Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Zorzato, Gloria (2008) Produzione di microparticelle a base di acido ialuronico per il rilascio di fattori di crescita nella cura di ulcere. [Ph.D. thesis]

Full text disponibile come:

[img]Documento PDF
3855Kb

Abstract (english)

The present study describes the production of hyaluronan based porous microparticles by a semi-continuous gas antisolvent (GAS) precipitation process to be used as a growth factor delivery system for in vivo treatment of ulcers. Operative process conditions, such as pressure, nozzle diameter and HYAFF® solution concentrations, were adjusted to optimize particle production in terms of morphology and size. Scanning electron microscopy and light scattering demonstrated that porous nano- structured particles with a size of 300-900 nm had a high specific surface suitable for absorption of growth factors from the aqueous environment within the polymeric matrix. Water acted as a plasticizer, enhancing growth factor absorption. The absorption process was developed using a fluorescent dye and growth factors PDGF and TGF-ß. Immunohistochemical analysis confirmed the high efficiency of absorption of growth factors and a mathematical model was generated to quantify and qualify the in vitro kinetics of growth factor release from the polymeric matrix.
In vivo experiments were performed with the aim to optimize timed and focal release of PDGF to promote optimal tissue repair and regeneration of full-thickness wounds.


Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Cortivo, Roberta
Ph.D. course:Ciclo 20 > Scuole per il 20simo ciclo > BIOLOGIA E MEDICINA DELLA RIGENERAZIONE > INGEGNERIA DEI TESSUTI E DEI TRAPIANTI
Data di deposito della tesi:2008
Anno di Pubblicazione:2008
Key Words:microparticelle, acido ialuronico, fattori di crescita, ulcere, rilascio controllato di farmaci
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/17 Istologia
Struttura di riferimento:Dipartimenti > pre 2012 - Dipartimento di Scienze Farmaceutiche
Codice ID:327
Depositato il:25 Sep 2008
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Abatangelo G, Barbucci R, Brun P, Lamponi S. Biocompatibility an enzymatic degradation studies on sulphated hyaluronic acid derivatives. Biomaterials, 1997; 18: 14114-1415. Cerca con Google

2. Allcock HR, Functional polyphosphazenes, in Functional Polymers: Modern Synthetic Methods and Novel Structures (A.O. Patil, D.N. Schulz B.N. Novak, eds.), 1998, Vol. 704, Ch. 18, pp. 261-275, ACS Symposium Series, Washington. Cerca con Google

3. Anderson JM and Shive MS, Biodegradation and biocompatibility of PLA and PLGA microspheres, Adv. Drug Del. Rev., 1997, 28: 5–24. Cerca con Google

4. Andreassi L, Casini L, Trabucchi E, Diamantini S, Rastrelli A, Donati L, Tenchini ML, Malcovati M. Human Keratinocytes cultured on membranes composed of benzyl ester of hyaluronic acid suitable for grafting, 1991, Wounds, 3: 116-125. Cerca con Google

5. Arifin DY, Lee LY, Wang CH. Mathematical modeling and simulation of drug release from microspheres: Implications to drug delivery systems, Advanced Drug Delivery Reviews 2006, 58: 1274-1325. Cerca con Google

6. Avitabile T, Marano F, Castiglione F, Bucolo C, Cro M, Ambrosio L, Ferrauto C, Reibaldi A. Biocompatibility and biodegradation of intravitreal hyaluronan implants in rabbits. Biomaterials, 2001, 22(3):195-200. Cerca con Google

7. Benedetti L, Cortivo R, Berti A, Pea F, Mazzi M, Moras M, Abatangelo G. Biocompatibility and biodegradation of different hyaluronan derivatives (HYAFF) implanted in rats, Biomaterials, 1993, 14:1154-1160. Cerca con Google

8. Benedetti L. New Biomaterials from hyaluronic acid, Med Dev Technol, 1994, 11: 32-37. Cerca con Google

9. Brun P, Abatangelo G, Radice M, Zacchi V, Guidolin D, Daga Gordini D, Cortivo R.. Chondrocyte aggregation and reorganization into three-dimensional scaffolds. J Biomed Mater Res, 1999, 46(3): 337-46. Cerca con Google

10. Caliceti P, Elvassore N and Bertucco A. Production of insulin loaded PEG/PLA nano-particles by gas anti-solvent techniques, J. Pharm. Sci., 2001, 90: 1628–1636. Cerca con Google

11. Caliceti P, Salmaso S, Elvassore N, Bertucco A. Effective protein release from PEG/PLA nano-particles produced by gas anti-solvent techniques, J. Control. Release, 2004, 94: 195–205. Cerca con Google

12. Caliceti P, Salmaso S, Lante A, Yoshida M, Katakai R, Martellini F, Mei LHI and Carenza M. Controlled release of biomolecules from temperature-sensitive hydrogels obtained by radiation polymerisation. J. Control Release, 2001, 75: 173–181. Cerca con Google

13. Chasin M, Langer R. (eds.), 1990, Biodegradable Polymers as Drug Delivery Systems, Drugs and the Pharmaceutical Sciences, Volume 45, Marcel Dekker, Inc., New York. Cerca con Google

14. Chen WJ, Abatangelo G. Functions of hyaluronan in wound repair. Wound Repair Regen, 1999, 7(2): 79-89. Review. Cerca con Google

15. Capoccia D, Doherthy P, Radice M, Brun P, Abatangelo G, Williams DF. Semisynthetic resorbable materials from hyaluronan esterification. Biomaterials, 1998, 19:2101-2127. Cerca con Google

16. Cortivo R, Brun P, Rastrelli A, Abatangelo G. In vitro studies of biocompatibility of hyaluronic acid esters, Biomaterials, 1991, 12: 727-736. Cerca con Google

17. De Jawger R, Gleria M. Poly(organophosphazene)s and related compounds: synthesis, properties and applications, Progr. Poym. Sci. 1998, 23: 179-276. Cerca con Google

18. Domb AJ, Amselem S, Langer R, Maniar M. Polyanhydrides as carriers of Drugs, in Biomedical Polymers, Designed-to-Degrade Systems (S:W: Shslaby, ed.), 1994, pp. 69-96, Hanser Publ., Munich. Cerca con Google

19. Dumitru S. (ed.). Polymeric Biomaterials, 1994, Marcel Dekker, Inc., New York. Cerca con Google

20. Elvassore N, Bertucco A, Caliceti P. Production of insulin-loaded poly(ethylene glicol)/poly(l-lactide) (PEG/PLA) nanoparticles by gas antisolvent techniques, Journal of pharmaceutical sciences, 2001, 90: 1628-1636. Cerca con Google

21. Engelberg I, Kohn J. Physico-mechanical properties of degradable polymers used in medical applications: a comparative study, Biomaterials, 1991, 12: 292-304. Cerca con Google

22. Esposito E, Menegatti E, Cortesi R. Hyaluronan-based microspheres as tools for drug delivery: a comparative study, Int J Pharm, 2005, 288(1): 35-49. Cerca con Google

23. Galassi G, Brun P, Radice M, Cortivo R, Zanon GF, Genovese P, Abatangelo G. In vitro reconstructed dermis implanted in human wounds: degradation studies of the HA-based supporting scaffold, Biomaterials,2000, 21: 2183-2191. Cerca con Google

24. Gentzkow GD, Iwasaki SD, Hershon KS, Mengel M, Prendergast JJ, Ricotta JJ, Steed DP, Lipkin S. Use of Dermagraft, a cultured human dermis, to treat diabetic food ulcers, Diabetes Care, 1996, 19: 350-354. Cerca con Google

25. Gopferich A. Biodegradable polymers: Polyanhydrides, Encyclopedia of Controlled Drug Delivery (E. Mathiowitz, ed.), 1999, Vol. 1, pp. 60-71, John Wiley & Sons, New York. Cerca con Google

26. Grey IE, Lowe G, Bale S, Harding KG. The use of cultured dermis in the treatment of diabetic foot ulcers, 1998, J Wound Care 7: 324-325. Cerca con Google

27. Guiot P., Couvrier P. (eds.). Polymeric Nanoparticles and Micropheres, CRC Press, 1986, Inc, Boca Raton. Cerca con Google

28. Harris PA, Di Francesco F, Barisoni D, Leigh IM, Navsaria HA. Use of hyaluronic acid and culured autologous keratinocytes and fibroblasts in extensive burns, Lancet, 1999, 353: 35-36. Cerca con Google

29. Hoekstra D. Hyaluronan-modified surfaces for medical devices, Med. Dev. Diagn. Ind. 1999, 48-52. Cerca con Google

30. Knighton DR, Ciresi KF, Fiegel VD, Austin LL, Butler EL. Classification and treatment of chronic nonhealing wounds. Successful treatment with autologous platelet-derived wound healing factors (PDWHF). Ann Surg., 1986, 204(3):322-30. Cerca con Google

31. Laurent TC, Fraser JRE. The properties and turnover of Hyaluronan. Ciba Foundatio Symposium: Functio of the Proteoglycans 1986; 9-29. Cerca con Google

32. Lavery LA, Vela SA, Lavery DC, Quebedeaux TL. Reducing dynamic foot pressures in high-risk diabetic patients with foot ulcerations: a comparison of treatments. Diabetes Care, 1996, 19: 818-821. Cerca con Google

33. Leach JB, Schmidt CE. Characterization of protein release from photocrosslinkable hyaluronic acid-polyethylene glycol hydrogel tissue engineering scaffolds. Biomaterials, 2005, 26(2):125-35. Cerca con Google

34. Lepidi S, Abatangelo G, Vindigni V, Deriu GP, Zavan B, Tonello C, Cortivo R. In vivo regeneration of small-diameter (2 mm) arteries using a polymer scaffold. FASEB J., 2006, Jan;20(1):103-5. Cerca con Google

35. Milella E, Brescia E, Massaro C, Ramires PA, Miglietta MR, Fiori V, Aversa P. Physico-chemical properties and degradability of non-woven hyaluronan benzili esters as tissue engineering scaffolds, Biomaterials, 2002, 23: 1053-1063. Cerca con Google

36. Mustoe TA, Culter NR, Allman RM, Goode PS, Deuel TF, Prause JA, Bear M, Serdar CM and Pierce GF. A phase II study to evaluate recombinant platelet-derived growth factor-BB in the treatment of stage 3 and 4 pressure ulcers. Arch. Surg., 1994, 129: 213-219. Cerca con Google

37. Panyam EJ and Labhasetwar V. Biodegradable nano-particles for drug and gene delivery to cells and tissue, Adv. Drug Del. Rev., 2003, 55: 329–347. Cerca con Google

38. Park K, Shalaby WSW, Park H (eds.). Biodegradable Hydrogels for Drug Delivery, Technomic Publishing Co., 1993, Inc., Lancaster. Cerca con Google

39. Partsch G, Schwarzer CH, Neumiiller J, Dunky A, Petera P, Brbll H, Ittner G, Jantsch S. Modulation of the migration and chemotaxis of PMN cells by hyaluronic acid, Zeitschrift fur Rheunmatologie, 1989, 48: 123-128. Cerca con Google

40. Pavesio A, Abatangelo G, Borrione A, Brocchetta D, Hollander AP, Kon E, Torasso F, Zanasi S, Marcacci M. Hyaluronan-based scaffolds (Hyalograft C) in the treatment of knee cartilage defects: preliminary clinical findings. Novartis Found Symp., 2003, 249:203-17; discussion 229-33, 234-8, 239-41. Review. Cerca con Google

41. Pitt C. Poly-_-coprolactone and its copolymers. Biodegradable Polymers as Drug Delivery Systems (M. Chasin, R. Langer, eds.), 1990, pp. 71-120, Marcel Dekker, New York. Cerca con Google

42. Radice M, Brun P, Cortivo R, Scapinelli R, Battaliard C, Abatangelo G. Hyaluronanbased biopolymers as delivery vehicles for bone-marrow-derived mesenchymal progenitors. J Biomed Mater Res, 2000, 50(2):101-9. Cerca con Google

43. Rastelli A, Beccaro M, Biviano F, Calderini G, Pastorello A. Hyaluronic acid esters, a new class of semisynthetic biopolymers: chemical and physico-chemical properties, Clinical Implant Materials-Advances in Biomaterials, 1990. Vol. 9 (g. Heimke, U. Soltesz, A.J.C. Lee, eds.), pp. 199-206, Elsevier, Amsterdam. Cerca con Google

44. Robson MC, Phillips LG, Thomason A, Altrock BW, Pence PC, Heggers JP, Johnston AF, McHugh TP, Antohony MS, Robson LE, Odom LL, Yanagihara D and Pierce GF. Recombinant human platelet-derived growth factor-BB for the treatment of chronic pressure ulcers, Ann. Plast. Surg., 1992, 29: 193-201. Cerca con Google

45. Singer AJ, Clark RAF. Cutaneous wound healing. The New England J Med, 1999, 341(10): 738-46. Cerca con Google

46. Stadelmann WK, Digenis AG, Tobin GR. Physiology and Healig Dynamics of Cronic Cutaneous Wounds, The American J Surg, 1998, 176(2A Suppl): 26S-38S, Review. Cerca con Google

47. Steed DL. Clinical evalutation of recombinant human platelet- derived growth factor for the treatment of lower extremity diabetic ulcus. J. Vasc. Surg., 1995, 21: 71-78. Cerca con Google

48. Steed DL, Donohoe D, Webster MW, Lindsley L. Effect of exstensive debridement and treatment on the healing of diabetic foot ulcers, J Am Coll Surg., 1996, 183: 61- 64. Cerca con Google

49. Thies J and Müller BW. Size controlled production of biodegradable microparticles with supercritical gases, Eur. J. Pharm. Biopharm.,1998, 45: 67–74. Cerca con Google

50. Tonello C, Vindigni V, Zavan B, Abatangelo S, Abatangelo G, Brun P, Cortivo R. In vitro reconstruction of an endothelialized skin substitute provided with a microcapillary network using biopolymer scaffolds. FASEB J., 2005, 19(11):1546-8. Cerca con Google

51. Von Recum HA, Cleek RL, Eskin SG, Mikos AG. Degradation of polydispersed poly(L-lactic acid) to modulate lactic acid release. Biomaterials, 1995, 16(6):441-7. Cerca con Google

52. Wieman TJ, Smiell JM, Su Y. Efficacy and safety of a topical gel formulation of recombinant human platelet-derived growth factor-BB (beclapermin) in patients with chronic neuropathic diabetic ulcers: a phase III randomized placebo controlled double-blind study. Diabetes Care, 1998, 21: 822-827. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record