Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Spagnolo, Aristide (2011) Auto-adaptive multi-coil inductors for transverse flux heating of metal strips. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document
7Mb

Abstract (english)

Induction heating is one of the most effective methods to heat metal strips in continuous movement. Nowadays transverse flux induction heating (TFH) is one of the most interesting induction techniques for this kind of industrial process. TFH allows to reach good electrical efficiency also in the case of non-magnetic and very thin strips heating , using very low supply frequency. The main drawback of this technique is the great difficulty to adapt the same inductor to heat different dimensions of the load. One induction heating method that could solve this problem is the use of auto-adaptive multi-coil inductors (MCH). This kind of inductor uses the interaction among different coils in order to regulate the temperature profile in the strip by controlling the supply currents. In the thesis is firstly described the existent bibliography about TFH. Afterwards a MCH inductor for heating circular stainless steel plates is analyzed using different analytical and numerical computation methods. The analyzed system corresponds to an existing prototype. In the following the design of a MCH inductor able to heat moving steel strips has been designed and analyzed. In particular, for the design, the optimization of the coil geometry and currents has been considered in order to obtain uniform temperature profiles at the exit section of the inductor and good electrical efficiency. The inductor is provided by magnetic concentrators.

Abstract (italian)

Il riscaldamento ad induzione è una delle tecniche maggiormente utilizzate per il riscaldamento di nastri metallici in movimento continuo. Una tecnologia che si sta sempre piu affermando per questo tipo di lavorazioni è il riscaldamento ad induzione a flusso trasverso (TFH) il quale consente di ottenere rendimenti elettrici molto buoni per il riscaldamento di nastri metallici anche molto sottili e non-magnetici, utilizzando frequenze di alimentazione relativamente basse. Il maggiore svantaggio di questa tecnica è che l’adattamento dell’induttore a diverse dimensioni del nastro è molto problematica. Una tecnologia che potrebbe efficacemente risolvere il problema è quella degli induttori autoadattativi multibobina (MCH). Questo tipo di induttori sfrutta l’interazione esistente tra diverse bobine in modo da regolare il profilo di temperatura tramite il controllo delle correnti di alimentazione. Per prima cosa nella tesi viene esposto un resoconto sulla bibliografia esistente relativa al TFH. Successivamente viene descritto ed analizzato un sistema di riscaldamento MCH con bobine di forma circolare utilizzanto differenti metodi di calcolo analitici e numerici. Il sistema analizzato corrisponde ad un prototipo esistente per il riscaldamento di dischi d’acciaio inox. Nel seguito viene progettato e analizzato un induttore di riscaldamento per nastri in movimento continuo. Sono stati in particolare considerati l’ottimizzazione della geometria e delle correnti delle bobine e l’analisi del concentratore di flusso in riferimento all’uniformità della temperatura della sezione del nastro all’uscita dell’induttore e all’efficienza elettrica del sistema.

Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Lupi, Sergio
Ph.D. course:Ciclo 23 > Scuole per il 23simo ciclo > INGEGNERIA INDUSTRIALE > INGEGNERIA ELETTROTECNICA
Data di deposito della tesi:UNSPECIFIED
Anno di Pubblicazione:31 January 2011
Key Words:Transverse flux induction heating, steel strips, multi coil, finite elements, particle swarm optimization, electromagnetic fields
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-INF/02 Campi elettromagnetici
Area 09 - Ingegneria industriale e dell'informazione > ING-IND/09 Sistemi per l'energia e l'ambiente
Area 09 - Ingegneria industriale e dell'informazione > ING-IND/15 Disegno e metodi dell'ingegneria industriale
Area 09 - Ingegneria industriale e dell'informazione > ING-IND/31 Elettrotecnica
Struttura di riferimento:Dipartimenti > pre 2012 - Dipartimento di Ingegneria Elettrica
Codice ID:3346
Depositato il:25 Aug 2011 11:28
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] B. Nacke, A. Muhlbauer, A. Nikanorov, G. Nauvertat, and H. Schulbe, “Transverse Flux Heating in Modern Energy Saving Lines for Metal Rolling and Treatment,” in Proceedings of International Scientific Colloquium Modelling for Saving Resources, Riga, 2001. Cerca con Google

[2] EU, “EU climate and energy saving package.” Cerca con Google

[3] H. Fujita, N. Uchida, and K. Ozaki, “Zone controlled induction heating (ZCIH) A new concept in induction heating,” Power Conversion Conference Nagoya (Japan) 2007, pp. 1498-1504. Cerca con Google

[4] A. M. Souley, “Contribution à l'etude et à la commande d'un systeme de chauffage par induction polyphasé,” PhD, Université de Toulouse, 2011. Cerca con Google

[5] G. Manot, “Modelisation couplee des dispositifs electromagnetiques associes a des circuits d'electronique de puissance. Integration de la commande des convertisseurs - aide a la conception d'undispositif de chauffage par induction a flux transvers,” PhD, LAPLACE Laboratories Toulouse, 2003. Cerca con Google

[6] A. Muhlbahuer, History of induction heating and melting. Vulkan. Cerca con Google

[7] V. Rudnev, D. Loveless, R. Cook, and M. Black, Handbook of induction heating. . Cerca con Google

[8] V. Demidovitch, A. Nikanorov, and A. Slukhotskii, “Energy parameters of induction transverse strip heaters,” 1989. Cerca con Google

[9] V. Peysakhovic, “Energetic relationships in the heating of flat metal products,” Proceedings of VNIITVCH, vol. 7, pp. 41-57, 1966. Cerca con Google

[10] A. Aliferov and S. Lupi, Induction and conduction heating of metals (In russian), Novosibirsk State Technical University NSTU. 2011. Cerca con Google

[11] V. Bukanin, F. Dughiero, S. Lupi, and A. Zenkov, “Edge effects in planar induction heating systems,” Proceedings di HIS-01, International Seminar on Heating by Internal Sources, Padua (Italy), pp. 533-538, Sep. 2001. Cerca con Google

[12] M. Zlobina, S. Galunin, Y. Blinov, B. Nacke, A. Nikanorov, and H. Schulbe, “Numerical Modelling of Non-Linear Transverse Flux Heating Systems,” in Proceedings of International Scientific Colloquium MEP 2003 Modelling for Electromagnetic Processing, Hanover (Germany), 2003, pp. 51-56. Cerca con Google

[13] A. Kuvaldin, Low temperature induction heating of steel (In Russian), Energhia. Moskow, 1976. Cerca con Google

[14] A. Nikanorov, H. Schulbe, B. Nacke, M. Zlobina, S. Galunin, and Y. Blinov, “Non linear effects in transverse flux heating systems,” Proceedings di HES-04, International Seminar on Heating by Internal Sources Padua (Italy). Cerca con Google

[15] A. Ruhnke, A. Mulbahuer, A. Nikanorov, and V. Demidovitch, “Thermal deformation od the strip during transverse flux induction heating,” COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 19, p. 730, 2000. Cerca con Google

[16] V. Fireteanu and T. Tudorache, “Electromagnetic forces in transverse flux induction heating,” IEEE Transactions on Magnetics, vol. 36, p. 1792, 2000. Cerca con Google

[17] Y. Neau, B. Paya, T. Tudorache, and V. Fireteanu, “Numerical Evaluation nd Experimental Validation of Eddy Currents and Electromagnetic Forces in Transverse Flux Induction Heating of Magnetic Steel Sheets,” Proceedings of EPM 2000 International Symposium on Electromagn Process Materials, Nagoya (Japan), pp. 211-217. Cerca con Google

[18] T. Tudorache, “Magneto-thermal-motion coupling in transverse flux heating,” COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 27, no. 2, pp. 399-407, Jan. 2008. Cerca con Google

[19] Y. Naeu et al., “High Power (3 MW) transverse flux inductor for industrial heating,” Proceedings of the International Conference EPM 2003 Electromagnetic Processing of Materials Lyon (France), pp. 570-575, Oct. 2003. Cerca con Google

[20] H. Schulbe, A. Nikanorov, and B. Nacke, “Flexible Transverse Flux Heaters of Metal Strip,” Proceedings of the International symposium HES-04 Heating by Electromagnetic Sources, Padua (Italy), pp. 293-300, Jun. 2004. Cerca con Google

[21] J. C. Thorpe, H. G. Heine, and V. Peysakhovic, “Transverse flux induction heating apparatus,” U.S. Patent United States Patent 6576878. Cerca con Google

[22] N. V. Ross, “Apparatus for the continuous induction heating of metallic strip,” U.S. Patent United States Patent 475136014-Jun-1988. Cerca con Google

[23] W. B. Jackson, “Transverse flux induction heating of flat metal products,” Proceedings of 7th UIE Congress, Warsav (Poland), 1972. Cerca con Google

[24] W. Haubitzer, “Die optimierung von querfeld-induktoren zur kontinuierlichen blecherwarmung,” Electrowarme International, 1984. Cerca con Google

[25] A. Muhlbahuer et al., “Numerical Tools for Optimum Design of Transverse Flux Induction Heating of Non-Ferrous Metal Strip,” in Proceedings of EPM 2000 International Symposium on Electromagn Process Materials, Nagoya (Japan), 2000. Cerca con Google

[26] Cedrat, “Inca3D user manual.” Cerca con Google

[27] Cedrat, “Flux user manual.” Cerca con Google

[28] “www.jmag-international.com.” Vai! Cerca con Google

[29] V. Fireteanu and T. Tudorache, “Couplings of electromagnetic field formulations in finite element analysis of transverse flux induction heating systems,” in Proceedings of ISEF 2005 - XII International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering Baiona (Spain), 2005, pp. 156-161. Cerca con Google

[30] O. Biro and K. Preis, “Finite element analysis of 3-D eddy currents,” IEEE Transactions on Magnetics, vol. 26, no. 2, pp. 418-423, 1990. Cerca con Google

[31] Fishman, Lampi, Mortimer, and Peysakhovich, “Induction heating Cerca con Google

device and process for the controlled heating of a non-electrically conductive Cerca con Google

material,” U.S. Patent US6121592. Cerca con Google

[32] J. Simcock, “Multiple zone induction heating,” U.S. Patent 5059762. Cerca con Google

[33] V. Esteve, J. Pardo, J. Jordan, E. Dede, E. Sanchis-Kilders, and E. Maset, “High Power Resonant Inverter with Simultaneous Dual-frequency Output,” in Power Electronics Specialists Conference, 2005. PESC '05. IEEE 36th, 2005, pp. 1278-1281. Cerca con Google

[34] D. Miyagi, A. Saitou, N. Takahashi, N. Uchida, and K. Ozaki, “Improvement of zone control induction heating equipment for high-speed processing of semiconductor devices,” IEEE Transactions on Magnetics, vol. 42, no. 2, pp. 292-294, 2006. Cerca con Google

[35] Y. Okamoto et al., “Optimal design of induction heating equipment for high-speed processing of a semiconductor,” COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 23, no. 4, pp. 1045-1052, 2004. Cerca con Google

[36] Esteve, “High Power Resonant Inverter with Simultaneous Dual-frequency Cerca con Google

Output.” Cerca con Google

[37] J. Spreen, “Electrical terminal representation of conductor loss in Cerca con Google

transformers,” IEEE Transactions on Power Electronics, pp. 424 - 429, Oct-1990. Cerca con Google

[38] Y. Cooren, M. Clerc, and P. Siarry, “Performance evaluation of TRIBES, an adaptive particle swarm optimization algorithm,” Swarm Intelligence, vol. 3, no. 2, pp. 178, 149, Giugno. 2009. Cerca con Google

[39] L. D. S. Coelho and P. Alotto, “Tribes Optimization Algorithm Applied to the Loney's Solenoid,” IEEE Transactions on Magnetics, vol. 45, no. 3, pp. 1526-1529, 2009. Cerca con Google

[40] M. Souley et al., “Methodology to characterize the impedance matrix of Cerca con Google

multi-coil induction heating device,” Proceedings of International Conference EPM 2009 Electromagnetic Processing of Materials, Dresden (Germany), Oct. 2009. Cerca con Google

[41] Mathworks, Matlab optimization Toolbox User Manual. . Cerca con Google

[42] Fluxtrol Inc., www.fluxtrol.com. . Vai! Cerca con Google

[43] M. Battistetti, F. Dughiero, S. Lupi, M. Farina, P. Di Barba, and A. Savini, “Optimal Design of an Inductor for Transverse-Flux Heating using a Combined Evolutionary-Simplex Method,” COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 20, no. 2, pp. 507-522, 2001. Cerca con Google

[44] S. Galunin, M. Zlobina, Y. Blinov, B. Nacke, A. Nikanorov, and H. Schulbe, “Numerical optimization in design of induction heating systems,” Proceedings di HES-04, International Seminar on Heating by Internal Sources, Padua (Italy). Cerca con Google

[45] P. Alotto, A. Spagnolo, and B. Paya, “Particle swarm optimization of a multi coil transverse flux induction heating system,” Proceedings of Biennal international conference CEFC 2010 Computation of electromagnetic fields, Chicago (Illinois USA), pp. 1-1, May. 2010. Cerca con Google

[46] A. Gentilucci, “Analysis of JMAG performances,” Université de Toulouse, 2011. Cerca con Google

[47] S. Lupi, “The Calculation of Planar Circular Coils for the Induction Heating of Bimetallic Plates,” Archiv fur Elektrotechnik, vol. 60, pp. 313-318, 1978. Cerca con Google

[48] S. Lupi, E. Sieni, and A. Spagnolo, “Analytical calculation of planar circular coils induction heating systems,” in Proceedings of HES-10 International Symposium on Heating by Electromagnetic Sources, Padua (Italy), 2010, pp. 121-128. Cerca con Google

[49] A.D. Podoltsev, I.N. Kucheryavaya, and B.B Lebedev, “Analysis of effective resistance and eddy-current losses in multiturn winding of high-frequency magnetic components,” IEEE Transactions on Magnetics, vol. 39, no. 1, pp. 539-548, 2003. Cerca con Google

[50] M.S. Adler, “A field-theoretical approach to magnetic induction heating of thin circular plates,” IEEE Transactions on Magnetics, vol. 10, no. 4, pp. 1118-1125, 1974. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record