Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Di Ascenzo, Leonardo (2010) Disfunzione microvascolare in pazienti obesi con basso Framingham Risk Score e coronarie indenni: nuove evidenze di una relazione tra flogosi e disfunzione microvascolare coronarica. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF (Tesi di Dottorato)
1868Kb

Abstract (inglese)

Background: Several evidences show that obesity is associated with structural and functional changes in the heart and it is independently associated with increased cardiovascular risk. However, possible mechanisms through which early obesity affects coronary microvascular function remain uncertain.

Methods and Results: 86 obese subjects (24 M) without clinical evidence of heart disease and 48 lean controls matched for age and gender were studied. Coronary flow velocity in the left anterior descending coronary artery was detected by transthoracic Doppler echocardiography at rest and during adenosine infusion. Coronary flow velocity reserve (CFVR) was the ratio of hyperaemic diastolic flow velocity (DFV) to resting DFV. CFR ≤ 2.5 was considered abnormal and patients with abnormal CFVR underwent to multislice computed tomography (MSCT) in order to exclude an epicardial coronary stenosis. All subjects with abnormal CFVR were normal at MSCT. The obese group was relatively young (mean age 44 + 12 years) with severe obesity (mean BMI of 41 kg/m2 + 8) and predominantly visceral obesity (mean waist circumference of 119 + 15 cm). The middle Framingham Risk Score of obese group was low (2 (1-6)). The obese group compared with controls showed a biohumoral profile with significantly higher levels of IL 6 (p < 0,0001), TNF α (p < 0,0001) and CRP (p < 0,0001). The CFVR was abnormal (< 2.5) in 27 (31%) obese patients and only in 2 (4 %) controls (p < 0,0001) although its average value is not significantly different between obese and controls (respectively 3,2 + 1 vs 3,3 + 0,6). The BMI, IL 6 and TNF-α showed a significant inverse correlation with CFVR (p < 0,004, p < 0,0001, p < 0,0001). In obese subjects with pathological CFVR average value was very low (1,9 + 0,3), which is below the ischemic threshold. BMI (p < 0,0001), waist circumference (p < 0,001), IL 6 and TNF α (both p < 0,0001) were resulted significantly different between obese people with normal CFVR and obese people with pathological CFVR. On univariate linear regression analysis only BMI (p = 0,004), IL 6 (p < 0,001) and TNF α (p < 0,0001) and two hemodynamic parameters such as systolic blood pressure (p = 0,001) and heart rate (p = 0,002) were found to be decisive for the CFVR, but on multivariate analysis the pro-inflammatory cytokines IL 6 and TNF α (p = 0,02) were confirmed as the only independent determinants. Finally, on multivariate logistic regression analysis only IL 6 and TNF α were the determinants of abnormal CFVR (≤ 2.5) (p = 0,03) with an adjusted odds ratio respectively of 10,1 and 7,2.

Conclusions: CFVR is often reduced in obese subjects without clinical evidence of heart disease, suggesting a preclinical coronary microvascular impairment. This microvascular dysfunction seems to be related to an inflammatory chronic process, enlarged by adipocytokines. Our findings may explain the increased risk of cardiovascular disease in obesity, independently of body mass index.

Abstract (italiano)

Presupposti: L’obesità è riconosciuta come una malattia ad andamento cronico, caratterizzata da un abnorme sviluppo di tessuto adiposo e da un eccessivo deposito di lipidi in vari tessuti corporei anche extra-adiposi ed è uno dei maggiori fattori determinanti in molte e diverse malattie per cui, in Europa ad esempio, risulta responsabile di circa il 6 % dei costi per la salute e contribuisce a determinare 1 milione di morti su base annua.
In base a raccomandazioni OMS l’obesità viene classificata sulla base dell’indice di massa corporea o Body Mass Index quando > 30 kg / m2.
Un indice che si è dimostrato essere in grado di meglio descrivere l’obesità e la sua regionalità corporea, con una migliore correlazione con il rischio cardiovascolare, è la misurazione della Circonferenza Vita.
Negli USA la prevalenza dell’obesità nella popolazione adulta supera il 30 %, in Europa si attesta tra il 23 % del Regno Unito di Gran Bretagna e l’8% di Norvegia e Svizzera. L’Italia si colloca in posizione favorevole con un tasso di prevalenza di obesi adulti intorno al 9 %.
Obiettivi: L’obiettivo del progetto di ricerca clinica è stato valutare la riserva coronarica (CFR) e i suoi determinanti, con una metodica non invasiva, in un gruppo di individui obesi, senza complicanze cardiovascolari note, al fine di evidenziare eventuali alterazioni della funzione microcircolatoria coronarica, in fase ancora subclinica.
Dimostrare conseguentemente l’ipotesi che non la generalità della popolazione obesa presenti un uguale rischio di sviluppare disfunzione del microcircolo coronarico ma che questo rischio sia legato all’ipotesi di un organo adiposo disfunzionante, clinicamente misurabile, nel quale prevalga la produzione di ciotochine pro-infiammatorie, tali da determinare uno stato infiammatorio sistemico cronico, subclinico.
Materiali e Metodi: Tra il settembre 2008 ed il luglio 2010, sono stati esaminati 86 pazienti (24 (27 %) maschi, 62 (73 %) femmine) rivoltisi consecutivamente e spontaneamente al Centro per il trattamento dell’obesità della Clinica Medica III dell’Azienda Ospedale Università di Padova e 48 controlli non obesi scelti per confrontabilità di sesso, età e fattori di rischio. Tutti i soggetti esaminati sono stati sottoposti ad una duplice valutazione:
- internistica ambulatoriale, che ha comportato una raccolta di dati anamnestici, un esame clinico con alcune misure antropometriche ed una valutazione bioumorale per il dosaggio dei marcatori di rischio cardiovascolare e di altri indici metabolici;
- cardiologica ambulatoriale presso la Clinica Cardiologica dell’Azienda Ospedale Università di Padova, che ha comportato l’esecuzione di un ecocolordoppler cardiaco basale ove possibile e lo studio della CFR mediante metodica ecocardiografica con infusione di adenosina. La velocità del flusso coronarico è stata misurata a livello dell’arteria discendente anteriore. La CFR è stata calcolata come il rapporto del picco di velocità diastolica durante infusione di adenosina sul picco di velocità diastolica basale. La CFR è stata considerata patologica quando inferiore a 2,5 ed i pazienti ricadenti in questo gruppo sono stati avviati ad angiotac coronarica per escludere la presenza di stenosi coronariche critiche. Quindi 17 dei 27 soggetti con CFR inferiore a 2,5 sono stati sottoposti ad angioTAC coronarica presso la Casa di Cura di Abano Terme con esclusione in tutti i casi di una malattia coronarica critica.
Risultati: Il gruppo degli obesi era relativamente giovane (età media 44 + 12 anni) con un’obesità grave (BMI medio di 41 + 8 kg/m2) e prevalentemente viscerale (circonferenza vita media di 119 + 15 cm). Sia gli obesi che i controlli presentavano un basso Framingham Risk Score mediano rispettivamente 2 (1-6) e 1 (1-6) con una differenza non significativa (p = 0,8). Rispetto ai controlli gli obesi presentavano un profilo bioumorale di tipo pro-infiammatorio con livelli significativamente più elevati di IL 6 (p < 0,0001), di TNF α (p < 0,0001) e di PCR (p < 0,0001). La CFR è risultata patologica (ovvero < 2,5) in 27 (31 %) obesi e solo in 2 (4 %) controlli (p < 0,0001) sebbene il suo valore medio non sia risultato significativamente diverso tra obesi e controlli (rispettivamente 3,2 + 1 vs 3,3 + 0,6). Il BMI, l’IL 6 ed il TNF α hanno evidenziato una correlazione inversa significativa con la CFR (rispettivamente p < 0,004, p < 0,0001, p < 0,0001). Negli obesi con CFR patologica il valore medio è risultato particolarmente basso (1,9 + 0,3), ovvero al di sotto della soglia ischemica. Ciò che differenziava più significativamente gli obesi con CFR patologica dagli obesi con CFR normale sono risultati il BMI (p < 0,0001), la Circonferenza vita (p < 0,001), l’IL 6 ed il TNF α (entrambe con p < 0,0001). All’analisi di regressione lineare univariata solo il BMI (p = 0,004), l’IL 6 (p = < 0,001) ed il TNF α (p < 0,0001) e due parametri emodinamici come la Pressione sistolica (p = 0,001) e la Frequenza cardiaca (p = 0,002) sono risultati essere determinanti della CFR ma all’analisi multivariata si sono confermate come determinanti indipendenti solo le citochine pro-infiammatorie IL 6 e TNF α (p = 0,02). Infine all’analisi di regressione logistica multivariata, solamente IL 6 e TNF α sono stati gli unici determinanti di CFR patologica (ovvero ≤ 2.5) (p = 0.03) con un Odds ratio aggiustato (con indice di confidenza dell’intervallo del 95 %) rispettivamente di 10,1 e 7,2.
Conclusioni: Il presente studio consente di concludere che l’obesità quando grave e viscerale tende a ridurre progressivamente la funzione del microcircolo coronarico sebbene non raggiungendo necessariamente valori patologici. Non tutti gli individui obesi sviluppano infatti complicanze cardiovascolari. Con una semplice metodica ecocardiografica è stato possibile indagare negli obesi la presenza di una complicanza cardiovascolare ancora in fase subclinica come la riduzione della CFR. A correlare in modo indipendente con una riduzione della CFR, al di sotto dei valori patologici non è stato il grado di obesità di per sé, ne solo la quantità di tessuto adiposo viscerale ma sono stati gli aumentati livelli di adipocitochine pro-infiammatorie IL 6 e TNF α, semplicemente dosati mediante un prelievo venoso periferico, espressione di una disfunzione in senso infiammatorio del tessuto adiposo bianco viscerale. L’assenza di evidenza angiotac di malattia coronarica critica ci consente di ritenere che la riduzione della CFR sia da attribuirsi ad una disfunzione del microcircolo coronarico. Altresì si può ipotizzare che la condizione subclinica di alterata grave disfunzione microcircolatoria coronarica, diagnosticabile già in fase molto precoce e semplicemente, quando non corretta da un adeguato trattamento dell’obesità, possa evolvere verso due diverse forme di complicanza cardiovascolare clinica: la cardiopatia ischemica e la cardiomiopatia dell’obeso.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Iliceto, Sabino
Correlatore:Tona, Francesco
Dottorato (corsi e scuole):Ciclo 21 > Scuole per il 21simo ciclo > SCIENZE MEDICHE, CLINICHE E SPERIMENTALI > SCIENZE CARDIOVASCOLARI
Data di deposito della tesi:NON SPECIFICATO
Anno di Pubblicazione:30 Settembre 2010
Parole chiave (italiano / inglese):riserva coronarica obesità coronary flow reserve obesity
Settori scientifico-disciplinari MIUR:Area 06 - Scienze mediche > MED/11 Malattie dell'apparato cardiovascolare
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze Medico Diagnostiche e Terapie Speciali
Codice ID:3203
Depositato il:20 Lug 2011 09:44
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Articoli Cerca con Google

1. Rankinen T, Zuberi A, Chagnon YC, Weisnagel SJ, Argyropoulos G, Walts B, Pérusse L, Bouchard C. The human obesity gene map: the 2005 update. Obesity. 2006; 14: 529-644. Cerca con Google

2. World Health Organization. European Charter on counteracting obesity. 2006. Cerca con Google

3. Staffieri JR. A study of social stereotype of body image in children. J Person Social Psychol. 1967; 7: 101-4. Cerca con Google

4. Seedorf U, Sculte H, Assmann G. Genes, diet and public health. Genes Nutr. 2007; 2: 75-80. Cerca con Google

5. World Health Organization. The Asia-Pacific perspective: redefining obesity and its treatment. 2000. Cerca con Google

6. Yusuf S, Hawken S, Ounpuu S, Bautista L, Franzosi MG, Commerford P, Lang CC, Rumboldt Z, Onen CL, Lisheng L, Tanomsup S, Wangai P Jr, Razak F, Sharma AM, Anand SS; INTERHEART Study Investigators. Obesity and the risk of myocardial infarction in 27,000 participants from 52 countries: a case-control study. Lancet. 2005; 366: 1640-9. Cerca con Google

7. Bray GA, Bellager T. Epidemiology, trends, and morbidities of obesity and metabolic syndrome. Endocrine. 2006; 29: 109-117. Cerca con Google

8. Flegal KM. Epidemiologic aspects of overweight and obesity in the United States. Physiology & Behavior. 2005; 86: 599-602. Cerca con Google

9. Poirier P, Giles TD, Bray GA, Hong Y, Stern JS, Pi-Sunyer FX, Eckel RH. Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss: an update of the 1997 American Heart Association Scientific Statement on Obesity and Heart Disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism; American Heart Association; Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation. 2006; 113: 898-918. Cerca con Google

10. Peeters A, Barendregt JJ, Willekens F, Mackenbach JP, Al Mamun A, Bonneux L. Obesity in adulthood and its consequences for life expectancy: a life-table analysis. NEDCOM, the Netherlands Epidemiology and Demography Compression of Morbidity Research Group. Ann Intern Med. 2003; 138: 24-32. Cerca con Google

11. Willet WC, Stampfer M, Manson J, Vanitalie T: New weight guidelines for Americans: justified or injudicious. Am J Clin Nutr. 1991; 53: 1102-3. Cerca con Google

12. Kannel WB, D’Agostino RB, Cobb JL. Effect of weight on cardiovascular disease. Am J Clin Nutr. 1996; 63: 195-225. Cerca con Google

13. Willet WC et al. Weight, weight change and coronary heart disease in women. Risk within the “normal” weight range. JAMA. 1995; 273: 461-465. Cerca con Google

14. Stamler R, Stamler J, Riedlinger WF, Algera G, Roberts RH. Weight and blood pressure. Findings in hypertension screening of 1 million Americans. JAMA. 1978; 240: 1607-1610. Cerca con Google

15. Dyer AP, Elliot P. The INTERSALT study: relations of body mass index to blood pressure. INTERSALT Co-operative Research Group. J Hum Hypertens. 1989; 3: 299-308. Cerca con Google

16. Despres JP. Dyslipidaemia and obesity. Clinical Endocrinology and Metabolism. 1994; 8: 629-60. Cerca con Google

17. Executive summary of the third report of the National Cholesterol Education Program (NCEP). Expert panel on detection, evaluation and treatment of high blood cholesterol in adult (adult treatment panel III). JAMA. 2001; 285: 2486-2497. Cerca con Google

18. Miranda PJ, DeFronzo RA, Califf RM, Guyton JR. Metabolic syndrome: definition, pathophysiology, and mechanisms. Am Heart J. 2005; 149(1): 33-45. Cerca con Google

19. Carey DG, Jenkins AB, Campbell LV, Freund J, Chisholm DJ. Abdominal fat and insulin resistance in normal and overweight women: direct measurements reveal a strong relationship in subjects at both low and high risk of NIDDM. Diabetes. 1996; 45: 633-638. Cerca con Google

20. Warnes CA, Roberts WC. The heart in massive obesity: analysis of 12 patients studied at necroscopy. Am J Cardiol. 1984; 54: 1087-1091. Cerca con Google

21. Ahmed Q, Chung-Park M, Tomashefski JF. Cardiopulmonary pathology in patients with sleep apnea/obesity hypoventilation syndrome. Hum Pathol. 1997; 28: 264-269. Cerca con Google

22. Haque AK, Gadre S, Taylor J, Haque SA, Freeman D, Duarte A. Pulmonary and cardiovascular complications of Obesity. An autopsy study of 76 obese subjects. Arch Pathol Lab med. 2008; 132: 1397-1404. Cerca con Google

23. Tumuklu MM, Etikan I, Kisacik B, Kayikcioglu M. Effect of obesity on left ventricular structure and myocardial systolic function: assesmente by tissue doppler imaging and strani/strani rate imaging. Echocardiography. 2007; 24: 802-809. Cerca con Google

24. Di Bello V, Santini F, Di Cori A, Pucci A, Palagi C, Delle Donne MG, Fierabracci P, Marsili A, Talini E, Riannetti M, Biadi O, Balbarini A, Mariani M, Pinchera A. Obesity cardiomyopathy: is it a reality? An ultrasonic tissue chracterization study. J Am Soc Echocardiogr. 2006; 19: 1063-71. Cerca con Google

25. Lavie CJ, Milani RV, Ventura HO. Obesity and cardiovascular disease. Risk factor, paradox, and impact of weight loss. JACC. 2009; 53: 1925-32. Cerca con Google

26. Kenchaiah S, Evans JC, Levy D et al. Obesity and the risk of heart failure. N Engl J Med. 2002; 347: 305-13. Cerca con Google

27. Peterson LR, Waggoner AD, Schechtman KB, Meyer T, Gropler RJ, Barzilai B, Davila-Roman VG. Alterations in left ventricular structure and function in young healthy obese woman. Assessment by echocardiography and tissue Doppler imaging. JACC. 2004; 43: 1399-1404. Cerca con Google

28. Alpert MA, Lambert CR, Panayiotou H et al. Relation of duration of morbid obesity to left ventricular mass, systolic function, and diastolic filling, and effect of weight loss. Am J Cardiol. 1995; 76: 1194-7. Cerca con Google

29. Di Bello V, Santini F, Di Cori A, Pucci A, Palagi C, Delle Donne MG, Riannetti M, Talini E, Nardi C, Pedrizzetti G, Fierabracci P, Vitti P, Pinchera A, Balbarini A. Relationship between preclinical abnormalities of global and regional left ventricular function and insulin resistance in severe obesity: a color doppler imaging study. International J of Obesity. 2006; 30: 948-956. Cerca con Google

30. Radin MJ, Holycross BJ, Hoepf TM, McCune SA. Salt-induced cardiac hypertrophy is independent of blood pressure and endothelin in obese, heart failure-prone SHHF rats. Clinical and Experimental Hypertension. 2008; 30: 541-552. Cerca con Google

31. McGavock JM, Victor RG, Unger RH, Szczepaniak LS. Adiposity of the heart, revisited. Ann Intern Med. 2006; 144: 517-524. Cerca con Google

32. Reingold JS, McGavock JM, Kaka S, Tillery T, Victor RG, Szczepaniak LS. Determination of triglyceride in the human myocardium by magnetic resonance spectroscopy: reproducibility and sensitivity of the method. Am J Physiol Endrocrinol Metab. 2005; 289: E935-E939. Cerca con Google

33. Chiu Hc, Kovacs A, Ford DA et al. A novel mouse model of lipotoxic cardiomyopathy. J Clin Invest. 2001; 107: 813-822. Cerca con Google

34. Felblinger J, Jung B, Slotboom J e al. Methods and reproducibility of cardiac / respiratory double-triggered H-MR spectroscopy of the human heart. Magn Reson Med. 1994; 42: 903-910. Cerca con Google

35. Szczepaniak LS, Dobbins RL, Metzger GJ et al. Myocardial triglycerides and systolic fuction in humans: in vivo evaluation by localized proton spectroscopy and cardiac imaging. Magn Reson Med. 2003; 49: 417-423. Cerca con Google

36. Zhou YT, Grayburn P, Karim A et al. Lipotoxic heart disease in obese rats: implications for human obesity. Proc Natl Acad Sci USA. 2000; 97: 1784-1789. Cerca con Google

37. Adams KF, Schatzkin A, Harris TB, Kipnis V, Mouw T, Ballard-Barbash R, Hollenbeck A, Leitzmann MF. Overweight, obesity, and mortality in a large prospective cohort of persons 50 to 71 years old. N Engl J Med. 2006; 355: 763-778. Cerca con Google

38. Steinberg BA, Cannon CP, Hernandez AF, Pan W, Peterson AD, Fonarow GC. Medical therapies and invasive treatments for coronary artery disease by body mass: the “obesity paradox” in the Get With The Guidelines database. Am J Cardiol. 2007; 100: 1331-1335. Cerca con Google

39. Doehner W, Clark A, Anker SD. The obesity paradox: weighing the benefit. Eur Heart J. 2010; 31: 146-148. Cerca con Google

40. Oreopoulos A, McAlister FA, Kalantar-Zadeh K, Padwal R, Ezekowitz JA, Sharma AM, Kovesdy CP, Fonarow GC, Norris CM. The relationship between body mass index, treatment, and mortality in patients with established coronary artery disease: a report from APPROACH. Eur Heart J. 2009; 30: 2584-2592. Cerca con Google

41. Hastie CE, Padmanabhan S, Slack R, Pell ACH, Oldroyd KG, Flapan AD, Jennings KP, Irving J, Eteiba H, Dominiczak AF, Pell JP. Obesity paradox in a cohort of 4880 consecutive patients undergoing Percutaneous coronary intervention. Eur Heart J. 2010; 31: 222-226. Cerca con Google

42. Iacobellis G. et al. Obesity and the heart: redefinition of relationship. Obesity. 2007; 8: 35-39. Cerca con Google

43. Iacobellis G, Ribaudo MC, Zappaterreno A et all. Prevalence of uncomplicated obesity in an italian obese population. Obesity research. 2005; 13: 1116-1122. Cerca con Google

44. Philip-Couderc P, Pathak A, Smih F et all. Uncomplicated human obesity is associated with a specific cardiac transcriptome: involvement of the Wnt pathway. The FASEB J. 2004; 18: 1539-1540. Cerca con Google

45. Wajchenberg BL. Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocrine Revews. 2000; 21: 697-738. Cerca con Google

46. Postorino M, Marino C, Tripepi G, Zoccali C. Abdominal obesity and all-cause and cardiovascular mortalità in end-stage renal disease. J Am Coll Cardiol. 2009; 53: 1265-72. Cerca con Google

47. Pi-Sunyer FX. The epidemiology of central fat distribution in relation to disease. Nutr Rev. 2004; 62(7 Pt 2): S120-126. Cerca con Google

48. Mathieu P, Poirier P, Pibarot P, Lemieux I, Després JP. Visceral obesity: the link among inflammation, hypertension, and cardiovascular disease. Hypertension. 2009; 53(4): 577-584. Cerca con Google

49. Westphal SA. Obesity, abdominal obesity and insulin resistance. Clinical Cornerstone. 2008; 9[1]: 23-31. Cerca con Google

50. Iacobellis G, Ribaudo MC, Assael F, Vecci E, Tiberti C, Zappaterreno A et al. Echocardiographic epicardial adipose tissue is related to anthropometric and clinical parameters of metabolic syndrome: a new indicator of cardiovascular risk. J Clin Endocrinol Metab. 2003. 88: 5163-8. Cerca con Google

51. Iacobellis G, Assael F, Ribaudo MC, Zappaterreno A, Alessi G, Di Mario U et al. Epicardial fat from echocardiography: a new method for visceral adipose tissue prediction. Obes Res. 2003: 11: 304-10. Cerca con Google

52. Sacks HS, Fain JN. Human epicardial adipose tissue: a review. Am Heart J. 2007; 153: 907-917. Cerca con Google

53. Iacobellis G, Corradi D, Sharma A. Epicardial adipose tissue: anatomic, biomolecular and clinical relationships with the heart. Nature Clinical Practice Cardiovascular Medicine. 2005; 2 (10): 536-543. Cerca con Google

54. Rabkin SW. Epicardial fat: properties, function and relationship to obesity. Obesity reviews. 2007; 8: 252-261. Cerca con Google

55. Iacobellis G, Ribaudo MC, Zappaterreno A, Iannucci CV, Leonetti F. Relation between epicardial adipose tissue and left ventricular mass. Am J Cardiol. 2004; 94: 1084-1087. Cerca con Google

56. Iacobellis G, Leonetti F, Singh N, Sharma AM. Relationship of epicardial adipose tissue with atrial dimensions and diastolic function in morbidly obese subjects. International Journal of Cardiology. 2007; 115: 272-273. Cerca con Google

57. Ueno K, Anzai T, Jinzaki M, Yamada M, Jo Y, Maekawa Y, Kawamura A, Yoshikawa T, Tanami Y, Sato K, Kuribayashi S, Ogawa S. Increased epicardial fat volume quantified by 64-multidetector computed tomography is associated with coronary atherosclerosis and totally occlusive lesions. Circ J. 2009; 73: 1927-1933. Cerca con Google

58. Singh N, Singh H, Khanijoun, Iacobellis G. Echocardiographic assessment of epicardial adipose tissue – A marker of visceral adiposity. MJM. 2007; 10: 26-30. Cerca con Google

59. Taguchi R, Takasu J, Itani Y, Yamamoto R, Yokoyama K, Watanabe S, Masuda Y. Pericardial fat accumulation in men as a risk factor for coronary artery disease. Atherosclerosis. 2001; 157: 203-209. Cerca con Google

60. Greif M, Becker A, von Ziegler F, Lebherz C, Lehrke M, Broedl U, Tittus J, Parhofer K, Becker C, Reiser M, Knez A, Leber AW. Pericardial adipose tissue determined by dual source CT is a risk factor for coronary atherosclerosis. Arterioscler Thromb Vasc Biol. 2009; 29: 1-6. Cerca con Google

61. Eroglu S, Sade LE, Yildirir A, Bal U, Ozbicer S, Ozgul AS, Bozbas H, Aydinalp A, Muderrisoglu H. Epicardial adipose tissue thickness by echocardiography is a marker for the presence and severity of coronary artery disease. Nutrition, Metabolism and Cardiovascular Diseases. 2009; 19: 211-217. Cerca con Google

62. Mazurek T, Zhang L, Zalewski A, Mannion JD, Diehl JT, Arafat H, Sarov-Blat L, O’Brien S, Keiper EA, Johnson AG, Martin J, Goldstein BJ. Human epicardial adipose tissue is a source of inflammatory mediators. Circulation. 2003; 108: 2460-2466. Cerca con Google

63. Konishi M, Sugiyama S, Sugamura K, Nozaki T, Ohba K, Matsubara J, Matsuzawa Y, Sumida H, Nagayoshi Y, Nakaura T, Awai K, Yamashita Y, Jinnouchi H, Matsui K, Kimura K, Umemura S, Ogawa H. Association of pericardial fat accumulation rather than abdominal obesity with coronary atherosclerotic plaque formation in patients with suspected coronary artery disease. Atherosclerosis. 2010; 209: 573-8. Cerca con Google

64. van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JMAFL, Kemerink GJ, Bouvy ND, Schrauwen P, Teule GJJ. Cold-activated brown adipose tissue in healthy men. New Engl J Med. 2009; 360: 1500-8. Cerca con Google

65. Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseg YH, Doria A, Kolodny GM, Kahn R. Identification and importance of brown adipose tissue in adult humans. New Engl J Med. 2009; 360: 1509-17. Cerca con Google

66. Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, Taittonen M, Laine J, Savisto NJ, Enerbäck S, Nuutila P. Functional brown adipose tissue in healthy adults. New Engl J Med. 2009; 360: 1518-25. Cerca con Google

67. Fontana L, Eagon JC, Trujillo ME, Scherer PE, Klein S. Visceral fat adipokine secretion is associated with systemic inflammation in obese humans. Diabetes. 2007; 56:1010-3. Cerca con Google

68. Ahima RS, Flier JS. Adipose tissue as an endocrine organ. Trans Endocrinol Metab. 2000; 11: 327-332. Cerca con Google

69. Ailhaud G. Adipose tissue as an endocrine organ. Int J Obes Relat Metab Disord. 2000; (suppl.2): S1-S3. Cerca con Google

70. Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature. 1998; 395: 763-770. Cerca con Google

71. Ahima RS, Flier JS. Leptin. Annu Rev Physiol. 2000. 62: 413-437. Cerca con Google

72. Vernon RG, Denis RG, Sorensen A. Signals of adiposity. Domest Anim Endocrinol. 2001; 21: 197-214. Cerca con Google

73. Faggioni R, Feingold KR, Grunfeld C. Leptin regulation of the immune response and the immunodeficiency of malnutrition. Faseb J. 2001; 15: 2565-2571. Cerca con Google

74. Vettor R, Fabris R, Pagano C, Federspil G. Neuroendocrine regulation of eating behavior. J Endocrinol Invest. 2002; 25: 836-854. Cerca con Google

75. Nakata M, Yada T, Soejima N, Maruyama I. Leptin promotes aggregation of human platelets via the long form of its receptor. Diabetes. 1999; 48: 426-429. Cerca con Google

76. La Cava A, Alviggi C, Matarese G. Unraveling the multiple roles of leptin in inflammation and autoimmunity. J Mol Med. 2004; 82: 4-11. Cerca con Google

77. Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, Patel HR, Ahima RS, Lazar MA. The hormone resistin links obesity to diabetes. Nature. 2001; 409: 307-312. Cerca con Google

78. Janke, J., Engeli, S., Gorzelniak, K., Luft, F. C. and Sharma, A. M., Resistin gene expression in human adipocytes is not related to insulin resistance. Obes Res. 2002; 10: 1-5. Cerca con Google

79. Kumada M, Kihara S, Sumitsuji S, Kawamoto T, Matsumoto S, Ouchi N et al. Coronary artery disease association of hypoadiponectinemia with coronary artery disease in men. Arterioscler Thromb Vasc Biol. 2003; 1: 85-9. Cerca con Google

80. Goldstein BJ, Scalia RG, Xin LM. Protective vascular and myocardial effects of adiponectin. Nat Clin Pract Cardiovasc Med. 2009; 6: 27-35. Cerca con Google

81. Pischon T, Girman CJ, Hotamisligil GS, Rifai N, Hu FB, Rimm EB. Plasma adiponectin levels and risk of myocardial infarction in men. JAMA. 2004; 291: 1730-7. Cerca con Google

82. Ouchi N, Kihara S, Arita Y, Nishida M, Matsuyama A, Okamoto Y et al. Adipocyte-derived plasma protein, adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages. Circulation. 2001; 103: 1057-63. Cerca con Google

83. Arita Y, Kihara S, Ouchi N, Maeda K, Kuriyama H, Okamoto Y et al. Adipocyte-derived plasma protein adiponectin acts as a platelet-derived growth factor-BB-binding protein and regulates growth factor-induced common postreceptor signal in vascular smooth muscle cell. Circulation. 2002; 105: 2893-8. Cerca con Google

84. Iacobellis G, Pistilli D, Gucciardo M et all. Adiponectin expression in human epicardial adipose tissue in vivo is lower in patients with coronary artery disease. Cytokine. 2005; 29: 251-255. Cerca con Google

85. Coppola A, Marfella R, Coppola L, Tagliamone E, Fontana D, Liguori E, Cirillo T, Cafiero M, Natale S, Astarita C. Effect of weight loss on coronary circulation and adiponectin levels in obese women. Int J Card. 2008. Cerca con Google

86. Shibata R, Sato K, Pimentel D et all. Adiponectin protects against myocardial ischemia-reperfusion injury through AMPK- and COX-2-dependent mechanisms. Nature Medicine. 2005; 11: 1096 – 1103. Cerca con Google

87. Smith CA, Farrah T, Goodwin RG. The TNF receptor superfamily of cellular and viral proteins: activation, costimulation, and death. Cell. 1994; 76: 959-962. Cerca con Google

88. Beutler B, Cerami A. The biology of cachectin / TNF α primary mediator of the host response. Annu Rev Immunol. 1989; 7: 625-655. Cerca con Google

89. Vilcek J, Lee TH. Tumor necrosis factor. New insights into the molecular mechanisms of its multiple actions. J Biol Chem. 1991; 266: 7313-7316. Cerca con Google

90. Hotamisligil GS, Spiegelman BM. Tumor necrosis factor alpha: a key component of the obesity-diabetes link. Diabetes. 1994; 43: 1271-1278. Cerca con Google

91. Emanuelli B, Peraldi P, Filloux C, Chavey C, Freidinger K, Hilton DJ, Hotamisligil GS, Van Obberghen E. SOCS-3 inhibits insulin signaling and is up-regulated in response to tumor necrosis factor-alpha in the adipose tissue of obese mice. J Biol Chem. 2001; 276(51). Cerca con Google

92. Yudkin JS, Eringa E e Stehouwer CDA. “Vasocrine” signalling from perivascular fat: a mechanism linking insulin resistance to vascular disease. Lancet. 2005; 365: 1817-20. Cerca con Google

93. Jovinge S, Hamsten A, Tornvall P, Proudler A, Bävenholm P, Ericsson c-G, Godsland I, de Faire U, Nilsson J. Evidence for a role of tumor necrosis factor-α in disturbances of triglyceride and glucose metabolism predisposing to coronary heart disease. Metabolism. 1998; 47; 113-118. Cerca con Google

94. Somers W, Stahl M, Seehra JS. 1.9 A crystal structure of interleukin 6: implications for a novel mode of receptor dimerization and signaling. EMBO J. 1997; 6: 989-97. Cerca con Google

95. Päth G, Bornstein SR, Gurniak M, Chrousos GP, Scherbaum WA, Hauner H. Human breast adipocytes express interleukin-6 (IL-6) and its receptor system: increased IL-6 production by beta-adrenergic activation and effects of IL-6 on adipocyte function. J Clin Endocrinol Metab. 2001; 86:2281-8. Cerca con Google

96. Naka T, Nishimoto N, Kishimoto T. The paradigm of IL-6: from basic science to medicine. Arthritis Res. 2002; 4 Suppl 3: S233-42. Cerca con Google

97. Heinrich PC, Castell JV, Andus T. Interleukin-6 and the acute phase response. Biochem J. 1990; 265: 621. Cerca con Google

98. Gabay C. Interleukin-6 and chronic inflammation. Arthritis Res Ther. 2006; 8 Suppl 2: S3. Cerca con Google

99. Gallucci M, Amici GP, Ongaro F, Gajo GB, De Angeli S, Forloni GL, Albani D, Prato F, Polito L, Zanardo A, Regini C. Associations of the plasma interleukin 6 (IL-6) levels with disability and mortality in the elderly in the Treviso Longeva (Trelong) study. Arch Gerontol Geriatr. 2007; 44. Cerca con Google

100. Plutzky J. Inflammatory pathways in atherosclerosis and acute coronary syndromes. Am J Cardiol. 2001; 88: 10K-15K. Cerca con Google

101. Fleming RM, Gordon MH. What is the relationship between myocardial perfusion imaging and coronary artery disease risk factors and markers of inflammation? Angiology. 2008; 59: 16-25. Cerca con Google

102. Haugen E, Chen J, Wikström J, Grönros J, Gan LM, Fu LX. Parallel gene expressions of IL-6 and BNP during cardiac hypertrophy complicated with diastolic dysfunction in spontaneously hypertensive rats. Int J Cardiol. 2007; 115: 24-8. Cerca con Google

103. Li JJ, Zhu CG, Nan JL, Li J, Li ZC, Zeng HS, Gao Z, Qin XW, Zhang CY. Elevated circulating inflammatory markers in female patients with cardiac syndrome X. Cytokine. 2007; 40: 172-6. Cerca con Google

104. van Hall G, Steensberg A, Sacchetti M, Fischer C, Keller C, Schjerling P, Hiscock N, Møller K, Saltin B, Febbraio MA, Pedersen BK. Interleukin-6 stimulates lipolysis and fat oxidation in humans. J Clin Endocrinol Metab. 2003; 88: 3005-10. Cerca con Google

105. Wallenius V, Wallenius K, Ahrén B, Rudling M, Carlsten H, Dickson SL, Ohlsson C, Jansson JO. Interleukin-6-deficient mice develop mature-onset obesity. Nat Med. 2002; 8: 75-9. Cerca con Google

106. Barton M, Haas E, Bhattacharya I. Getting radical about obesity. New links between fat and heart disease. Arterioscler Thromb Vasc Biol. 2009; 29: 447-448. Cerca con Google

107. Hajer GR, van Haeften TW, Visseren FLJ. Adipose tissue dysfunction in obesity, diabetes, and vascular diseases. Eur Heart J. 2008; 29: 2959-2971. Cerca con Google

108. Pierce GL, Lesniewski LA, Lawson BR, Beske SD, Seals DR. Nuclear factor-κb activation contributes to vascular endothelial dysfunction via oxidative stress in overweight / obese middle-aged and older humans. Circulation. 2009; 119: 1284-1292. Cerca con Google

109. Tilg H, Moschen AR. Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol. 2006; 6: 772-83. Cerca con Google

110. Bagi Z. Mechanisms of coronary microvascular adaptation to obesity. Am J Physiol Regul Integr Comp Physiol. 2009; 297: R556–R567. Cerca con Google

111. Grayson J. Functional morphology of the coronary circulation. In: Kalsner S (ed.): The coronary artery: London/Canberra, Croom Helm, 1974; 343-64. Cerca con Google

112. L'Abbate A, Marzilli M, Ballestra AM, et al. Opposite transmural gradients of coronary resistance and extravascular pressure in the working dog's heart. Cardiovasc Res. 1980; 14: 21-9. Cerca con Google

113. Hoffman JIE, Spaan JAE. Pressure-flow relations in the coronary circulation. Physiol Rev. 1990; 70: 331-90. Cerca con Google

114. Marcus ML, Kerber RE, Erhard JC, Davis DM, Abboud FM. Spatial and temporal heterogeneity of left ventricular perfusion in awake dogs. Am Heart J. 1977; 94: 748-54. Cerca con Google

115. Bassinghwaighte JB, King RB, Roger SA. Fractal nature of regional myocardial blood flow heterogeneity. Circ Res. 1989; 65: 578-90. Cerca con Google

116. Feigl EO. Coronary physiology. Physiol Rev. 1983; 63: 1-205. Cerca con Google

117. Hoffman JIE. Maximal coronary flow and the concept of coronary vascular reserve. Circulation. 1984; 70: 153-159. Cerca con Google

118. Rubio R, Berne RM. Regulation of coronary blood flow. Progr Cardiovasc Dis. 1975; 18: 105-9. Cerca con Google

119. Berne RM. The role of adenosine in the regulation of coronary blood flow. Circ Res. 1980; 47: 807-13. Cerca con Google

120. Folkow B. Description of the myogenic hypothesis. Circ Res. 1964; 14/15 (Suppl 1): 1279-87. Cerca con Google

121. Kuo L, Davis MJ, Chilian WM. Myogenic activity in isolated subepicardial and subendocardial coronary arterioles. Am J Physiol. 1988; 244: H1558-62. Cerca con Google

122. Jones CJH, Kuo L, Davis M, Chilian WM. Myogenic and flow dependent control mechanisms in the coronary microcirculation. Basic Res Cardiol. 1993; 88: 2-10. Cerca con Google

123. Mohrtman DE, Feigl EO. Competition between sympathetic vasoconstriction and metabolic vasodilation in the canine coronary circulation. Circ Res. 1978; 42: 79-86. Cerca con Google

124. Murray PA, Vatner SF. Alpha-adrenoceptor attenuation of the coronary vascular response to severe exercise in the conscious dog. Circ Res. 1979; 45: 654-60. Cerca con Google

125. Feigl EO. Parasympathetic control of coronary blood flow in dogs. Circ Res. 1969; 25: 509-19. Cerca con Google

126. Hodgson JMcB, Marshall JJ. Direct vasoconstriction and endothelium-dependent vasodilation. Mechanisms of acetylcholine effects on coronary flow and arterial diameter in patients with nonstenotic coronary arteries. Circulation. 1989; 79: 1043-51. Cerca con Google

127. Khayyal JK, Eng C, Franzen D, Breall JA, Kirk ES. Effects of vasopressin on the coronary circulation: reserve and regulation during ischemia. Am J Physiol. 1985; 248: H516-22. Cerca con Google

128. Brum JM, Sufan Q, Dewey J, Bove AA. Effects of angiotensin and ergonovine on large and small coronary arteries in the intact dog. Basic Res Cardiol. 1985; 80: 333-42. Cerca con Google

129. Chu A, Morris K, Kuehl W, et al. Effects of atrial natriuretic peptide on the coronary arterial vasculature in humans. Circulation. 1989; 80: 1627-35. Cerca con Google

130. Bassenge E, Heusch G. Endothelial and neuro-humoral control of coronary blood flow in health and disease. Rev Physiol Biochem Pharmacol. 1990; 116: 77-165. Cerca con Google

131. Ignarro LJ. Biological actions and properties of endothelium-derived nitric oxide formed and released from artery and vein. Circ Res. 1989; 65: 1-21. Cerca con Google

132. Standen NB, Quayle JM, Davies NW, et al. Hyperpolarizing vasodilators activate ATP-sensitive K+ channels in arterial smooth muscle. Science. 1989; 245: 177-80. Cerca con Google

133. Larkin SW, Clarke JC, Koegh BE, et al. Intracoronary endothelin induces myocardial ischemia by small vessel constriction in the dog. Am J Cardiol. 1989; 64: 956-8. Cerca con Google

134. Griffith TM, Edwards DH, Davies RLI, Harrison TJ, Evans KT. EDRF coordinates the behaviour of vascular resistance vessels. Nature. 1987; 329: 442-5. Cerca con Google

135. Kelm M, Schrader J. Control of vascular tone by nitric oxide. Circ Res. 1990; 66: 1561-75. Cerca con Google

136. Stewart DJ, Munzel T, Bassenge E. Reversal of acetylcholine-induced coronary resistance vessel dilation by haemoglobin. Eur J Pharmacol. 1987; 136: 239-42. Cerca con Google

137. Kuo L, Davis M, Cannon S, Chilian WM. Pathophysiological consequences of atherosclerosis extend into the coronary microcirculation. Restoration of endothelium-dependent responses by L-arginine. Circ Res. 1992; 70: 465-76. Cerca con Google

138. Marcus M, Wright C, Doty D, Eastham C, Laughlin D, Krum P, Fastenow C, Brody M. Measurements of coronary velocity and reactive hyperemia in the coronary circulation of humans. Circ Res. 1981; 49: 877-. Cerca con Google

139. L’Abbate A. Sambuceti G, Haunso S, Schneider-Eicke J. Methods for evaluating coronary microvasculature in humans. Eur Heart J. 1999; 20: 1300-13. Cerca con Google

140. Meimoun P, Tribouilloy C. Non-invasive assessment of coronary flow and coronary flow reserve by transthoracic Doppler echocardiography: a magic tool for the real world. Eur Heart J. 2008; 9: 449-457. Cerca con Google

141. Gould KL, Westcott RJ, Albro PC, Hamilton GW. Noninvasive assessment of coronary stenoses by myocardial imaging during pharmacologic coronary vasodilatation. Clinical methodology and feasibility. Am J Cardiol. 1978; 41: 297-. Cerca con Google

142. Warltier DC, Gross Gj, Brooks HS. Pharmacologic-vs. ischemia-induced coronary artery vasodilation. Am J Physiol.1981; 240: H 767. Cerca con Google

143. Bookstein JJ, Higgins CB. Comparative efficacy of coronary vasodilatory methods. Invest Radiol. 1977; 12: 121-. Cerca con Google

144. O’Keefe DD, Hoffman JIE, Cheitlin R, O’Neill MJ, Allard RJ, Shapkin E. Coronary blood flow in experimental canine left ventricular hypertrophy. Circ Res. 1978; 43: 43. Cerca con Google

145. Heusch G. Adenosina and maximum coronary vasodilation in humans: myth and misconceptions in the assessment of coronary reverse. Basic Res Cardiol. 2001; 105: 1-5. Cerca con Google

146. Wilson R, Wyche K, Christensen BV, Zimmer S, Laxson DD. Effects of adenosine on human coronary arterial circulation. Circulation. 1990; 82: 1595-606. Cerca con Google

147. Hozumi T, Yoshida K, Akasaka T, Asami Y, Ogata Y, Takagi T et al. Noninvasive assessment of coronary flow velocity reserve in the left anterior descending coronary artery by Doppler echocardiography: comparison with intracoronary Doppler flow wire. J Am Coll Cardiol. 1998; 32: 1251-60 Cerca con Google

148. Caiati C, Montaldo C, Zedda N, Mentisci R, Ruscazio M, Lai G et al. Validation of a non-invasive method (contrast enhanced transthoracic second harmonic echo Doppler) for the evaluation of coronary flow reserve: comparison with intracoronary Doppler flow wire. J Am Coll Cardiol. 1999: 34: 1193 – 2000. Cerca con Google

149. Caiati C, Montaldo C, Zedda N, Mentisci R, Ruscazio M, Lai G et al. New non-invasive method for coronary flow reserve assessment: contrast-enhanced transthoracic second harmonic echo Doppler. Circulation. 1999; 99: 771-8. Cerca con Google

150. Galderisi M, Cicala S, Caso P, De Simone L, D’Errico A, Petroncelli A et al. Coronary flow reserve and myocardial diastolic dysfunction in arterial hypertension. Am J Cardiol. 2002; 90: 860-4. Cerca con Google

151. Rigo F, Varga Z, Di Pede F, Grassi G, Turiano G, Zuin G et al. Early assessment of coronary flow reserve by transthoracic Doppler echocardiography predicts late remodeling in reperfused anterior myocardial infarction. J Am Soc Echocardiogr. 2004; 17: 750-5. Cerca con Google

152. Voci P, Pizzuto F, Romeo F. Coronary flow: a new asset for the echo lab? Eur Heart J. 2004; 25: 1867-79. Cerca con Google

153. Erdogan D, Yildirim I, Ciftci O, Ozer I, Caliskan M, Gullu H et al. Effects of normal blood pressare, prehypertension, and hypertension on coronary microvascular function. Circulation. 2007; 115: 593-9. Cerca con Google

154. Voci P, Pizzuto F, Mariano E, Puddu PE, Chiavari PA, Romeo F. Measurement of coronary flow reserve in the anterior and posterior descending coronary arteries by transthoracic Doppler ultrasound. Am J Cardiol. 2002; 90: 988-91. Cerca con Google

155. Dimitrow PP, Galderisi M, Rigo F. The non-invasive documentationof coronary microcirculation impairment: role of transthoracic echocardiography. Cardiovascular Ultrasound. 2005; 3: 18-32. Cerca con Google

156. Sudhir K, MacGregor JS, Barbant SD, Foster E, Fitzgerald PJ, Chaterjee K et al. Assessment of coronary conductance and resistance vessel reactivity in response to nitroglycerin, ergonovine, and adenosine: in vivo studies with simultaneous intravascular two-dimensional and Doppler ultrasound. J Am Coll Cardiol. 1993; 21: 1261-8. Cerca con Google

157. Lim HE, Shim WJ, Rhee H, Kim SM, Hwang GS, Kim YH et al. Assessment of coronary flow reserve with transthoracic Doppler echocardiography: comparison among adenosine, standard-dose dipyridamole, and high-dose dipyridamol. J Am Soc Echocardiogr. 2000; 13: 264-70. Cerca con Google

158. Rigo F, Richieri M, Pasanisi E, Cutaia V, Zanella C, Della Valentina P et al. Usefulness of coronary flow reserve over regional wall motion when added to dual-imaging dipyridamole echocardiography. Am J Cardiol. 2003; 91: 269-13. Cerca con Google

159. Lethen H, Tries HP, Kersting S, Lambertz H. Validation of noninvasive assessment of coronary flow velocity reserve in the right coronary artery: a comparison of transthoracic echocardiographic results with intracoronary Doppler flow wire measurements. Eur Heart J. 2003; 24: 1567-75. Cerca con Google

160. Ueno Y, Nakamura Y, Kinoshita M, Soma A. Noninvasive assessment of coronary flow velocità and coronary flow velocity reserve in the right coronary artery by transthoracic Doppler echocardiography: comparison with intracoronary Doppler guidewire. J Am Soc Echocardiogr. 2002; 15: 1074-9. Cerca con Google

161. Hildick-Smith DJ, Maryan R, Shapiro LM. Assessment of coronary flow reserve by adenosine transthoracic echocardiography: validation with intracoronary Doppler. J Am Soc Echocardiogr. 2002; 15: 984-90. Cerca con Google

162. Tona F, Caforio AL, Montisci R, Gambino A, Angelini A, Ruscazio M, Toscano G, Feltrin G, Ramondo A, Gerosa G; Iliceto S. Coronary flow velocity pattern and coronary flow reserve by contrast-enhanced transthoracic echocardiography predict long-term outcome in heart transplantation. Circulation. 2006; 114 (Suppl 1): 149-55. Cerca con Google

163. Tona F, Caforio AL, Montisci R, Angelini A, Ruscazio M, Gambino A, Ramondo A, Thiene G, Gerosa G, Iliceto S. Coronary flow reserve by contrast-enhanced echocardiography: a new noninvasive diagnostic tool for cardiac allograft vasculopathy. Am J Transplant. 2006; 6: 998-1003. Cerca con Google

164. Hirata K, Shimada K, Watanabe H, Otsuka R, Tokai K, Yoshiyama M et al. Black tea increases coronary flow velocity reserve in healthy male subjects. Am J Cardiol. 2004; 93: 1384-8. Cerca con Google

165. Park SM, Shim WJ, Song WH, Lim DS, Kim YH, Ro YM. Effects of smoking on coronary blood flow velocity and coronary flow reserve essessed by transthoracic Doppler echocardiography. Echocardiography. 2006; 23: 465-70. Cerca con Google

166. Matsumara Y, Hozumi T, Watanabe H, Fujmoto K, Sugioka K, Takemoto Y et al. Cut-off value of coronary flow velocity reserve by transthoracic Doppler echocardiography for diagnosis of significant left anterior descending artery stenosis in patients with coronary risk factors. Am J Cardiol. 2003; 92: 1389-93. Cerca con Google

167. Galderisi M, de Simone G, Cicala S, Parisi M, D’Errico A, Innelli P et al. Coronary flow reserve in hypertensive patients with hypercholesterolemia and without coronary heart disease. Am J Hypertens. 2007; 20: 177-83. Cerca con Google

168. Czernin J, Muller P, Chan S, Brunken RC, Porenta G, Krivokapitch J et al. Influence of age and hemodynamics on myocardial blood flow and flow reserve. Circulation. 1993; 88: 62-9. Cerca con Google

169. Hildick-Smith DJ, Johnson PJ, Wisbey CR, Winter EM, Shapiro LM. Coronary flow reserve is supranormal in endurance athletes: an adenosine transthoracic echocardiographic study. Heart. 2000; 84: 383-9. Cerca con Google

170. Meimoun P, Benali T, Sayah S, Luycx-Bore A, Boulanger J, Zemir H et al. Evaluation of left anterior descending coronary artery stenosis of intermediate severity using transthoracic coronary flow reserve and dobutamine stress echocardiography. J Am Soc Echocardiogr. 2005; 12: 1233-40. Cerca con Google

171. Meimoun P. Malaquin D, Sayah S, Benali T, Luycx-Bore A, Levy F et al. The coronary flow reserve is transiently impaired in tako-tsubo cardiomyopathy: a prospective study using serial transthoracic Doppler echocardiography. J Am Soc Echocardiogr. 2008; 21: 72-7. Cerca con Google

172. Galliuto L, Sestito A, Barchetta S, Sgueglia GA, Infusino F, La Rosa C et al. Noninvasive evaluation of flow reserve in the left anterior descending coronary artery in patients with cardiac syndrome X. Am J Cardiol. 2007; 99: 1378-83. Cerca con Google

173. Tona F, Osto E, Tarantini G, Gambino A, Cavallin F, Feltrin G, Montisci R, Caforio AL, Gerosa G, Iliceto S. Coronary flow reserve by transthoracic echocardiography predicts epicardial intimal thickening in cardiac allograft vasculopathy. Am J Transplant. 2010; 10:1668-76. Cerca con Google

174. Rigo F, Ghepardi S, Galderisi M, Pratali L, Cortigiani L, Sicari R, Picano E. The prognostic impact of coronary flow-reserve assessed by Doppler echocardiography in non-ischaemic dilated cardiomyopathy. Eur Heart J. 2006; 27: 1319-23. Cerca con Google

175. Maseri A. Inflammation, atherosclerosis, and ischemic events: exploring the hidden side of the moon. N Engl J Med. 1997; 336: 1014-6. Cerca con Google

176. Ross R. Atherosclerosis – An inflammatory disease. N Engl J Med. 1993; 340: 115-26. Cerca con Google

177. Klein RM, Schwartzkopff B, Gabbert HE, Strauner BE. Diminished coronary reserve in patients with biopsy proven inflammatory infiltrates. Cardiology. 2003; 100: 120-8. Cerca con Google

178. Osto E, Tona F, Angelini A, Montisci R, Ruscazio M, Vinci A, Tarantini G, Ramondo A, Gambino A, Thiene G, Caforio AL, Gerosa G, Iliceto S. Determinants of coronary flow reserve in heart transplantation: a study performed with contrast-enhanced echocardiography. J Heart Lung Transplant. 2009; 28: 453-60. Cerca con Google

179. Wildhirt SM, Weis M, Schulze C, Conrad N, Rieder G, Enders G, Hoepp C, von Scheidt W, Reichart B. An association between microvascular endothelial dysfunction, transcardiac nitric oxide production and pro-inflammatory cytokines after heart transplantation in humans. Transpl Int. 2000; 13 Suppl 1: S228-34. Cerca con Google

180. Ruscazio M, Montisci R, Colonna P, Caiati C, Lai G, Cadeddu M et al. Detection of coronary restenosis after coronary angioplasty by contrast-enahanced transthoracic echocardiographic Doppler and of coronary flow velocity reserve. J Am Coll Cardiol. 2002; 40: 896-903. Cerca con Google

181. Dehghan M, Merchant AT. Is bioelectrical impedance accurate for use in large epidemiological studies? Nutr J. 2008; 7: 26. Cerca con Google

182. Shimabukuro M. Cardiac adiposity and global cardiometabolic risk. New concept and clinical implication. Circ J. 2009; 73: 27-34. Cerca con Google

183. Kondo I, Mizushige K, Hirao K, Nozaki S, Tsuji T, Masugata H, Kohno M, Matsuo H. Ultrasonographic assessment of coronary flow reserve and abdominal fat in obesity. Ultrasound in Med. & Biol. 2001; 27: 1199-1205. Cerca con Google

184. Takeuchi M, Lodato JA, Furlong KT, Lang RM, Yoshikawa J. Feasibility of measuring coronary flow velocity and reserve in the left anterior descending coronary artery by transthoracic doppler echocardiography in a relatively obese american population. Echocardiography. 2005; 22: 225-232. Cerca con Google

185. Motivala AA, Rose PA, Kim HM, Smith YR, Bartnik C, Brook RD, Muzik O, Duvernoy CS. Cardiovascular risk, obesity, and myocardial blood flow in postmenopausal women. J Nucl Cardiol. 2008; 15: 510-7. Cerca con Google

186. Mureddu GF, De Simone G, Greco R, Rosato GF, Contaldo F. Left ventricular filling pattern in uncomplicated obesity. Am J Cardiol. 1996; 77: 509-514. Cerca con Google

187.Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation. 2002; 105: 1135-1143. Cerca con Google

188. Lindahl B, Toss H, Siegbahn A et al., for the FRISC Study Group. Markers of myocardial damage and inflammation in relation to long-term mortality in unstable coronary artery disease. N Engl J Med. 2000; 343: 1139-1147. Cerca con Google

189. Ridker PM, Rifai N, Stampfer MJ, et al. Plasma concentrations of IL 6 and the risk of future myocardial infarction among apparently healthy men. Circulation. 2000; 101: 1767-1772. Cerca con Google

190. Ridker PM, Rifai N,Pfeffer M et al., for the Choleterol And Recurrent Events (CARE) investigators. Elevation of tumor necrosis factor-alpha and increased risk of recurrent coronary events after myocardial infarction. Circulation. 2000; 101: 2149-2153. Cerca con Google

191. Wolfe F, Freundlich B, Strass WL. Increase in cardiovascular and cerebrovascular disease prevalence in rheumatoid arthritis. J Rheumatol. 2003; 30: 36-40. Cerca con Google

192. Kern PA, Ranganathan S, Li C et al. Adipose tissue tumor necrosis factor and interleukin 6 expression in human obesity and insulin resistance. Am J Physiol Endocrinol Metab. 2001; 280: E745-E751. Cerca con Google

Monografie Cerca con Google

M1. Giorgino R, De Pergola G, Bjorntorp P. Tessuto adiposo bianco e sistema endocrino. In Bosello O (Ed.). Obesità: un trattato multidimensionale. KURTIS, Milano. 1998; pp 31-41. Cerca con Google

M2. Dalla Volta S. Malattie del Cuore e dei vasi. McGRAW-HILL. Milano, 1996. Cerca con Google

M3. Roldan C.A. Ecocardiografia – Guida Pratica. Edizioni Minerva Medica. Torino, 2007. Cerca con Google

M4. Rotella CM, Mannucci E, Ricca V. L’obesità. Manuale per la diagnosi e la terapia. Edizioni SEE Firenze. 1997, pagg. 94-102. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record