Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Buson, Genny (2011) Studio di polimorfismi in geni coinvolti in patologie oculari angioproliferative. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
1410Kb

Abstract (inglese)

The ocular angioproliferative diseases are multifactorial diseases, characterized by a progressive degeneration of cells in the macular region of the retina which permit distinct and central vision. This means that people with these diseases gradually lose their "high definition" vision guaranteed by the macula.
The most frequent cause of macular degeneration is the age-related macular degeneration (AMD), which usually affects people older than 50 years and is the leading cause of legal blindness in the elderly population. The macula may also be affected by pathology in diabetic retinopathy (DR); the presence of exudates and accumulation of fluid leaking from the capillaries, causing a condition called macular edema, are the most common cause of loss of visual function in diabetic patients.
VEGF (Vascular Endothelial Growth Factor) and the receptor KDR (kinase insert domain receptor) regulate angiogenesis and therefore considered important factors involved in the pathological process that leads to the onset of ocular angioproliferative disease.
In the first part, an association study between polymorphisms in the VEGF and its receptor KDR genes and onset of ocular diseases such as AMD and DR, has been performed.
For this purpose we analyzed 16 polymorphisms (11 in the VEGF gene and 5 on the gene KDR) in a population of 226 patients with AMD, 177 patients with diabetic retinopathy and a control population of 240 healthy subjects.
All the SNPs were analyzed by GenomeLab SNPStream DNA microarray technology (Beckman Coulter) that allows a large-scale genotyping.
The results obtained in this first part showed a strong association between some polymorphisms of VEGF-A and, for the first time, KDR with susceptibility to the onset of ocular angioproliferative disease.
A recent study showed that the CCR3 (CC chemokine receptor type 3) and corresponding ligands eotaxin 1,2,3 are expressed only in the endothelial cells lining the abnormal blood vessels of CNV from people with wet AMD and not in choroidal endothelium from people without AMD, or from those with dry AMD or other types of choroidal or retinal disorder.
Therefore, in the second part of the study we have analyzed, for the first time, if single nucleotide polymorphisms in the genes CCR3 and eotaxin 1 (CCL11), eotaxin 2 (CCL24), eotaxin 3 (CCL26) are associated with the onset of AMD and DR.

For this purpose we selected 46 polymorphisms (14 in the CCR3 gene, 8 in the gene CCL11, 4 in the CCL26 gene, 11 in the VEGF-A gene and 4 in the KDR gene) in 283 patients with AMD, 175 patients with diabetic retinopathy and control population of 262 healthy subjects.
Genotyping analysis was performed using the Illumina BeadXpress, a high-throughput, dual-color laser detection system that enables scanning of a broad range of multiplexed assays developed using the VeraCode digital microbead technology.
This technology was also used to confirm the association of VEGF-KDR pathway with AMD and DR extending the number of SNPs studied in these two genes.
The analysis of allele and genotype frequencies of the CCR3 and eotaxins genes between groups of patients AMD and DR and the control group did not show any statistically significant difference.
Instead, we again confirmed the importance of VEGF / KDR pathway, expanding the current knowledge on the role of this growth factor in pathophysiology of these diseases and demonstrating a genetic contribution in susceptibility to the onset of AMD and DR.
The in-depth knowledge of these mechanisms could provide the basis to determine the risk of developing the disease and understand its entirety to allow the identification and synthesis of new drugs.
In fact, carriers of risk alleles or non-risk may respond differently to therapy or may require different amounts of anti-VEGF (currently used in the treatment of these diseases) to increase its effectiveness.


Abstract (italiano)

Le patologie oculari angioproliferative sono malattie multifattoriali, tutte caratterizzate da una progressiva degenerazione delle cellule della regione maculare della retina, quella che permette la visione centrale e distinta. Ciò comporta che le persone affette da queste patologie perdano gradualmente la visione ad “alta definizione” garantita dalla macula.
La causa più frequente di degenerazione maculare è la patologia detta degenerazione maculare legata all’età (AMD) che interessa solitamente persone al di sopra dei 50 anni ed è la principale causa di cecità legale nella popolazione anziana. La macula può essere interessata da patologia anche nell’ambito della retinopatia diabetica (DR); la presenza di essudati e l’accumulo di liquido che fuoriesce dai capillari, determinando una condizione chiamata edema maculare, costituiscono la più comune causa di perdita della funzione visiva nei pazienti diabetici.
VEGF (Vascular Endothelial Growth Factor) ed il recettore KDR (kinase insert domain receptor) regolano l’angiogenesi e quindi sono considerati importanti fattori coinvolti nel processo patologico che porta all’insorgenza delle patologie oculari di origine angioproliverative.
Nella prima parte dello studio è stato eseguito un’analisi di associazione tra polimorfismi presenti nei geni VEGF ed il suo recettore KDR e insorgenza di patologie angioproliferative come l’AMD e DR.
Per questo scopo abbiamo analizzato 16 polimorfismi (11 sul gene VEGF e 5 sul gene KDR) in una popolazione di 226 pazienti affetti da AMD, una popolazione di 177 pazienti affetti da DR e una popolazione di controllo di 240 soggetti sani.
L’analisi dei polimorfismi è stata effettuata mediante GenomeLab SNPstream (Beckman Coulter) che permette una genotipizzazione su larga scala.
I risultati ottenuti in questa prima parte hanno evidenziato una forte associazione tra alcuni polimorfismi di VEGF-A e, per la prima volta, KDR con la suscettibilità all’insorgenza alle patologie oculari di origine neovascolare.
Uno studio recente ha dimostrato che il CCR3 (C-C chemokine receptor type 3) e i corrispettivi ligandi eotassina 1,2,3 sono espressi a livello oculare solo in soggetti affetti da AMD di tipo neovascolare (AMD-CNV) e non in altri tipi di patologie oculari e in soggetti sani. Pertanto, nella seconda parte dello studio abbiamo analizzato, per la prima volta, se polimorfismi a singolo nucleotide nei geni CCR3 ed eotassina 1 (CCL11), eotassina 2 (CCL24), eotassina 3 (CCL26) sono associati all’insorgenza di AMD e DR.
Per questo scopo abbiamo analizzato 46 polimorfismi (14 sul gene CCR3, 8 sul gene CCL11, 4 sul gene CCL26, 11 sul gene VEGF-A e 4 sul gene KDR) in 283 pazienti affetti da AMD, 175 pazienti affetti da DR e una popolazione di controllo di 262 soggetti sani.
L’analisi dei polimorfismi è stata effettuata mediante BeadXpress di Illumina, un sistema high-throughput a scansione laser dual-color che consente di analizzare un'ampia varietà di saggi in multiplex sviluppati usando la tecnologia digitale a microbeads VeraCode.
Quest’ultima tecnologia è stata inoltre utilizzata per confermare l’associazione del pathway VEGF-KDR con l’AMD e DR ampliando il numero di SNP studiati in questi due geni.
L’analisi delle frequenze alleliche e genotipiche dei geni CCR3, eotassine 1,2,3 tra i gruppi dei pazienti AMD e DR ed il gruppo di controllo non ha evidenziato nessuna differenza statisticamente significativa.
Questi risultati portano ad ipotizzare che il pathway CCR3/eotassina 1,2,3, svolga un ruolo secondario nei processi fisiopatologici che portano all’insorgenza delle patologie oculari angioproliferative.
Abbiamo invece confermato nuovamente l’associazione del pathway VEGF/KDR allargando le attuali conoscenze sul ruolo di questo fattore di crescita nella fisiopatologia di tali patologie e dimostrando un contributo genetico nella suscettibilità all’insorgenza dell’AMD e DR.
L’approfondita conoscenza di tali meccanismi potrebbe costituire la base per poter determinare il rischio di sviluppare la patologia e comprenderla nel suo insieme per permettere l’identificazione e la sintesi di farmaci innovativi.
Infatti soggetti portatori di alleli di rischio o non di rischio potrebbero rispondere in maniera diversa alla terapia o potrebbero essere necessarie diverse quantità di farmaco anti-VEGF (attualmente utilizzato nella terapia di queste patologie) per aumentarne l’efficacia.


Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Foresta, Carlo
Correlatore:Ferlin, Alberto
Dottorato (corsi e scuole):Ciclo 23 > Scuole per il 23simo ciclo > BIOMEDICINA
Data di deposito della tesi:NON SPECIFICATO
Anno di Pubblicazione:24 Gennaio 2011
Parole chiave (italiano / inglese):AMD(Age-related Macular Degeneration), DR (Diabetic Retinopathy), VEGF-A, KDR,CCR3, CCL11, CCL24, CCL26, SNP (Sigle Nucleotide Polymorphism)
Settori scientifico-disciplinari MIUR:Area 06 - Scienze mediche > MED/05 Patologia clinica
Struttura di riferimento:Dipartimenti > Dipartimento di Istologia, Microbiologia e Biotecnologie Mediche
Codice ID:3384
Depositato il:14 Lug 2011 09:26
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Fine SL, Berger JW, Maguire MG, Ho AC. Age-related macular degeneration. N Engl J Med 2000 e 342:483-492. Cerca con Google

2. Arch, Zarbin MA. Current concepts in the pathogenesis of age-related macular degeneration. e 122:598-614. Cerca con Google

3. Bird AC, Bressler NM, Bressler SB, et al. An international classification and grading system for age-related maculopathy and age-related macular degeneration. Surv Ophthalmol 1995 e 39:367-374. Cerca con Google

4. Hogg RE, Chakravarthy U. Visual function and dysfunction in early and late age-related maculopathy. Prog Retin Eye Res 2006 e 25:249-276. Cerca con Google

5. DS Fong, LP Aiello, FL Ferris 3rd and R Klein, Diabetic retinopathy, Diabetes Care27 (2004), pp. 2540–2553. Cerca con Google

6. R Klein, Epidemiology of Diabetic Retinopathy. In: E Duh, Editor, Diabetic Retinopathy, Humana Press, Totowa (2008). Cerca con Google

7. CP Wilkinson, FL Ferris 3rd and RE Klein et al., Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales, Ophthalmology 110 (2003), pp. 1677–1682. Cerca con Google

8. S.C. Sacca, C. Bolognesi, A. Battistella, A. Bagnis and A. Izzotti. Gene–environment interactions in ocular diseases. Mutat Res. 2009 Jul 10 e Review, 667(1-2):98-117. Cerca con Google

9. Patel S, Chen H, Tinkham NH, et al. Genetic susceptibility of diabetic retinopathy. Curr Diab Rep 2008 e 8:257-262. Cerca con Google

10. Ferrara N, Gerber HP. The role of vascular endothelial growth factor in angiogenesis. Acta Haematol 2001 e 106:148–156. Cerca con Google

11. Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev 1997 e 18:4–25. Cerca con Google

12. T. Tammela, B. Enholm, K. Alitalo, et al. The biology of vascular endothelial growth factors. Cardiovascular Research (2004) 65: 550-563. Cerca con Google

13. Ferrara N, Gerber HP, Le Couter J. The biology of VEGF and its receptors. Nat Med. 2003 Jun e Review., 9(6):669-76. Cerca con Google

14. Sreekumar, P.G., Kannan, R., et al., 2006. Thiol regulation of vascular endothelial growth factor-A and its receptors in human retinal pigment epithelial cells. Biochem. Biophys. Res. Commun. Cerca con Google

15. Slomiany MG, Rosenzweig SA. Hypoxia-inducible factor-1-dependent and -independent regulation of insulin-like growth factor-1-stimulated vascular endothelial growth factor secretion. J Pharmacol Exp Ther. 2006 Aug e 318(2):666-75. Cerca con Google

16. Adamis AP, Miller JW, Bernal MT, et al. Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy. Am J Ophthalmol 1994 e 450., 118:445–450. Cerca con Google

17. Haines JL, Schnetz-Boutaud N, Schmidt S, et al. Functional candidate genes in age-related macular degeneration: significant association with VEGF, VLDLR, and LRP6. Invest Ophthalmol Vis Sci 2006 e 47:329-35. Cerca con Google

18. Rosenfeld PJ, Brown DM, Heier JS, et al. Ranibizumab for neovascular age-related macular degeneration. N Engl J Med 2006 e 355:1419-1431. Cerca con Google

19. Stephens M, Donnelly P. A comparison of Bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet. 2003 e 73:1162–1169. Cerca con Google

20. Stephens M, Smith NJ, Donnelly P. A new statistical method for haplotype reconstruction from population data. Am J Hum Genet. 2001 e 68:978–989. Cerca con Google

21. Churchill AJ, Carter JG, Lovell HC, et al. VEGF polymorphisms are associated with neovascular age-related macular degeneration. Hum Mol Genet 2006 e 15:2955-61. Cerca con Google

22. Richardson AJ, Islam FM, Guymer RH, et al. A tag-single nucleotide polymorphisms approach to the vascular endothelial growth factor-A gene in age-related macular degeneration. Mol Vis 2007 e 13:2148-52. Cerca con Google

23. Lin JM, Wan L, Tsai YY, et al. Vascular endothelial growth factor gene polymorphisms in age-related macular degeneration. Am J Ophthalmol 2008 e 145:1045-1051. Cerca con Google

24. Boekhoorn SS, Isaacs A, Uitterlinden AG, et al. Polymorphisms in the vascular endothelial growth factor gene and risk of age-related macular degeneration: the Rotterdam Study. Ophthalmology 2008 e 115:1899-903. Cerca con Google

25. McKay GJ, Silvestri G, Orr N, et al. VEGF and age-related macular degeneration. Ophthalmology 2009 e 116:1227.e1-3. Cerca con Google

26. Awata T, Inoue K, Kurihara S, et al. A common polymorphism in the 5'-untranslated region of the VEGF gene is associated with diabetic retinopathy in type 2 diabetes. Diabetes 2002 e 51:1635-1639. Cerca con Google

27. Ray D, Mishra M, Ralph S, et al. Association of the VEGF gene with proliferative diabetic retinopathy but not proteinuria in diabetes. Diabetes 2004 e 53:861-864. Cerca con Google

28. Awata T, Kurihara S, Takata N, et al. Functional VEGF C-634G polymorphism is associated with development of diabetic macular edema and correlated with macular retinal thickness in type 2 diabetes. Biochem Biophys Res Commun 2005 e 333:679-685. Cerca con Google

29. Szaflik JP, Wysocki T, Kowalski M, Majsterek et al. An association between vascular endothelial growth factor gene promoter polymorphisms and diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 2008 e 246:39-43. Cerca con Google

30. Suganthalakshmi B, Anand R, Kim R, et al. Association of VEGF and eNOS gene polymorphisms in type 2 diabetic retinopathy. Mol Vis 2006 e 12:336-341. Cerca con Google

31. Monika Buraczynska, Piotr Ksiazek, Iwona Baranowicz-Gaszczyk, et al. Association of the VEGF gene polymorphism with diabetic retinopathy in type 2 diabetes patients. Nephrol Dial Transplant 2007 e 22:827-832. Cerca con Google

32. Al-Kateb H, Mirea L, Xie X, Sun et al. Multiple variants in vascular endothelial growth factor (VEGFA) are risk factors for time to severe retinopathy in type 1 diabetes: the DCCT/EDIC genetics study. Diabetes 2007 e 56:2161-2168. Cerca con Google

33. Errera FI, Canani LH, Silva ME, et al. Functional vascular endothelial growth factor -634G>C SNP is associated with proliferative diabetic retinopathy: a case-control study in a Brazilian population of European ancestry. Diabetes Care 2007 e 30:275-279. Cerca con Google

34. Nakamura S, Iwasaki N, Funatsu H, et al. Impact of variants in the VEGF gene on progression of proliferative diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 2009 e 247:21-26. Cerca con Google

35. Amanda J. Churchill, James G. Carter, Conor Ramsden, et al. VEGF Polymorphisms Are Associated with Severity of Diabetic Retinopathy Ophthalmol. Invest Ophthalmol Vis Sci 2008 e 49:3611-3616 begin_of_the_skype_highlighting              3611-3616      end_of_the_skype_highlighting begin_of_the_skype_highlighting              3611-3616      end_of_the_skype_highlighting. Cerca con Google

36. Petrovic MG, Korosec P, Kosnik M, et al. Local and genetic determinants of vascular endothelial growth factor expression in advanced proliferative diabetic retinopathy. Mol Vis 2008 e 14:1382-1387. Cerca con Google

37. Försti A, Jin Q, Altieri A, Johansson R, Wagner K, et al. Polymorphisms in the KDR and POSTN genes: association with breast cancer susceptibility and prognosis. Breast Cancer Res Treat. 2007 Jan e 101(1):83-93. Cerca con Google

38. An SJ, Chen ZH, Lin QX, Su J, Chen HJ, Lin JY, Wu YL. The -271 G>A polymorphism of kinase insert domain-containing receptor gene regulates its transcription level in patients with non-small cell lung cancer. BMC Cancer. 2009 May 12 e 9:144. Cerca con Google

39. Wang Y, Zheng Y, Zhang W, Yu H, Lou K, Zhang Y, et al. Polymorphisms of KDR gene are associated with coronary heart disease.J Am Coll Cardiol. 2007 Aug 21 e 50(8):760-7. Cerca con Google

40. Aiello LP, Avery RL, Arrigg PG, et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med 1994 e 331:1480–1487. Cerca con Google

41. Galan A, Ferlin A, Caretti L, et al. Association of Age-related Macular Degeneration with Polymorphisms in Vascular Endothelial Growth Factor and Its Receptor. Ophthalmology 2010 May 13. Cerca con Google

42. Jorge R, Costa RA, Comt DC, et al. Intravitreal bevacizumab (Avastin) for persistent new vessels in diabetic retinopathy (IBEPE Study). Retina 2006 e 26:1006–1013. Cerca con Google

43. Ng EWM, Adamis AP. Anti-VEGF aptamer (pegaptanib) therapy for ocular vascular diseases. Ann N Y Acad Sci 2006 e 1082:151–171. Cerca con Google

44. Laing KJ, Secombes Chemokines. CJ. Dev Comp Immunol. 2004 May 3 e Review., 28(5):443-60. Cerca con Google

45. Allen SJ, Crown SE, Handel TM.Chemokine: receptor structure, interactions, and antagonism. Annu Rev Immunol. 2007 e Review., 25:787-820. Cerca con Google

46. Murphy PM, Baggiolini M, Charo IF, Hebert CA, Horuk R, et al. 2000. International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol. Rev.52:145–76. Cerca con Google

47. Murdoch C, Finn A. Chemokine receptors and their role in inflammation and infectious diseases. Blood 95, 2000 (10): 3032–43. Cerca con Google

48. Daugherty BL, Siciliano SJ, DeMartino JA, Malkowitz L, Sirotina A, Springer MS. Cloning expression, and characterization of the human eosinophil eotaxin receptor. J Exp Med. 1996 e 183:2349. Cerca con Google

49. Uguccioni M, Mackay CR, Ochensberger B, et al .High expression of the chemokine receptor CCR3 in human blood basophils: role in activation by eotaxin, MCP-4, and other chemokines. J Clin Invest. 1997 e 100:1137. Cerca con Google

50. Gerber BO, Zanni MP, Uguccioni M, et al. Functional expression of the eotaxin receptor CCR3 in T lymphocytes co-localizing with eosinophils. Curr Biol. 1997 e 7:836. Cerca con Google

51. Williams T. Mechanisms Underlying Eosinophil Accumulation in the Asthmatic Lung.” Faculty of Medicine. 2002, Imperial College of Science. Cerca con Google

52. Pease JE. Asthma, allergy and chemokines. Curr Drug Targets. 2006 Jan e Review., 7(1):3-12. Cerca con Google

53. Takeda, A. et al.. CCR3 is a target for age-related macular degeneration diagnosis and therapy. Nature 2009.460,225–230. Cerca con Google

54. Salcedo, R., et al.. "Eotaxin (CCL 11) induces in vivo angiogenic responses by human CCR3 + endothelial cells” J. immunol. 2001. 166,7571-7578. Cerca con Google

55. Dema B, Martínez A, et al. (2009)." Association of IL18RAP and CCR3 with coeliac disease in the Spanish population”. J Med Genet e 46(9):617-9. Cerca con Google

56. Romanos J, Barisani D, et al. (2009)."Six new coeliac disease loci replicated in an Italian population confirm association with coeliac disease”. J Med Genet e 46(1):60-3. Cerca con Google

57. Lee JH, Moore JH, et al. (2008)." Genetic interactions model among Eotaxin gene polymorphisms in asthma”. J Hum Genet e 53(10):867-75. Cerca con Google

58. Lee JH, Chang HS, et al. (2007)." Genetic effect of CCR3 and IL5RA gene polymorphisms on eosinophilia in asthmatic patient” . J Allergy Clin Immunol. e 120(5):1110-7. Cerca con Google

59. Wang TN, Chiang W , et al. (2007)." The polymorphisms of Eotaxin 1 and CCR3 genes influence on serum IgE, Eotaxin levels and mild asthmatic children in Taiwan” Allergy. e 62(10):1125-30. Cerca con Google

60. Nakamura H, Higashikawa F, et al. (2007). " Genotypes and haplotypes of CCR2 and CCR3 genes in Japanese cedar pollinosis”. Int Arch Allergy Immunol. e 142(4):329-34. Cerca con Google

61. Blanchard C, Wang N, et al. (2006)." Eotaxin-3 and a uniquely conserved gene-expression profile in eosinophilic esophagitis” . J Clin Invest. e 116(2):536-47. Cerca con Google

62. Clark VJ, Dean M. “Haplotype structure and linkage disequilibrium in chemokine and chemokine receptor genes”. Hum Genomics. e 1(4):255-73. Cerca con Google

63. Tsunemi Y, Sekiya T, et al. (2003)."Lack of association of CCR3 single nucleotide polymorphism with atopic dermatitis in Japanese population”. J Derm. Sci e 33(2):130-3. Cerca con Google

64. Shin HD, Kim LH, et al. (2003)." Association of Eotaxin gene family with asthma and serum total IgE“. Hum Mol Genet e 12(11):1279-85. Cerca con Google

65. Fukunaga K, Asano K, et al. (2001)." Genetic polymorphisms of CC chemokine receptor 3 in Japanese and British asthmatics”. Eur Respir J. e 59-63, 17(1):. Cerca con Google

66. Zimmermann N, Bernstein JA, et al. (1998)."Polymorphisms in the human CC chemokine receptor-3 gene”. Biochim Biophys Acta. e 1442(2-3):170-6. Cerca con Google

67. Raby BA, Van Steen K, et al. (2006)." Eotaxin polymorphisms and serum total IgE levels in children with asthma”. J Allergy Clin Immunol. e 117(2):298-305. Cerca con Google

68. Abhary S, Burdon KP, Gupta A, Lake S, Selva D, Petrovsky N, Craig JE. Common sequence variation in the VEGFA gene predicts risk of diabetic retinopathy. Invest Ophthalmol Vis Sci. 2009 Dec e 50(12):5552-8. Cerca con Google

69. Pabst S, Karpushova A, Diaz-Lacava A et al. VEGF gene haplotypes are associated with sarcoidosis. Chest. 2010 Jan e 9., 137(1):156-63. Epub 2009 Sep. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record