere in parte dovuto ad una serie di fattori: glicogenolisi e glicolisi tissutale indotta dall’epinefrina stessa, basso cardiac output, ipoperfusione tissutale periferica, ridotto metabolismo epatico, ipoperfusione splancnica (67,68). Heavner et al. (60) e Groban et al. (62) hanno descritto aritmie ventricolari in animali trattati con epinefrina in modelli sperimentali di cardiotossicità bupivacaina-indotta. In accordo con questi precedenti studi, abbiamo registrato numerose extrasistolie e battiti ectopici ventricolari negli animali trattati con adrenalina. Nel gruppo di trattamento con adrenalina, inoltre, è stato osservato un iniziale allargamento del complesso QRS, che è rientrato ai valori di baseline nel corso dell’esperimento.
verosimilmente per il salutare effetto della stimolazione adrenergica sulla conduzione cardiaca. L’infusione di vasopressina non sembra avere nessun effetto sull’allungamento patologico dell’intervallo QRS indotto dall’overdose di bupivacaina, l’intervallo QRS, infatti, nel gruppo V e V+E è risultato significativamente allungato per tutta la durata dell’esperimento. Al contrario non si sono osservate variazioni del complesso QRS nel gruppo di trattamento con emulsione lipidica nel corso di tutto l’esperimento, questa osservazione suggerisce una rapida diminuizione della concentrazione miocardica di bupivacaina.

Tutti gli animali trattati con vasopressina, da sola o in associazione con l’adrenalina, hanno presentato edema polmonare, purtroppo nel nostro studio il meccanismo di tale fenomeno non è stato studiato, ma sembra, verosimilmente, correlabile alla estrema vasocostrizione sistemica indotta dai due farmaci. Analogamente, Reinikainem et al. hanno descritto un caso di grave edema polmonare dopo la somministrazione di adrenalina durante la rianimazione di un arresto cardiaco indotto da ropivacaina (69). Anche Sirianni et al. hanno riportato edema polmonare subito dopo la somministrazione di generose dosi di adrenalina nel corso dei trattamenti rianimatori in una paziente in arresto cardiaco dopo ingestione di elevate quantità di bupropione a scopo suicidario, la paziente ha necessitato di prolungata ventilazione meccanica (47).

Nel nostro studio possono essere riconosciuti alcuni limiti: gli esperimenti sono stati troppo brevi, 10 min. Gli animali trattati con lipid presentavano già segni di risveglio a 10 min e avrebbero necessitato di anestesia generale per la prosecuzione dell’esperimento, aggiungere anestesia inalatoria in un solo gruppo avrebbe rappresentato un importante confounder factor.
Il nostro protocollo sperimentale non prevedeva lo studio dell’outcome neurologico e del danno d’organo, della sopravvivenza a lungo termine, e del meccanismo alla base dell’efficacia dell’emulsione lipidica nel trattamento della cardiotossicità da anestetico locale.

In conclusione, nel modello sperimentale in vivo presentato, l’emulsione lipidica è risultata superiore, in termini di sopravvivenza, parametri emodinamici e metabolici, all’adrenalina, alla vasopressina e alla loro associazione nel trattamento dell’arresto cardiaco indotto da un’overdose di bupivacaina. Ulteriori studi sono necessari per confermare queste osservazioni e soprattutto per determinare eventuali implicazioni sul piano clinico.
SCHEMA DI TRATTAMENTO:

• PROMPT AND EFFECTIVE AIRWAY MANAGEMENT
• IF SEIZURES RAPIDLY BENZODIAZEPINES OR THIOPENTAL
• PROPOFOL CAN STOP SEIZURES, LARGE DOSES FURTHER DEPRESS CARDIAC FUNCTION
• IF CARDIAC ARREST, STANDARD ACLS

WITH FOLLOWING MODIFICATIONS:
- EPINEPHRINE SMALL DOSES (< 100 mcg BOLUSES IN ADULT)
- VASOPRESSIN IS NOT RECOMMENDED
- IF VENTRICULAR ARRHYTHMIAS, AMIODARONE;
- LIDOCAINE or Ca++ CHANNEL BLOCKERS NOT RECOMMENDED

• LIPID EMULSION THERAPY
 - CONSIDER ADMINISTERING AT FIRST SIGNS OF LA TOXICITY
 - 1.5 mL/kg 20% lipid emulsion bolus
 - 0.25 mL/kg/min x at least 30 min, until circulatory stability
 - otherwise consider re-bolus and increasing infusion to 0.5 mL/kg/min

• PROPOFOL IS NOT THE SAME OF LIPID EMULSION
• CONSIDER CARDIOPULMONARY BYPASS IF FAILURE TO RESPOND TO LIPID THERAPY AND ACLS

38. Smith HM, Jacob AK, Segura LG, Dilger JA, Torsher LC. Simulation education in anesthesia training: a case report of successful resuscitation of
bupivacaine-induced cardiac arrest linked to recent simulation training. Anesth Analg 2008;106:1581-4

42. Marwick PC, Leven AI, Coetzee AR: Recurrence of Cardiotoxicity After Lipid Rescue from Bupivacaine-Induced Cardiac Arrest. Anesth Analg 2009;108:1344-1346

