Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Savio, Claudia (2011) Symbiotic and associated bacteria in Tephritid flies. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
6Mb

Abstract (inglese)

The Tephritidae family, commonly known as “fruit flies”, is a large Dipteran family. It includes many notorious agricultural pests, as the olive fly (Bactrocera oleae), the cherry fruit fly (Rhagoletis cerasi) and the walnut husk fly (R. completa).
The importance of bacteria in the life history of fruit flies is well-known. In the beginning of last century Petri (1909) was the first to report the presence of symbiotic bacteria within the olive fruit fly (Bactrocera oleae); recently it was designated as “Candidatus Erwinia dacicola”. In Tephritids flies, the bacteria are housed in the midgut and in a specialized intestinal diverticulum, located in the fly head, called oesophageal bulb.
In this thesis, some aspects of the relationship between the above mentioned Tephritid flies and bacteria has been investigated, such as the microflora composition, the symbiont genetic variability and the bacterial transmission.
The thesis is composed of five studies.
The first study analyzes in details the genetic variability of Ca. E. dacicola in various Italian olive fly populations, studying the 16S rRNA gene. The presence of only two symbiont lineages, not coexisting in the same fly individual, was clearly noticed. Interestingly, the olive fly populations of the two main Italian islands, Sicily and Sardinia, are exclusively represented by one of the two lineages, which could suggest a non-random distribution. On the other hand, the peninsular populations show both bacterial haplotypes, in different proportions. No significant correlation was found between the two symbiont haplotypes and the observed host fly haplotypes, providing evidences for a mixed model of vertical and horizontal transmission of the symbiont during the fly life cycle.
The second study extends the previous study to a wider range. The presence of only two symbiont haplotypes was still confirmed for the Mediterranean and African populations. Surprisingly the symbiont haplotypes seem to be more related to the territory than the numerous host haplotypes.
The third study deals with the identification of the microflora composition of R. completa and R. cerasi. All the life stages of the cherry fruit fly and the adult stage in R. completa have been taken into account, using both culture dependent and independent methods. Bacteria detected within the oesophageal bulbs of both species are affiliated to Enterobacteriaceae family. The results on the bacterial transmission show a different mechanisms respect to the olive fly and the subfamily Tephritinae symbionts.
In the fourth study, the Klebsiella spp. strains isolated from the oesophageal bulb of R. completa and Ceratitis capitata were examined for their ability to incorporate the gene encoding green fluorescent protein (GFP). These bacteria were successfully labelled by conjugation with the gfp gene and the gfp gene was stably maintained in the transgenic strains. Moreover, the colonizing ability of gfp-tagged bacteria in the original host was tested. Here a non-invasive technique to monitor the bacterial fate during the fly life stages was used. Gfp-tagged bacteria were successfully ingested by walnut husk flies where they established a stable population in the fly gut over time and throughout developmental stages. This is the first report in Tephritid flies of native engineered bacteria re-introduced in its original host and the shuttle system used in this study could be a useful tool to expand and strengthen the possibility of biological control of the insect pest.
The last study is part of Isabel Martinez-Sañudo PhD thesis, for which I contributed to experimental works. The main goal of this study was to analyse the phylogenetic relationships between flies of the Tephritinae subfamily and their symbiotic bacteria. Some species of this subfamily are in effect known to host specific non-culturable symbiont bacteria (‘‘Candidatus Stammerula spp.”) in their midgut. The cophylogenetic analysis reveals the presence of congruence, even if imperfect, between hosts and symbionts. This non-strict congruence is probably due to events such as losses, duplications and hosts switching, which are likely to arise during the biological cycle of the fly in consideration of the extracellular status of these symbionts.

Abstract (italiano)

I Tefritidi, noti anche come “fruit fly”, rappresentano una vasta famiglia di Ditteri comprendenti specie dannose per l’agricoltura quali la mosca dell’olivo (Bactrocera oleae), la mosca del ciliegio (Rhagoletis cerasi), la mosca del noce (R. completa) e la mosca mediterranea della frutta (Ceratitis capitata).
L’importanza delle associazioni batteriche nella famiglia dei Tefritidi è nota sin da quando Petri, all’inizio del secolo scorso, riportò la presenza di un battere simbionte, in seguito designato “Candidatus Erwinia dacicola”, in un diverticolo del capo della mosca dell’olivo chiamato bulbo esofageo. I successivi studi hanno evidenziato, sia con metodi tradizionali, sia con un approccio di tipo molecolare, lo stretto legame esistente tra batteri e tefritidi, siano essi simbionti ereditari e coevoluti e non coltivabili o semplici batteri associati.
Nel presente lavoro sono stati analizzati in dettaglio alcuni aspetti delle relazioni batteriche in alcune specie di tefritidi, quali la variabilità genetica dei simbionti, la composizione della microflora batterica e la presenza di trasmissione attraverso i diversi stadi di sviluppo dell’ospite. La tesi si articola in cinque capitoli.
Il primo lavoro analizza la variabilità genetica nel battere simbionte di B. oleae “Ca. Erwinia dacicola” in diverse popolazioni italiane della mosca dell’olivo, usando il gene ribosomale 16S come marcatore. Lo studio ha evidenziato la presenza di soli due aplotipi del simbionte, evidenziando anche che la loro presenza contemporanea all’interno di uno stesso ospite sembra in base a tutti i reperti non essere non essere probabile. La distribuzione di queste due linee batteriche nelle popolazioni di B. oleae sembra inoltre non essere casuale, poiché le popolazioni delle due maggiori isole italiane (Sardegna e Sicilia) ospitano uno o l’altro dei due aplotipi. Al contrario, le popolazioni della penisola ospitano, in proporzioni significativamente diverse, entrambi gli aplotipi del simbionte. Non è emersa una correlazione tra gli aplotipi di “Ca. E. dacicola” e gli aplotipi mitocondriali del loro ospite. Tale risultato potrebbe essere spiegato ammettendo l’esistenza, oltre alla prevalente trasmissione verticale, di accidentali passaggi orizzontali del simbionte.
Nel secondo lavoro l’indagine è stata estesa a un areale più ampio circummediterraneo della mosca dell’olivo. I due aplotipi di “Ca Erwinia dacicola” rinvenuti in Italia sono stati riscontrati con frequenze diverse anche in Africa. Inaspettatamente gli aplotipi del simbionte risultano essere più correlati al territorio di quanto non lo siano i numerosi aplotipi mitocondriali dell’ospite.
Nel terzo lavoro è stata indagata la composizione della microflora di R. completa e R. cerasi prelevate in natura, analizzandone i diversi stadi di sviluppo sia con approccio tradizionale coltura-dipendente che con approccio molecolare coltura-indipendente. Dal lavoro è emerso che le entità batteriche predominanti presenti nel bulbo esofageo appartengono alla famiglia delle Enterobacteriaceae. I risultati ottenuti evidenziano un meccanismo di trasmissione dei batteri diverso da quello evidenziato per i simbionti della mosca dell’olivo e della sottofamiglia Tephritinae.
Nel quarto lavoro è stata studiata l’abilità di ceppi di Klebsiella isolati originariamente dal bulbo esofageo di R. completa e C. capitata di incorporare il gene per l’espressione di una proteina fluorescente (GFP) e quindi la capacità del battere cosi modificato di ri-colonizzare l’ospite originario. Questa tecnica non distruttiva ha consentito il monitoraggio del destino dei batteri nel corso degli stadi di sviluppo dell’insetto. I batteri modificati sono stai ingeriti con successo dalle mosche del noce e ne hanno colonizzato in modo stabile l’intestino medio allo stadio di larva e quindi nella pupa. Si tratta del primo caso in cui un battere tipico della microflora di un tefritide è stato ingegnerizzato con successo e quindi introdotto nell’ospite nativo. La tecnica utilizzata in questo studio potrebbe costituire un valido strumento per espandere questo tipo di ricerca anche al controllo biologico di altre specie dannose in agricoltura.
L’ultimo lavoro fa parte parzialmente della tesi di dottorato della Dott.ssa Isabel Martinez-Sañudo, per il quale ho contribuito nella parte sperimentale. L’obbiettivo principale di questo studio è stato quello di indagare le relazioni filogenetiche tra le mosche della sottofamiglia delle Tefritine e i loro batteri simbionti. Alcune specie di questa sottofamiglia sono infatti note per ospitare un simbionte specifico ereditario e non coltivabile (‘‘Candidatus Stammerula spp.”) nell’intestino medio. Tali batteri simbionti sono presenti solo in due delle cinque tribù della sottofamiglia studiate. L’analisi della cofilogenesi ha rivelato la presenza di una congruenza, seppure imperfetta, tra ospiti e simbionti.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Girolami, Vincenzo
Dottorato (corsi e scuole):Ciclo 23 > Scuole per il 23simo ciclo > SCIENZE DELLE PRODUZIONI VEGETALI > PROTEZIONE DELLE COLTURE
Data di deposito della tesi:NON SPECIFICATO
Anno di Pubblicazione:31 Gennaio 2011
Parole chiave (italiano / inglese):Simbiosi, Tephritidae, Enterobacteriaceae, Filogenesi, GFP Symbiosis, Tephritidae, Enterobacteriaceae, Phylogeny, GFP
Settori scientifico-disciplinari MIUR:Area 07 - Scienze agrarie e veterinarie > AGR/11 Entomologia generale e applicata
Struttura di riferimento:Dipartimenti > pre 2012 - Dipartimento di Agronomia Ambientale e Produzioni Vegetali
Codice ID:3412
Depositato il:21 Lug 2011 13:09
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Augustinos A.A., Stratikopoulos E.E., Zacharopoulou A., Mathiopoulos K.D. 2002. Polymorphic microsatellite markers in the olive fly, Bactrocera oleae. Mol. Ecol. Notes 2:278–280. Cerca con Google

Augustinos A.A., Mamuris Z., Stratikopoulos E.E., D’Amelio S., Zacharopoulou A., Mathiopoulos K.D. 2005. Microsatellite analysis of olive fly populations in the Mediterranean indicates a westward expansion of the species. Genetica 125:231–241. Cerca con Google

Baker R.H. & DeSalle R. 1997. Multiple sources of character information and the phylogeny of Hawaiian drosophilids. Syst. Biol. 46:654-73. Cerca con Google

Baumann P. & Moran N.A. 1997. Non-cultivable microorganisms from symbiotic associations of insects and other hosts. Anton. Leeuw. Int. J. G. 72:39–48. Cerca con Google

Baumann P. 2005. Biology bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu. Rev. Entomol. 59:155–189. Cerca con Google

Beattie G.A. 2006. Plant-associated bacteria: survey, molecular phylogeny, genomics and recent avances. Pp. 1-56. In: Plant-Associated Bacteria. S.S. Gnanamanickam (ed.), Springer. Printed in the Netherlands. Cerca con Google

Behar A., Yuval B., Jurkevitch E. 2005. Enterobacteria-mediated nitrogen fixation in natural populations of the fruit fly Ceratitis capitata. Mol. Ecol. 14:2637–2643. Cerca con Google

Behar A., Jurkevitch E., Yuval B. 2008a. Bringing back the fruit into fruit fly-bacteria interactions. Mol. Ecol. 17:1375–1386. Cerca con Google

Behar A., Yuval B., Jurkevitch E. 2008b. Gut bacterial communities in the Mediterranean fruit fly (Ceratitis capitata) and their impact on host longevity. J. Insect Physiol. 54:1377-1383. Cerca con Google

Behar A., Ben-Yosef M., Lauzon C.R., Yuval B., Jurkevich E. 2009. Structure and function of the bacterial community associated with the Mediterranean fruit fly. In: Bourtzis K, Miller T (eds). Insect Symbiosis, Vol. 3.CRC Press: Boca Raton, pp 251–271. Cerca con Google

Belcari A., Girolami V., Rivosecchi L., Zaitzev V.F. 1995. Diptera Tephritoidea. In: Minelli A., Ruffo S. end La Posta S. (eds.), Checklist delle specie della fauna italiana, 72. Calderini, Bologna. Cerca con Google

Besnard G., Khadari B., Baradat P., Bervillè A. 2002. Olea europea (Oleaceae) phylogeography based on chloroplast DNA polymorphism. Theor. Appl. Genet. 104:1353–1361. Cerca con Google

Besnard G., Rubio de Casas R., Vargas P. 2007. Plastid and nuclear DNA polymorphism reveals historical processes of isolation and reticulation in the olive tree complex (Olea europaea). J. Biogeogr. 34:736–752. Cerca con Google

Blando S. & Mineo G. 2006. Generazioni primaverili della mosca delle olive sull’Olivastro (Olea europaea var. Sylvestris brot.) In sicilia. Boll. Zool. Agra. Bachic. Ser ii.38:173-178. Cerca con Google

Blümel S. & Masalmeh M.A. 1989. Primary investigation on the microbial endoflora of the European cherry fruit fly, Rhagoletis cerasi L. (Trypetidae) pp. 339-344. Edited by R. Cavalloro. Proceedings of the CEC/IOBC International Symposium. Rome April 1987. Cerca con Google

Breton C., Tersac M., Berville´ A. 2006. Genetic diversity and gene flow between the wild olive (oleaster, Olea europaea L.) and the olive: several Plio-Pleistocene refuge zones in the Mediterranean basin suggested by simple sequence repeats analysis. J. Biogeogr. 33:1916–1928. Cerca con Google

Buchner P. 1965. Endosymbiosis of Animals with Plant Microorganisms. New York: Interscience Publishers, Inc. Cerca con Google

Buckley T.R., Simon C., Flook P.K., Misof P.K. 2000. Secondary structure and conserved motifs of the frequently sequenced domains IV and V of the insect mitochondrial large subunit rRNA gene. Insect. Mol. Biol. 9:565–580. Cerca con Google

Cannone J.J., Subramanian S., Schnare M.N. et al. (14 co-authors), 2002. The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinformatics. 3:2. Cerca con Google

Capuzzo C., G. Firrao, L. Mazzon, A. Squartini, Girolami V. 2005. ‘Candidatus Erwinia dacicola’, a coevolved symbiotic bacterium of the olive fly Bactrocera oleae (Gmelin). Int. J. Syst. Evol. Microbiol. 55:1641–1647. Cerca con Google

Carriόn Y., Ntinou M., Badal E. 2010. Olea europaea L. in the North Mediterranean Basin during the Pleniglacial and the Early–Middle Holocene. Quaternary Sci. Rev. 29: 952–968. Cerca con Google

Castresana J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17:540–552. Cerca con Google

Charleston M.A. 1998. Jungles: A new solution to the host/parasite phylogeny reconciliation problem. Math. Biosci. 149:191–223. Cerca con Google

Charleston M.A. & Page R.D.M. 2002. TREEMAP (v2.0) Applications for Apple Macintosh. University of Oxford, Oxford. Cerca con Google

Chen X.A., Li S., Aksoy S. 1999. Concordant evolution of a symbiont with its host insect species: molecular phylogeny of genus Glossina and its bacteriome-associated endosymbiont, Wigglesworthia glossinidia. J. Mol. Evol. 48:49–58. Cerca con Google

Chen R.T., Tsai C.F., Tzeng W.N. 2009. 16S and 28S rDNA sequences in phylogenetic analyses of freshwater prawns (macrobrachium bate, 1868) from Taiwan. J. Crustacean Biol. 29:400-412. Cerca con Google

Clark M.A., Moran N.A., Baumann P., Wernegreen J.J. 2000. Cospeciation between bacterial endosymbionts (Buchnera) and a recent radiation of aphids (Uroleucon) and pitfalls of testing for phylogenetic congruence. Evolution 54:517– 525. Cerca con Google

Clement M., Posada D., Crandall K.A. 2000. TCS: a computer program to estimate gene genealogies. Mol. Ecol. 9:1657–1659. Cerca con Google

Cole J.R., Wang Q., Cardenas E., Fish J., Chai B., Farris R.J., Kulam-Syed-Mohideen A.S., McGarrell D.M., Marsh T., Garrity G.M., Tiedje J.M. 2009. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37 (Database issue): D141-D145; doi: 10.1093/nar/gkn879. Cerca con Google

Daane K.M., Johnson, M.W. 2010. Olive Fruit Fly: Managing an Ancient Pest in Modern Times. Annu. Rev. Entomol. 55:151–69. Cerca con Google

Daser U. & Brandl R. 1992. Microbial gut floras of eight species of tephritids. Biol. J. Linn. Soc. 45:155-165. Cerca con Google

de Lorenzo V., Herrero M., Jakubzik U., Timmis K.N. 1990. Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. J. Bacteriol. 172:6568-72. Cerca con Google

Dillon R.J. & Dillon V.M. 2004. The gut bacteria of insects: Nonpathogenic Interactions. Annu. Rev. Entomol. 49:71-92. Cerca con Google

Donovan S.E., Purdy K.J., Kane M.D., Eggleton P. 2004. Comparison of Euryarchaea strains in the guts and food-soil of the soil-feeding termite Cubitermes fungifaber across different soil types. Appl. Environ. Microbiol. 70:3884–3892. Cerca con Google

Drew R.A.I. & Lloyd A.C. 1987. Relationship of fruit-flies (Diptera, Tephritidae) and their bacteria to host plants. Ann. Entomol. Soc. Am. 80:629-636. Cerca con Google

Drew R.A.I. & Lloyd A.C. 1991. Bacteria in the life cycle of tephritid fruit flies, p. 441-465. In: Barbosa, P., Krischik, V.A., Jones, C.G., eds., Microbial mediation of plant-herbivore interactions. John Wiley & Sons, New York. 625 p. Cerca con Google

Dupanloup I. Schneider S. Excoffier L. 2002. A simulated annealing approach to define the genetic structure of populations. Mol. Ecol. 11:2571–2581. Cerca con Google

Duso C. 1991. Sulla comparsa in Italia di un Tefritide neartico del noce: Rhagoletis completa Cresson (Diptera: Tephritidae). Bollettino di Zoologia Agraria e di Bachicoltura 23:203-209. Cerca con Google

Duso C. & Dal Lago G. 2006. Life cycle, phenology and economic importance of the walnut husk fly Rhagoletis completa Cresson in northern Italy. Ann. Soc. Entomol. Fr. 42:245-254. Cerca con Google

Eberl L., Schukze R., Ammendola A., Geisenberger O., Erhart R., Sternberg C., Molin S., Amann R. 1997. Use of green fluorescent protein as a marker for ecological studies of activated sludge communities. FEMS Microbiol. Lett. 149:77-83. Cerca con Google

Estes A.M., Hearn, D.J., Bronstein, J.L., Pierson, E.A. 2009. The olive fly endosymbiont, “Candidatus Erwinia dacicola”, switches from an intracellular existence to an extracellular existence during host insect development. Appl. Environ. Microbiol. 75:7097–7106. Cerca con Google

Excoffier L., Laval G., Schneider S. 2005. Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evol. Bioinformatics Online 1:47-50. Cerca con Google

Favia G. 2008. Bacteria of the Genus Asaia: A potential paratransgenic weapon against malaria. Adv. Exp. Med. Biol. 627:49-59. Cerca con Google

Foote R.H., Blanc F.L., Norrbom A.L. 1993. Handbook of the Fruit Flies (Diptera: Tephritidae) of America North of Mexico, Comstock Publishing Associates, Ithaca. Cerca con Google

Freidberg A. & Norrbom A.L. 1999. A generic reclassification and phylogeny of the tribe Myopitini (Tephritidae). Pp. 581-637. In Fruit Flies (Tephritidae): Phylogeny and Evolution of Behavior. (ed. by M. Aluja and A. L. Norrbom). CRC Press, Boca Raton. Cerca con Google

Fu Y.X. 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925. Cerca con Google

Fukatsu T. & Hosokawa T. 2002. Capsule-transmitted gut symbiotic bacterium of the Japanese common plataspid stinkbug, Megacopta punctatissima. Appl. Environ. Microbiol. 68:389–396. Cerca con Google

Gil R., Latorre A., Moya A. 2004. Bacterial endosymbionts of insects: insights from comparative genomics. Environ. Microbiol. 6:1109–1122. Cerca con Google

Girolami V. 1973. Reperti morfo-istologici sulle batterio simbiosi del Dacus oleae Gmelin e di altri ditteri tripetidi, in natura e negli allevamenti su substrati artificiali. Redia 54:269–294. Cerca con Google

Girolami V. 1983. Fruit fly symbiosis and adult survival: general aspects, p. 74-76. In R. Cavalloro (ed.) Fruit flies of economic importance. Balkema, Rotterdam. Cerca con Google

Girolami V. 1986. Mediterranean fruit fly associated bacteria: transmission and larval survival p. 135-146. In M. Mangel (ed.) Pest Control: Operations and Systems Analysis in Fruit Fly Management, NATO ASI Series, Vol. G 11. Springer-Verlag, Berlin. Cerca con Google

Girolami V. & Cavalloro R. 1972. Aspetti della simbiosi batterica di Dacus oleae (Gmelin) in natura e negli allevamenti di laboratorio. Ann. Soc. Entomol. Fr. 8:561–571. Cerca con Google

Goldman N., Anderson J.P., Rodrigo A.G. 2000. Likelihood-based tests of topologies in phylogenetics. Syst. Biol. 49:652–670. Cerca con Google

Gruwell M.E., Morse G.E., Normak B.B. 2007. Phylogenetic congruence of armored scale insects (Hemiptera: Diaspididae) and their primary endosymbionts from the Phylum Bacteriodetes. Mol. Phylogenet. Evol. 44:267-280. Cerca con Google

Guindon S. & Gascuel O. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52:696-704. Cerca con Google

Han H.Y. & McPheron B.A. 1997. Molecular phylogenetic study of Tephritidae (Insecta: Diptera) using partial sequences of the mitochondrial 16S ribosomal DNA. Mol. Phylogenet. Evol. 7:17−32. Cerca con Google

Han H.Y. & McPheron B.A. 1999. Nucleotide sequence data as a tool to test phylogenetic relationships among higher groups of Tephritidae: a case study using mitochondrial ribosomal DNA. Pp. 115−132. In Fruit Flies (Tephritidae): Phylogeny and Evolution of Behavior, (ed. by M. Aluja and A. L. Norrbom). CRC Press, Boca Raton. Cerca con Google

Han H.Y., Ro K.E., McPheron B.A. 2006. Molecular Phylogeny of the Subfamily Tephritinae (Diptera: Tephritidae) based on mitochondrial 16S rDNA sequences. Mol. Cells 22:78-88. Cerca con Google

Han H.Y. & Ro K.E. 2009. Molecular phylogeny of the family Tephritidae (Insecta: Diptera): new insight from combined analysis of the mitochondrial 12S, 16S, and COII genes. Mol. Cells 27:55-66. Cerca con Google

Hosokawa T., Kikuchi Y., Nikoh N., Shimada M., Fukatsu T. 2006. Strict host-symbiont cospeciation and reductive genome evolution in insect gut bacteria. Plos Biol. 4:e337. Cerca con Google

Howard D.J., Bush G.L., Breznak J.A. 1985. The evolutionary significance of bacteria associated with Rhagoletis. Evolution 39:405-417. Cerca con Google

Huber T., Faulkner G., Hugenholtz P. 2004. Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20:2317–2319. Cerca con Google

Huelsenbeck J.P. & Rannala B. 2004. Frequentist properties of Bayesian Posterior Probabilities of phylogenetic trees under simple and complex substitution models. Syst. Biol. 53:904-913. Cerca con Google

Hunt D.E., Klepac-Ceraj V., Acinas S.G., Gautier C., Bertilsson S., Polz M.F. 2006. Evaluation of 23S rRNA PCR primers for use in phylogenetic studies of bacterial diversity. Appl. Environ. Microb. 72:2221–2225. Cerca con Google

Husseneder C. & Grace J.K. 2005. Genetically engineered termite gut bacteria (Enterobacter cloacae) deliver and spread foreign genes in termite colonies. Appl. Microbiol. Biotechnol. 68:360-367. Cerca con Google

Jesus J., Harris D.J., Brehm A. 2007. Relationships of Afroablepharus Greer, 1974 skinks from the Gulf of Guinea islands based on mitochondrial and nuclear DNA: Patterns of colonization and comments on taxonomy. Mol. Phylogenet. Evol. 45:904-914. Cerca con Google

Jobb G., Haeseler A.Von, Strimmer K., 2004. TREEFINDER: A powerful graphical analysis environment for molecular phylogenetics. BMC Evol. Biol. 4:18-26 Cerca con Google

Jow H., Gowri-Shankar V., Guillard B. 2005. PHASE: a software package for phylogenetics and sequence evolution. http://www.bioinf.man.ac.uk/resources/phase. Vai! Cerca con Google

Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences J. Mol. Evol. 16:111-120. Cerca con Google

Korneyev V.A. 1999. Phylogeny of the subfamily Tephritinae: relationships of the tribes and subtribes. Pp. 549-580. In: Fruit Flies (Tephritidae): Phylogeny and Evolution of Behavior (ed. by M. Aluja and A. L. Norrbom), CRC Press, Boca Raton. Cerca con Google

Kounatidis I., Crotti E., Sapountzis P., Sacchi L., Rizzi A., Chouaia B., Bandi C., Alma A. Daffonchio D., Mavragani-Tsipidou P., Bourtzis K. 2009. Acetobacter tropicalis is a major symbiont in the olive fruit fly Bactrocera oleae. Appl. Environ. Microbiol. 75:3281–3288. Cerca con Google

Lauzon C.R., Sjogren R.E., Wright S.E. Prokopy R.J. 1998. Attraction of Rhagoletis pomonella (Diptera: Tephritidae) flies to odor of bacteria: apparent confinement to specialized members of enterobacteriaceae. Environ. Entomol. 27:853–857. Cerca con Google

Lauzon C.R., 2003. Symbiotic relationships of tephritids. In: Insect symbiosis v.1. Ed. by Kostas Bourtzis and Thomas A. Miller. 115–129. Cerca con Google

Lauzon C.R., McCombs S.D. Potter S.E. 2009. Establishment and vertical passage of Enterobacter (Pantoea) agglomerans and Klebsiella pneumoniae through all life stages of the Mediterranean fruit fly. Ann. Entomol. Soc. Am. 102:85-95. Cerca con Google

Lecointre W.P. & Deleporte P. 2005. Total evidence requires exclusion of phylogenetically misleading data. Zool. Scr. 34:101-117. Cerca con Google

Legendre P. & Anderson M.J. 1998. Program DistPCoA. Département de Sciences Biologiques, Université de Montréal, Montréal. Cerca con Google

Legendre P. 2001. Test of host-parasite coevolution: program PARAFIT user’s guide. Département de sciences biologiques, Université de Montréal. Cerca con Google

Legendre P., Desdevises Y., Bazin E. 2002. A statistical test for host-parasite coevolution. Syst. Biol. 51:217–234. Cerca con Google

Light J.E. & Hafner M.S. 2007. Cophylogeny and disparate rates of evolution in sympatric lineages of chewing lice on pocket gophers. Mol. Phylogenet. Evol. 45:997-1013. Cerca con Google

Lloyd A.C., Drew R.A.I., Teakle D.S., Hayward A.C. 1986. Bacteria associated with some Dacus species (Diptera: Tephritidae) and their host fruit in Queensland. Aust. J. Biol. Sci. 39:361-368. Cerca con Google

Lumaret R., Ouazzani N., Michaud H., Vivier G., Deguilloux M.F., Di Giusto F. 2004. Allozyme variation of oleaster populations (wild olive tree) (Olea europea L.) in the Mediterranean Basin. Heredity 92:343–351. Cerca con Google

Magri D., Vendramin G.G., Comps B., Dupanloup I., Geburek T., Gömöry D., Latałowa M., Litt T., Paule L., Roure J.M., Tantau I., Knaap W.O., Petit R.J., Beaulieu J.L. 2006. A new scenario for the quaternary history of European beech populations: palaeobotanical evidence and genetic consequences. New Phytol. 171:199–221. Cerca con Google

Marchini D., Marri L., Rosetto M., Manetti A.G.O., Dallai R.1997. Presence of antibacterial peptides on the laid egg chorion of the medfly Ceratitis capitata. Biochem. Biophys. Res. Commun. 240:657–663. Cerca con Google

Marchini D., Rosetto M., Dallai R., Marri L. 2002. Bacteria associated with the oesophageal bulb of the medfly Ceratitis capitata (Diptera: Tephritidae). Curr. Microbiol. 44:120-124. Cerca con Google

Mazzon L., Piscedda A., Simonato M., Martinez-Sañudo I., Squartini A., Girolami V. 2008. Presence of specific symbiotic bacteria in flies of the subfamily Tephritinae (Diptera Tephritidae) and their phylogenetic relationships: proposal of ‘Candidatus Stammerula tephritidis’. Int. J. Syst. Evol. Micr. 58:1277–1287. Cerca con Google

Mazzon L., Martinez-Sañudo I., Simonato M., Squartini A., Savio C., Girolami V. 2010. Phylogenetic relationships between flies of the Tephritinae subfamily (Diptera, Tephritidae) and their symbiotic bacteria. Mol. Phylogenet. Evol. 56:312-326. Cerca con Google

Merz B. 1991. Rhagoletis completa Cresson und Rhagoletis indifferens Curran zwei wirtschaftlich bedeutende nordamerikanische Früchtfliegen, neu für Europa (Diptera: Tephritidae). Mitt. Schweiz. Entomol. Ges. 64:55-57. Cerca con Google

Merz B. 1994. Diptera: Tephritidae. Insecta Helvetica Fauna 10, 198 p. Cerca con Google

Merz B. 1999. Phylogeny of the Palaearctic and Afrotropical genera of the Tephritis group (Tephritinae: Tephritini). Pp. 629−669. In: Fruit Flies (Tephritidae): Phylogeny and Evolution of Behavior (ed. by M. Aluja and A. L. Norrbom), CRC Press, Boca Raton. Cerca con Google

Miller J.H. 1972. Experiments in Molecular Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. Cerca con Google

Moran N.A. & Baumann P., 2000. Bacterial endosymbionts in animals. Curr. Opin. Microbiol. 3:270–275. Cerca con Google

Moran N.A., 2001. The Coevolution of Bacterial Endosymbionts and Phloem-Feeding Insects. Ann. Mo. Bot. Gard. 88:35-44. Cerca con Google

Moran N.A., Dale C., Dunbar H., Smith W.A., Ochman H. 2003. Intracellular symbionts of sharpshooters (Insecta: Hemiptera: Cicadellinae) from a distinct clade with a small genome. Environ. Microbiol. 5:116–126. Cerca con Google

Moran N.A., Russell J.A., Koga R., Fukatsu T. 2005. Evolutionary relationships of three new species of Enterobacteriaceae living as symbionts of aphids and other insects. Appl. Environ. Microbiol. 71:3302–3310. Cerca con Google

Munson M.A., Baumann P., Kinsey M.G. 1991. Buchnera gen. nov. and Buchnera aphidicola sp. nov., a taxon consisting of the mycetocyte-associated, primary endosymbionts of aphids. Int. J. Syst. Bacteriol., 41:566-568. Cerca con Google

Nardi F., Carapelli A., Dallai R., Frati F. 2003. The mitochondrial genome of the olive fly Bactrocera oleae: two haplotypes from distant geographic locations. Insect Mol. Biol. 12:605–611. Cerca con Google

Nardi F., Carapelli A., Dallai R., Roderick G.K., Frati F. 2005. Population structure and colonization history of the olive fly, Bactrocera oleae (Diptera, Tephritidae). Mol. Ecol. 14:2729–2738. Cerca con Google

Nardi F., Carapelli A., Vontas J.G., Dallai R., Roderick G.K., Frati F. 2006. Geographical distribution and evolutionary history of organophosphate resistant Ace alleles in the olive fly (Bactrocera oleae). Insect Biochem. Mol. Biol. 36:593–602. Cerca con Google

Nardi F., Carapelli A., Boore J.L., Roderick G.K., Dallai R., Frati F. 2010. Domestication of olive fly through a multi-regional host shift to cultivated olives: Comparative dating using complete mitochondrial genomes. Mol. Phylogenet. Evol. 57:678-686. Cerca con Google

Naylor G.J.P. & Brown W.M. 1998. Amphioxus mitochondrial DNA, chordate phylogeny, and the limits of inference based on comparisons of sequences. Syst. Biol. 47:61–76. Cerca con Google

Norrbom A.L., Carroll L.E., Thompson F.C., White I.M., Freidberg A. 1999. Status of knowledge. Pp. 9-48. In: Thompson, F.C. (ed.), Fruit fly expert identification system and systematic information database. Backhuys Publishers, Leiden, Myia pp. 9-48. Cerca con Google

Ochando M.D. & Reyes A. 2000. Genetic population structure in olive fly Bactrocera oleae (Gmelin): gene flow and patterns of geographic differentiation. J. Appl. Entomol. 124:177–183. Cerca con Google

Ochando M.D., Reyes A., Callejas C., Segura D., Fernandez P. 2003. Molecular genetic methodologies applied to the study of fly pests. Trends Entomol. 3:73–85. Cerca con Google

Osborn A.M., Moore E.R.B., Timmis K.N. 2000. An evaluation of terminal-restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure dynamics. Environ. Microbiol. 2:39-50. Cerca con Google

Page R.D.M., Cruickshank R.H., Dickens M., Furness R.W., Kennedy M., Palma R.L., Smith V.S. 2004. Phylogeny of “Philoceanus complex” seabird lice (Phthiraptera: Ischnocera) inferred from mitochondrial DNA sequences. Mol. Phylogenet. Evol. 30:633-652. Cerca con Google

Palmano S., Firrao G., Locci R. 2000. Sequence analysis of domains III and IV of the 23S rRNA gene of verticillate streptomycetes. Int. J. Syst. Evol. Microbiol. 50:1187–1191. Cerca con Google

Panchal M. 2007. The automation of nested clade phylogeographic analysis. Bioinformatics 23:509–510. Cerca con Google

Patwary M.U., Kenchington E.L., Bird C.J., Zouros E. 1994. The use of random amplified polymorphic DNA markers in genetic studies of the sea scallop Placopecten magellanicus (Gmelin, 1791). J. Shellfish Res. 13:547-553. Cerca con Google

Pavari A. (1916). Studio preliminare sulla coltura delle specie forestali esotiche in Italia. Ann. R. Ist. Sup. For. Naz. I, 159-379. Cerca con Google

Peloquin J.J., L. Kuzina, C. Lauzon and T. Miller. 2000. Transformation of internal extracellular bacteria isolated from Rhagoletis completa Cresson gut with enhanced green fluorescent protein. Curr. Microbiol. 40:367–371. Cerca con Google

Peloquin J.J., Lauzon C.R., Potter S., Miller T.A. 2002. Transformed bacterial symbionts re-introduced to and detected in host gut. Curr. Microbiol. 45:41-45. Cerca con Google

Petri L. 1909. Ricerche sopra i batteri intestinali della mosca olearia. Memorie della Regia Stazione di Patologia Vegetale di Roma. Cerca con Google

Posada D. & Crandall K.A. 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817-818. Cerca con Google

Posada D., Crandall K.A., Templeton A.R. 2000. GeoDis: a program for the cladistic nested analysis of the geographical distribution of genetic haplotypes. Mol. Ecol. 9:487–488. Cerca con Google

Posada D. & Buckley T.R. 2004. Model selection and model averaging in phylogenetics: advantages of AIC and BAyesian approaches over likelyhood ratio tests. Syst. Biol. 53:793-808. Cerca con Google

Posada D., Crandall K.A., Templeton A.R. 2006. Nested Clade Analysis statistics. Mol. Ecol. Notes 6:590-593. Cerca con Google

Rani A., Sharma A., Rajagopal R., Adak T., Bhatnagar R.K. 2009. Bacterial diversity analysis of larvae and adult midgut microflora using culture-dependent and culture-independent methods in lab-reared and field-collected Anopheles stephensi-an Asian malarial vector. BMC Microbiol. 9: 96 Cerca con Google

Ratner S.S. & Stoffolano J.G. 1984. Ultrastructural changes of the esophageal bulb of the adult female apple maggot, Rhagoletis pomonella (Walsh) (Diptera: Tephritidae). Int. J. Insect. Morphol. Embryol. 13:191-208. Cerca con Google

Rice R.E. 1999. Olive fruit fly, Bactrocera (Dacus) oleae. UC Plant Prot. Q. 9, 2. Cerca con Google

Ricklefs R.E., Fallon S.M., Bermingham E. 2004. Evolutionary relationships, cospeciation, and host switching in avian malaria parasites. Syst. Biol. 53:111–119. Cerca con Google

Rokas A., Williams B.L., King N., Carroll S.B. 2003. Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature, 425:798-804. Cerca con Google

Ronquist F. & Huelsenbeck J.P. 2003. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574. Cerca con Google

Rossiter M.A., Howard D.J. Bush G.L. 1983. Symbiotic bacteria of Rhagoletis pomonella. In Fruit Flies of Economic Importance (R. Cavalloro, Ed.), pp. 77-82. Balkema, Rotterdam, the Netherlands Cerca con Google

Roy B.A. 2001. Patterns of association between crucifers and their flower-mimic pathogens: host jumps are more common than coevolution or cospeciation. Evolution 55:41–53. Cerca con Google

Rousset F. 1997. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228. Cerca con Google

Sacchetti P., Granchietti A., Landini S., Viti C., Giovannetti L., Belcari A. 2008. Relationships between the olive fly and bacteria. J. Appl. Entomol. 132:682–689. Cerca con Google

Segura M.D., Callejas C., Ochando M.D. 2008. Bactrocera oleae: a single large population in Northern Mediterranean basin. J. Appl. Entomol. 132:706–713. Cerca con Google

Shimodaira H. & Hasegawa M. 1999. Multiple comparisons of loglikelihoods with applications to phylogenetic inference. Mol. Biol. Evol. 16:1114–1116. Cerca con Google

Silva F.J., Moret A., Neef A., Belda E. 2008. Bacterial microbiota associated with a Bactrocera oleae population from eastern Spain. In First meeting of TEAM, Palma de Mallorca 7–8th April 2008. Abstract book, Vol. 15 Ed. by Miranda-Chueca MA Universitat de les Illes Balears, Mallorca. Cerca con Google

Simon C., Frati F., Beckenbach A., Crespi B., Liu H., Flook P. 1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann. Entomol. Soc. Am. 87:651–701. Cerca con Google

Simon C., Buckley T.R., Frati F., Stewart J.B., Beckenbach A.T. 2006. Incorporating molecular evolution into phylogenetic analysis, and a new compilation of conserved polymerase chain reaction primers for animal mitochondrial DNA. Annu. Rev. Ecol. Evol. Syst. 37:545–79. Cerca con Google

Simon R., Priefer U., Pulher A. 1983. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Nat. Biotechnol. 1:784-791. Cerca con Google

Skillman L.C, Sutherland I.W., Jones M.V., Goulsbra A. 1998. Green fluorescent protein as a novel species-specific marker in enteric dual-species biofilms. Microbiol.-UK 144:2095-2101. Cerca con Google

Spanos L., Koutroumbas G., Kotsyfakis M., Louis C. 2000. The mitochondrial genome of the Mediterranean fruit fly, Ceratitis capitata. Insect Mol. Biol. 9:139–144. Cerca con Google

Stammer H.J. 1929. Die bakteriensymbiose der trypetiden (Diptera). Zoomorphology 15:481-523. Cerca con Google

Steinhaus E.A. 1960. The importance of environmental factors in the insects-microbe ecosystem. Bacteriol. Rev. 24:365-373. Cerca con Google

Suarez A., Güttler A., Strätz M., Staendner L.H., Timmis K.N., Guzmàn C.A. 1997. Green fluorescent protein-based reporter systems for genetic analysis of bacteria including monocopy applications. Gene 196:69-74. Cerca con Google

Swofford D.L., Olsen G.L., Waddell P.J., Hillis D.M. 1996. Phylogenetic inference, pp. 407-514. In D.M. Hillis, C. Moritz, and B.K. Mable (eds.), Molecular Systematics. Sinauer, Sunderland, MA. Cerca con Google

Tajima F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585-595. Cerca con Google

Tamura K., Dudley J., Nei M., Kumar S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24:1596-1599. Cerca con Google

Tanaka K., Shimizu T., Zakria M., Njoloma J., Saeki Y., Sakai M., Yamakawa T., Minamisawa K., Akao S. 2006. Incorporation of a DNA sequence encoding green fluorescent protein (GFP) into endophytic diazotroph from sugarcane and sweet potato and the colonizing ability of these bacteria in Brassica oleracea. Microbes Environ. 21:122-128. Cerca con Google

Templeton A.R., Crandall K.A., Sing C.F. 1992. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132:619–633. Cerca con Google

Templeton A.R., Routman E., Phillips C. 1995. Separating population structure from population history: a cladistic analysis of the geographical distribution of mitochondrial DNA haplotypes in the Tiger Salamander, Ambystoma tigrinum. Genetics 140:767-782. Cerca con Google

Thaochan N., Drew R.A.I., Hughes J.M., Vijaysegaran S., Chinajariyawong A. 2010. Alimentary tract bacteria isolated and identified with API-20E and molecular cloning techniques from Australian tropical fruit flies, Bactrocera cacuminata and B. tryoni. J. Insect Sci.10:131. Cerca con Google

Tsiropoulos G.J. 1976. Bacteria associated with the Walnut Husk fly, Rhagoletis completa. Environ. Entomol. 5:83-86. Cerca con Google

Tzanakakis M.E. 2006. Insects and Mites Feeding on Olive: Distribution, Importance, Habits, Seasonal Development and Dormancy. Leiden: Brill Acad. Publ. 182 pp. Cerca con Google

Vasanthakumar A., Delalibera I., Jr., Handelsman J., Klepzig K.D., Schloss P.D., Raffa K.F. 2006. Characterization of gut-associated bacteria in larvae and adults of the southern pine beetle, Dendroctonus frontalis Zimmermann. Environ. Entomol. 35:1710-1717. Cerca con Google

Ward D.M., Weller R., Bateson M.M. 1990. 16S rRNA reveal numerous uncultured microorganisms in a natural community. Nature 345:63–65. Cerca con Google

Weiblen G.D. & Bush G.L. 2002. Speciation in fig pollinators and parasites. Mol. Ecol. 11:1573–1578. Cerca con Google

Weisburg W.G., Barns S.M., Pelletier D.A., Lane D.J. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173:697–703. Cerca con Google

Wernegreen J.J. 2004. Endosymbiosis: Lessons in Conflict Resolution. Plos Biol. 2:e68. Cerca con Google

White I.M. 1988. Handbooks for the Identification of British Insects. Vol. X, Part 5 (a). Tephritid Flies, Diptera: Tephritidae. Royal Entomological Society, London. 1-134. Cerca con Google

White I.M. 2006. Taxonomy of the Dacina (Diptera: Tephritidae) of Africa and the Middle East. Afr. Entomol. Mem. 2:1–152. Cerca con Google

Xia X. & Xie Z. 2001. DAMBE: Software package for data analysis in molecular biology and evolution. J. Hered. 92:371–373. Cerca con Google

Xiong B. & Kocher T.D. 1991. Comparison of mitochondrial DNA sequences of seven morphospecies of black flies (Diptera: Simuliidae). Genome 34:306-311. Cerca con Google

Yoder M. & Gillespie J. 2004-present. jRNA. Exploring insect phylogeny using RNA secondary structure. Web pages at http://hymenoptera.tamu.edu/rna. Vai! Cerca con Google

Zwickl D.J. 2006. GARLI, Genetic Algorithm for Rapid Likelihood Inference, Version 0.951. Available from: http://www.zo.utexas.edu/faculty/antisense/garli/Garli.html. Vai! Cerca con Google

Zwölfer H. 1983. Life systems and strategies of resource exploitation in tephritids. In: Cavalloro, R. (ed.), Fruit flies of economic importance. Proc. CEC/IOBC Int. Symp. Athens, 16-19 November 1982. A.A. Balkema, Rotterdam. Cerca con Google

Zygouridis N.E., Augustinos A.A., Zalom F.G., Mathiopoulos K.D. 2009. Analysis of olive fly invasion in California based on microsatellite markers. Heredity 102:402–412. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record