Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Rahman, Md. Mizanur (2011) Microbial biodiversity in a wooded riparian zone specifically
designed for enhancing denitrification process.
[Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
14Mb

Abstract (inglese)

This research is part of a project aimed at verifying the potential of a specifically assessed wooded riparian zone in removing excess of combined nitrogen from the Zero river flow for the reduction of nutrient input into Venice Lagoon. General objectives of this project were to increase knowledge on the processes which allow the riparian strips to act as a buffer and to identify the most appropriate management strategies in order to maximize the efficiency of these systems in supporting the microbial activities involved in the process. For this purpose, specific objectives were pursued to determine seasonal fluctuations of the microbial populations in the soil/water of the wooded riparian strip. The bacterial communities were determined by combined approaches involving cultivation, microscopic approaches and DNA bases techniques to characterize both culturable and total microbial community inside and outside the riparian strip.
ARDRA and DGGE analyses of soil collected at different depths, showed a clear decrease of the microbial diversity in deeper horizons as compared to the medium depth and surface ones. A comparison between this soil and that collected from an undisturbed zone external to the riparian strip, indicated that this effect can be also observed in the external area, although higher microbial diversity was always present in the internal soil. DGGE cluster analysis and PCA of both genetic and chemical properties of water samples indicated that the bacterial populations present at the drainage ditches are rich in denitrifiers as a result of a mixing of bacterial communities carried by the Zero river flux and those already present in the soil of the riparian strip.
Taken together, the overall results confirm what it was demonstrated by other chemical-physical analysis: the wooded riparian buffer zone assessed for water remediation (nitrogen removal from Zero river) is effectively working as a result of the special conditions there produced to support the work of specific microbial populations. The microbiological analysis here accomplished can also contribute to understand the bacterial population dynamic of an agricultural soil when transformed in a wooded strip and to provide key indications for the management of a phytoremediation site.

Abstract (italiano)

Questa ricerca fa parte di un più ampio progetto finalizzato a verificare l’attività di zone riparie atte a rimuovere l’eccesso di azoto combinato nel fiume Zero, con il fine ultimo di ridurre l’imput di nutrienti nella Laguna di Venezia. Obiettivo generale di questa ricerca è stato quello di aumentare le conoscenze relative ai processi che consentono alle zone riparie di agire come tamponi e identificare le strategie di gestione più appropriate per massimizzare l’efficienza di questi sistemi nel supportare le attività microbiche coinvolte.
A questo scopo, sono stati perseguiti obiettivi specifici per determinare le fluttuazioni stagionali delle popolazioni microbiche nei suoli/acque della fascia tampone.
Le comunità microbiche sono state determinate tramite un approccio combinato che ha previsto la coltivazione, tecniche microscopiche e tecniche molecolari al fine di caratterizzare sia la comunità microbica coltivabile sia quella totale, all’interno e all’esterno della fascia tampone.
Le analisi ARDRA e DGGE di suoli raccolti a diverse profondità, mostrano una chiara diminuzione della diversità microbica negli orizzonti più profondi rispetto agli strati intermedi e superficiali.
Il confronto tra suoli raccolti nella fascia tampone e suoli raccolti in una zona indisturbata esterna, indicano che questo effetto può essere osservato anche all’esterno sebbene una maggiore diversità microbica sia sempre rilevabile all’interno.
Indagine DGGE e elaborazioni statistiche con PCA, sia delle proprietà genetiche che di quelle chimiche dei campioni d’acqua, hanno indicato che le popolazioni microbiche presenti nelle scoline sono ricche di denitrificanti e sono il frutto del rimescolamento delle comunità microbiche del fiume Zero con quelle già presenti nei suoli della fascia tampone.
Nel complesso, questi risultati confermano quanto dimostrato da altre analisi fisico-chimiche: la fascia tampone messa a punto per il biorimedio delle acque (rimozione dell’azoto dal fiume Zero), sta effettivamente funzionando come risultato delle speciali condizioni che favoriscono specifiche popolazioni microbiche.
Le analisi microbiologiche qui riportate possono inoltre contribuire alla comprensione delle dinamiche di popolazioni in suoli agricoli convertiti in fasce tampone e fornire indicazioni chiave per la gestione di siti di fitorimedio.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Casella, Sergio
Correlatore:Basaglia, Marina
Dottorato (corsi e scuole):Ciclo 23 > Scuole per il 23simo ciclo > SCIENZE DELLE PRODUZIONI VEGETALI > AGROBIOTECNOLOGIE
Data di deposito della tesi:NON SPECIFICATO
Anno di Pubblicazione:31 Gennaio 2011
Parole chiave (italiano / inglese):microbial biodiversity/biodiversità microbica, riparian strip/fascia tampone, denitrification/denitrificazione, DGGE
Settori scientifico-disciplinari MIUR:Area 07 - Scienze agrarie e veterinarie > AGR/16 Microbiologia agraria
Struttura di riferimento:Dipartimenti > Dipartimento di Biotecnologie Agrarie
Codice ID:3424
Depositato il:04 Ago 2011 10:01
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Abawi, G. S., and T. L. Widmer (2000). Impact of soil health managment practices on soilborne pathogens, nematodes and root diseases of vegetable crops. Appl. Soil Ecol. 15: 37–47. Cerca con Google

Acinas, S. G., J. Anton and F. Rodriguez-Valera (1999). Diversity of free-living and attached bacteria in offshore western Mediterranean waters as depicted by analysis of genes encoding 16S rRNA. Appl. Environ. Microb. 65: 514–522. Cerca con Google

Agnelli, A., J. Ascher, G. Corti, M. T. Ceccherini, P. Nannipieri, and G .Pietramellara (2004). Distribution of microbial communities in a forest soil profile investigated by microbial biomass, soil respiration and DGGE of total and extracellular DNA. Soil. Biol. Biochem. 36: 859–868. Cerca con Google

Ahmad, S., A. Selvapandiyan, and R. K. Bhatnagar (2000). Phylogenetic analysis of Gram-positive bacteria based on grpE, encoded by the dnaK operon. Int. J. Syst. Evol. Microbiol. 50: 1761–1766. Cerca con Google

Aislabie, J. M., K. M. Chhour, D. J. Saul, S. Miyauchi, J. Ayton, R. F. Paetzold, and M. R. Balks (2006). Dominant bacteria in soils of Marble Point and Wright Valley, Victoria Land, Antarctica. Soil Biol. Biochem. 38: 3041–3056. Cerca con Google

Akob, D. M., H. J. Mills and J. E. Kostka (2007). Metabolically active microbial communities in uranium-contaminated subsurface sediments. FEMS Microbiol Ecol. 59: 95–107. Cerca con Google

Akratos, C. S., and V. A. Tsihrintzis (2007). Effect of temperature, HRT, vegetation and porous media on removal efficiency of pilotscale horizontal subsurface flow constructed wetlands, Ecol. Eng. 29: 173–191. Cerca con Google

Altmann, D., P. Stief, R. Amann, D. De. Beer, and A. Schramm (2003). In situ distribution and activity of nitrifying bacteria in freshwater sediment. Environ. Microbiol. 5: 798–803. Cerca con Google

Alvey, S., C. H. Yang, A. Buerkert, and D. E. Crowley (2003). Cereal/ legume rotation effects on rhizosphere bacterial community structure in West African soils. Biol. Fertil. Soil. 37: 73–82. Cerca con Google

Ascher, J., M. T. Ceccherini, L. Landi, M. Mench, G. Pietramellara, P. Nannipieri, and G. Renella (2009). Composition, biomass and activity of microflora, and leaf yields and foliar elemental concentrations of lettuce, after in situ stabilization of an arsenic contaminated soil. Appl. Soil. Ecol. 41: 351–359. Cerca con Google

Axelrood, P. E., M. L. Chow, C. C. Radomski, J. M. McDermott, and J. Davies (2002). Molecular characterization of bacterial diversity from British Columbia forest soils subjected to disturbance. Can. J. Microbiol. 48: 655–667. Cerca con Google

Azam, F., and R. A. Long (2001). Sea snow microcosms. Nature. 414: 497–498. Cerca con Google

Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyerreil, and F. Thingstad (1983). The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10: 257–263. Cerca con Google

Bach, P. A. M., and A. J. Horne (2000). Denitrification in constructed free-water surface wetlands, II: Effects of vegetation and temperature. Ecol. Eng. 14: 17–32. Cerca con Google

Bailey, V. L., and W. B. McGill (2002). Fate of 14Clabeled pyrene in a creosote- and octadecane in an oil-contaminated soil. Soil Biol. Biochem. 34: 423–33. Cerca con Google

Barling, R. D, and I. D. Moore (1994). Role of buffer strips in management of waterway pollution: a review. Environ. Management. 18: 543-558. Cerca con Google

Basaglia M., F. Fontana, M. Paro, N. Cendron, A. Squartini, and S. Casella (2003). Metabolic state of microbial populations as an efficiency index of a biopile. Second European bioremediation Conference. June 30-July 4, 2003. (vol. 1, pp. 135-138). Chania, Crete, Greece Cerca con Google

Basaglia M., S. Povolo, and S. Casella (2007). Effect of oxygen and host plant on resuscitation of viable not culturable Sinorhizobium meliloti 41. Cur. Microbiol. 54: 167-174. Cerca con Google

Basaglia, M., A. Toffanin, E. Baldan, M. Bottegal, J. P. Shapleigh, and S. Casella (2007). Selenite-reducing capacityof the copper-containing nitrite reductase of Rhizobium sullae. FEMS Microbiol. Lett. 269: 124–130. Cerca con Google

Bastviken, S. K., and P. G. Eriksson (2005). A. Premrov, K. Tonderski, Potential nitrification and denitrification in wetland sediments with different plant species detritus. Ecol. Eng. 25: 183–190. Cerca con Google

Bater, J. E (1996). Micro- and macro-arthropods. In: Hall GS (ed) Methods for the examination of organismal diversity in soils and sediments. CAB International, Wallingford, pp 163–174. Cerca con Google

Becker, K., D. Harmsen, A. Mellmann, C. Meier, P. Schumann, G. Peters, and C. von Eiff (2004). Development and evaluation of a quality-controlled ribosomal sequence database for 16S ribosomal DNA-based identification of Staphylococcus species. J. Clin. Microbiol. 42: 4988–4995. Cerca con Google

Becker, M. R., B. J. Paster, E. J. Leys, M. L. Moeschberger, S. G. Kenyon, J. L. Galvin, S. K. Boches, F. E. Dewhirst, and A. L. Griffen (2002). Molecular analysis of bacterial species associated with childhood caries. J Clin Microbiol. 40: 1001–1009. Cerca con Google

Bedmar E. J., E. F. Robles, and M. J. Delgado (2005). The complete denitrification pathway of the symbiotic, nitrogen-fixing bacterium Bradyrhizobium japonicum. Biochem Soc Trans. 33: 141–144. Cerca con Google

Benizri, E., E. Baudin, and A. Guckert (2001). Root colonization by plant growth promoting Rhizobacteria. Biocontrol Sci. Technol. 5: 557–574. Cerca con Google

Bertilsson, S., C. M. Cavanaugh, and M. F. Polz (2002). Sequencing-independent method to generate oligonucleotide probes targeting a variable region in bacterial 16S rRNA by PCR with detachable primers. Appl. Environ. Microbiol. 68: 6077–6086. Cerca con Google

Bertrand, H., R. Nalin, R. Balli, and J. C. Cleyet- Marel (2001). Isolation and identification of the most efficient plant growthpromoting bacteria associated with canola (Brassica mapus). Biol. Fertil. Soils. 33: 152–56. Cerca con Google

Betancourt, D. A., T. M. Loveless, J. W. Brown, and P. E. Bishop (2008). Characterization of diazotrophs containing Mo-independent nitrogenases, isolated from diverse natural environments. Appl. Environ. Microbiol. 74:3471–3480. Cerca con Google

Blume, E., M. Bischoff, J. Reichert, T. Moorman, A. Konopka, and R. Turco (2002). Surface and subsurface community structure and metabolic activity as a function of soil depth and season. Appl. Soil. Ecol. 592: 1-11. Cerca con Google

Boddington, C. L., and J. C. Dodd (2000). The effect of agricultural practices on the development of indigenous arbuscular mycorrhizal fungi. I. Field studies in an Indonesian Ultisol. Plant Soil. 218: 137–144. Cerca con Google

Bolton Jr, H., L. F. Elliott, R. I. Papendick, and. D. F. Bezdicek (1985). Soil microbial biomass and selected soil enzyme activities: effect of fertilization and cropping practices. Soil Biol. Biochem. 17: 297–302. Cerca con Google

Boothroyd, I. K. G and E. R. Langer (1999). Forest harvesting and riparian management guidelines: a review. NIWA Technical Report 56. Cerca con Google

Borneman, J., and E. W. Triplett (1997). Molecular microbial diversity in soils from eastern Amazonia: evidence for unusual microorganisms and microbial population shifts associated with deforestation. Appl. Environ. Microbiol. 63: 2647–2653. Cerca con Google

Bossio, D. A., K. M. Scow, N. Gunapala, and K. J. Graham (1998). Determinants of soil microbial communities: effects of agricultural management, season, and soil type on phospholipid fatty acid profiles. Microb. Ecol. 36: 1 –12. Cerca con Google

Boulos, L., M. Prevost, B. Barbeau, J. Coallier, and R. Desjardins (1999). LIVE/ DEAD. BacLightE: application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water. J. Microbiol. Methods. 37: 77–86. Cerca con Google

Bowman, J. P., S. A. McCammon, J. A. E. Gibson, L. Robertson and P. D.Nichols (2003). Prokaryotic metabolic activity and community structure in Antarctic continental shelf sediments. Appl. Environ. Microb. 69: 2448–2462. Cerca con Google

Brandt, K. K., A. Petersen, P. E. Holm, and O. Nybroe (2006). Decreased abundance and diversity of culturable Pseudomonas spp. Populations with increasing copper exposure in the sugar beet rhizosphere. FEMS Microbiol. Ecol. 56: 281- 291. Cerca con Google

Braun, B., U. Böckelmann, E. Grohmann and U. Szewzyk (2006). Polyphasic characterization of the bacterial community in an urban soil profile with in situ and culture dependent methods. Appl. Soil Ecol. 31: 267–279. Cerca con Google

Brettar, I., E. R. B. Moore, and M.G. Höfle (2001). Phylogeny and abundance of novel denitrifying bacteria isolated from the water column of the central Baltic Sea. Microbial Ecol. 42: 295-305. Cerca con Google

Brinson, M. M., L. J. MacDonnell, D. J. Austen, R. L. Beschta, T. A. Dillaha, D. L. Danahue, S. V. Gregory, J. W. Harvey, M. C. Molles, E. I. Rogers, and J. A. Stanford (2002). Riparian AreasFunctions and Strategies for Management. National Academy Press, Washington, DC, USA. Cerca con Google

Buchanan, M., and L. D. King (1992). Seasonal fluctuations in soil microbial biomass carbon, phosphorus, and activity in no-till and reduced-chemical-input maize agroecosystems. Biol. Fertil. Soils. 13: 211–217. Cerca con Google

Buckley, D. H., and T. M. Schmidt (2003). Diversity and dynamics of microbial communities in soils from agro-ecosystems. Environ. Microbiol. 5: 441–52. Cerca con Google

Buckley, D. H., J. R. Graber, and T. M. Schmidt (1998). Phylogenetic analysis of nonthermophilic members of the kingdom Crenarchaeota and their diversity and abundance in soils. Appl. Environ. Microbiol. 64: 4333–4339. Cerca con Google

Bundt, M., F. Widmer, M. Pesaro, J. Zeyer, and P. Blaser (2001). Preferential flow paths: biological ‘hot spots’ in soils. Soil Biol. Biochem. 33: 729–738. Cerca con Google

Burdman, S., J. Kigel, and Y. Okon (1997). Effects of Azospirillum brasilense on nodulation and growth of common bean (Phaseolus vulgaris L.). Soil Biol. Biochem. 29: 923–29. Cerca con Google

Burgmann, H., F. Widmer, W. Von Sigler, and J. Zeyer (2004). New molecular screening tools for analysis of free-living diazotrops in soil. Appl. Environ. Microbiol. 71: 2079-2085. Cerca con Google

Buyer, J. S., D. P. Roberts, and E. Russek-Cohen (1999). Microbial community structure and function in the spermosphere as affected by soil and seed type. Can. J. Microbiol. 45: 138–44. Cerca con Google

Carpenter, S., N. F. Caraco, D. L. Correll, R. W. Howarth, A. N. Sharpley, and V. H. Smith (1998). Nonpoint pollution of surface waters with phosphorus and nitrogen. Issues in Ecol. 3: 1–12. Cerca con Google

Carter, V (1986). An overview of the hydrological concerns related to wetlands in the United States. Canadian. J. Botany. 64: 363–374. Cerca con Google

Casella S., F. Fontana, S. Povolo, and. M. Basaglia (2001). VBNC induction and resucitation of Sinorhizobium meliloti strain 41. 9th International Symposium on Microbial Ecology, Interactions in the Microbial World, Amsterdam (The Netherlands), August 26-31, P.01.031, pp. 191. Cerca con Google

Casella, S., J. P. Shapleigh and W. J. Payne (1986). Nitrite reduction in Rhizobium ‘hedysari’ strain HCNT1. Arch Microbiol. 146: 233–238. Cerca con Google

Cassidy, M., H. Lee, J. Trevors, and R. Zablotowicz (1999). Chlorophenol and nitrophenol metabolism by Sphingomonas sp UG30. J. Ind. Microbiol. Biotechnol. 23: 232–241. Cerca con Google

Chang ,Y-J., A. D. Peacock, P. E. Long, J. R. Stephen, and J. P. McKinley, S. J. Macnaughton, A. K. M. Anwar Hussain, A. M. Saxton, and D. C. White (2001). Diversity and characterization of sulfate- reducing bacteria in groundwater at a uranium mill tailings site. Appl. Environ. Microbiol. 67: 3149–3160. Cerca con Google

Chapman, S. J., C. D. Campbell, and R. R. E. Artz (2007). Assessing CLPPs using MicroResp™. A comparison with Biolog and multi-SIR. J. Soils Sediments. 7: 406–410. Cerca con Google

Chiarini, L., A. Bevivino, C. Dalmastri, C. Nacamulli, and S. Tabacchioni (1998). Influence of plant development, cultivar and soil type on microbial colonization of maize root. Appl. Soil Ecol. 8: 11–18. Cerca con Google

Cho, J.-C., and S-J. Kim (2000). Increase in bacterial community diversity in subsurface aquifers receiving livestock wastewater input. Appl. Environ. Microbiol. 66: 956-965. Cerca con Google

Choi, B. K., C. Wyss and U. B. Gobel (1996). Phylogenetic analysis of pathogen-related oral spirochetes. J. Clin. Microbiol. 34: 1922–1925. Cerca con Google

Choi, S. C., K. K. Kwon, J. H. Sohn, and S. J. Kim (2002). Evaluation of fertilizer additions to stimulate oil biodegradation in sand seashore mescocosms. J. Microbiol. Biotechnol. 12: 431-436. Cerca con Google

Christensen, H., M. Hansen, and J. Sorensen (1999). Counting and size classification of active soil bacteria by fluorescence in situ hybridization with an rRNA oligonucleotide probe. Appl. Environ. Microbiol. 65: 1753–1761. Cerca con Google

Christian, L. L., M. S. Strickland, M. A. Bradford, and N. Fierer (2008). The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol. Biochem. 40: 2407–2415. Cerca con Google

Clarridge III, J. E (2004). Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin. Microbiol. Rev. 17:840–862. Cerca con Google

Clegg, C. D., R. D. L. Lovell, and P. J. Hobbus (2003). The impact of grassland management regime on the community structure of selected bacterial groups in soil. FEMS Microbiol. Ecol. 43: 263–70. Cerca con Google

Clement, B. G., L. E. Kehl, K. L. DeBord, and C. L. Kitts (1998). Terminal restriction fragment patterns (TRFPs), a rapid, PCR-based method for the comparison of complex bacterial communities. J. Microbiol. Method. 31: 135–142. Cerca con Google

Cole, J. A, and C. M. Brown (1980). Nitrite reduction to ammonia by fermentative bacteria: a short circuit in the biological nitrogen cycle. FEMS Microbiol. Lett. 7: 65–72. Cerca con Google

Colles, F. M., K. E. Dingle, A. J. Cody, and M. C. J. Maiden (2008). Comparison of Campylobacter populations in wild geese with those in starlings and free-range poultry on the same farm. Appl Environ Microbiol. 74: 3583–3590. Cerca con Google

Collins, H. P., L. F. Elliott, R. W. Rickman, D. F. Bezdicek, and R. I. Papendick (1990). Decomposition and interaction among wheat residue components. Soil Sci. Soc. Am. J. 54: 780–785. Cerca con Google

Compant, S., B. Duffy, J. Nowak, C. Clément, and E. Ait Barka (2005). Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl. Environ. Microbiol. 71: 4951–4959. Cerca con Google

Connolly, R., Y. Zhao, G. Sun, and S. Allen (2004). Removal of ammoniacal-nitrogen from an artificial landfill leachate in downflow reed beds. Process Biochem. 39: 1971–1976. Cerca con Google

Cooper, A. B (1990). Nitrate depletion in the riparian zone and stream channel of a small headwater catchment. Hydrobiol. 202: 13–26. Cerca con Google

Cooper, P. F, and A. G. Boon (1987). The use of Phragmites for wastewater treatment by the root zone method: The UK approach, in: Aquatic Plants for Water Treatment and Resource Recovery (Eds. K. R. Reddy, W. H. Smith), Magnolia Publishing, Orlando. 153–174. Cerca con Google

Costa, A. L., S. M. Paixão, I. Caçador, and M. Carolino (2007). CLPP and EEA profiles of microbial communities in salt marsh sediments. J. Soils Sediments. 7: 418–425. Cerca con Google

Costa, R., M. Gotz, N. Mrotzek, J. Lottmann, G. Berg, and K. Smalla (2006). Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of microbial guilds. FEMS Microbiol. Ecol. 56: 236–249. Cerca con Google

Cottrell, M. T., L. A. Waidner, L. Y. Yu, and D. L. Kirchman (2005). Bacterial diversity of metagenomic and PCR libraries from the Delaware River. Environ Microbiol 7: 1883–1895. Cerca con Google

Cowardin, L. M., V. Carter, F. C. Golet, and E. T. Laroe (1979). Classification of Wetlands and Deepwater Habitats of the United States. US Fish Wildl. Serv. Off. Biol. Serv. FWS/OBS 79/31, pp.1–103. Cerca con Google

Cragg, R. G, and R. D. Bardgett (2001). How changes in soil faunal diversity and composition within a trophic group influence decomposition processes. Soil Biol. Biochem. 33: 2073–2081. Cerca con Google

Crocker, F. H., J. K. Fredrickson, D. C. White, D. B. Ringelberg, and D. L. Balkwill (2000). Phylogenetic and physiological diversity of Arthrobacter strains isolated from unconsolidated subsurface sediments. Microbiol. 146: 1295–1310. Cerca con Google

Crump, B. C., E. V. Armbrust, and J. A. Baross (1999). Phylogenetic analysis of particle-attached and free-living bacterial communities in the Columbia River, its estuary, and the adjacent coastal ocean. Appl Environ Microbiol 65: 3192–3204. Cerca con Google

Culley, J. L. B, and E. F. Bolton (1983). Suspended solids and phosphorus loads from a clay soil: II. Watershed study. J. Environ. Qual. 12: 498-503. Cerca con Google

Curci, M., M. D. R. Pizzigallo, C. Crecchio, R. Mininni, and P. Ruggiero (1997). Effects of conventional tillage on biochemical properties of soils. Biol. Fertil. Soil. 25:1–6. Cerca con Google

Da Silva, K. R. A., J. F. Salles, L. Seldin, and J. D. van Elsas (2003). Application of a novel Paenibacillus-specific PCR-DGGE method and sequence analysis to assess the diversity of Paenibacillus spp. in the maize rhizosphere. J. Microbiol. Methods. 54: 213–31. Cerca con Google

Dahl, M., B. Nilsson, J. H. Langhoff, and J. C. Refsgaard (2007). Review of classification systems and new multi-scale typology of groundwater–surface water interaction. J. Hydrol. 344: 1– 16. Cerca con Google

Daniell, T. J., R. Husband, A. H. Fitter, and J. P. W. Young (2001). Molecular diversity of arbuscular mycorrhizal fungi colonising arable crops. FEMS Microbiol. Ecol. 36: 203–209. Cerca con Google

De Deyn, G. B., C. E. Raaijmakers, H. R. Zoomer, M. P. Berg, P. C. Rulter, H. A. Verhoef, T. M. Bezemer, and W. H. Van der Putten (2003). Soil invertebrate fauna enhances grassland succession and diversity. Nature. 422: 711–713. Cerca con Google

De Ridder-Duine, A. S., G. A. Kowalchuk, P .J. A. K. Gunnewiek, W. Smant, J. A. van Veen, and W. de Boer (2005). Rhizosphere bacterial community composition in natural stands of Carex arenaria (sand sedge) is determined by bulk soil community composition. Soil Biol. Biochem. 37: 349–357. Cerca con Google

DeLong, E. F., and D. M. Karl (2005). Genomic perspectives in microbial oceanography. Nature. 437: 336–342. Cerca con Google

Desai. C, R. Y. Parikh, T. Vaishnav, Y. S. Shouche, and D. Madamwar (2009). Tracking the influence of long-term chromium pollution on soil bacterial community structures by comparative analyses of 16S rRNA gene phylotypes. Res. Microbiol. 160: 1- 9. Cerca con Google

Dilly, O., J. Bloem, A. Vos, and J. C. Munch (2004). Bacterial diversity in agricultural soils during litter decomposition. Appl. Environ. Microbiol. 70: 468–474. Cerca con Google

Dix, N. J, and J. Webster (1995). Fungal Ecology. Chapman & Hall, London. Cerca con Google

Drijber, R. A., J. W. Doran, A. M. Parkhurst, and D. J. Lyon (2000). Changes in soil microbial community structure with tillage under long-term wheat-fallow management. Soil Biol. Biochem. 32: 1419–30. Cerca con Google

Duineveld, B. M., G. A. Kowalchuk, A. Keijzer, J. D. van Elsas, and J. A. van Veen (2001). Analysis of bacterial communities in the rhizosphere of chrysanthemum via denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA as well as DNA fragments coding for 16S rRNA. Appl. Environ. Microbiol. 67: 172–178. Cerca con Google

Dunbar, J., L. O. Ticknor, and C. R. Kuske (2000). Assessment of microbial diversity in four southwestern United States soils by 16S rRNA gene terminal restriction fragment analysis. Appl. Environ. Microbiol. 66: 2943–2950. Cerca con Google

Dunbar, J., S. Takala, S. M. Barns, J. A. Davis, and C. R. Kuske (1999). Levels of bacterial community diversity in four arid soils compared by cultivation and 16S rRNA gene cloning. Appl. Environ. Microbiol. 65: 1662–1669. Cerca con Google

Edenborn, S., and A. Sexstone (2007). DGGE fingerprinting of culturable soil bacterial communities complements culture-independent analyses. Soil Biol. Biochem. 39: 1570–1579. Cerca con Google

Ehrenreich, P., A. Behrends, J. Harder, and F. Widdel (2000). Anaerobic oxidation of alkanes by newly isolated denitrifying bacteria. Arch. Microbiol. 173(1): 58-64. Cerca con Google

El Fantroussi, S (2000). Enrichment and molecular characterization of a bacterial culture that degrades methoxy-methyl urea herbicides and their aniline derivatives. Appl. Environ. Microbiol. 66: 5110–5115. Cerca con Google

El Fantroussi, S., L. Verschuere, W. Verstraete, and E. M. Top (1999). Effect of phenylurea herbicides on soil microbial communities estimated by analysis of 16S rRNA gene fingerprints and community- level physiological profiles. Appl. Environ. Microbiol. 65: 982– 988. Cerca con Google

Falk, S., B. Liu, and G. Braker (2010). Isolation, genetic and functional characterization of novel soil nirK-type denitrifiers. Syst. Applied. Microbiol. 33: 337–347. Cerca con Google

Fang , M., P. P. Motavalli, R. J. Kremer and K. A. Nelson (2007). Assessing changes in soil microbial communities and carbon mineralization in Bt and non-Bt corn residue-amended soils. Applied. Soil Ecol. 37: 150–160. Cerca con Google

Fang, M., R. J. Kremer, P. P. Motavalli, and G. Davis (2005). Bacterial diversity in rhizospheres of nontransgenic and transgenic corn. Appl. Environ. Microbiol. 71: 4132–4136. Cerca con Google

Felske, A., A. Wolterink, R. Van Lis, W. M. De Vos, and A. D. Akkermans (2000). Response of a soil bacterial community to grassland succession as monitored by 16S RNA levels of the predominant ribotypes. Appl Environ Microbiol. 66: 3998–4003. Cerca con Google

Felske, A., and A. D. L.Akkermans (1998). Spatial homogeneity of abundant bacterial 16S rRNA molecules in grassland soils. Microb. Ecol. 36: 31–36. Cerca con Google

Feng, B- W., X-R. Li1, J-H. Wang, Z-Y. Hu, H. Meng, L-Y Xiang, and Z-X. Quan (2009). Bacterial diversityofwaterand sediment in theChangjiang estuary and coastal area of the EastChina Sea. FEMS Microbiol. Ecol. 70: 236–248. Cerca con Google

Ferguson, S. J (1994). Denitrification and its control. A Van Leeuw. 66: 89-110. Cerca con Google

Fields, M. W., T. Yan, S-K, Rhee, S. L. Carroll, P. M. Jardine, D. B. Watson, C. S. Criddle, and J. Zhou (2005). Impacts on microbial communities and cultivable isolates from groundwater contaminated with high levels of nitric acid–uranium waste. FEMS Microbiol. Ecol. 53: 417–428. Cerca con Google

Fierer, N., J. P. Schimmel and P.A. Holden (2003). Influence of drying–rewetting frequency on soil bacterial community structure. Microb. Ecol. 45: 63–71. Cerca con Google

Fierer, N., J.A. Jackson, R. Vilgalys, and R.B. Jackson (2005). Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl. Environ. Microbiol. 71: 4117-4120. Cerca con Google

Fritze, H., J. Perkiomaki, U. Saarela, R. Katainen, P. Tikka, K. Yrjala, M. Karp, J. Haimi, and M. Romantschuk (2000). Effects of Cd-containing wood-ash on the microflora of coniferous forest humus. FEMS Microbiol. Ecol. 32: 43–51. Cerca con Google

Fuhrman, J. A., K. McCallum, and A. A. Davis (1993). Phylogenetic diversity of subsurface marine microbial communities from the Atlantic and Pacific Oceans. Appl Environ Microb 59: 1294–1302. Cerca con Google

Furlong, M. A., D. R. Singleton, D. C. Coleman, and W. B. Whitman (2002). Molecular and culture-based analyses of prokaryotic communities from an agricultural soil and the burrows and casts of the earthworm Lumbricus rubellus. Appl. Environ. Microbiol. 68: 1265–1279. Cerca con Google

G.B. De Deyn, G. B., C. E. Raaijmakers, J. van Ruijven, F. Berendse, and W. H. van der Putten (2004). Plant species identity and diversity effects on different trophic levels of nematodes in the soil food web. Oikos. 106: 576–586. Cerca con Google

Gamble, T. N., M. R. Betlach, and J. M. Tiedje (1977). Numerically Dominant Denitrifying Bacteria from World Soils. Appl. Environ. Microbiol. 33(4): 926-939. Cerca con Google

Gans, J., M. Wolinsky, and J. Dunbar (2005). Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science. 309: 1387-1390. Cerca con Google

Garbaye, J (1994). Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol. 128: 197–210. Cerca con Google

Garbeva, P., J .A. van Veen, and J. D. van Elsas (2004). Microbial biodiversity in soil: Selection of Microbial Populations by Plant and Soil Type and Implications for Disease Suppressiveness. Annu. Rev. Phytopathol. 42: 243–70. Cerca con Google

Garbeva, P., J. D. van Elsas, and J. A. van Veen (2008). Rhizosphere microbial community and its response to plant species and soil history. Plant Soil. 302: 19–32. Cerca con Google

Garland, J. L (1996). Analytical approaches to the characterization of samples of microbial communities using patterns of potential C source utilization. Soil Biol. Biochem. 28: 213–221. Cerca con Google

Garland, J. L (1996). Patterns of potential C source utilization by rhizosphere communities. Soil Biol. Biochem. 28: 223– 230. Cerca con Google

Garland, J. L, and A. L. Mills (1991). Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level-sole-carbon-source utilization. Appl. Environ. Microbiol. 57: 2351– 2359. Cerca con Google

Garrity, G. M, and J. G. Holt (2001). Phylum BVI. Chloroflexi phy. nov. In Boone, D. R. & R.W. Castenholz (eds.), Vol. 1: The Archaea and the Deeply Branching and Phototrophic Bacteria. In G.M. Garrity (ed.), Bergey's Manual of Systematic Bacteriology, 2nd ed., Springer-Verlag, New York, p427-446. Cerca con Google

Gelsomino, A., A. C. Keijzer-Wolters, G. Cacco, and J. D. van Elsas (1999). Assessment of bacterial community structure in soil by polymerase chain reaction and denaturing gradient gel electrophoresis. J. Microbiol. Methods. 38: 1 –15. Cerca con Google

George, E., H. Marschner, and I. Jakobsen (1995). Role of arbuscular mycorrhizal fungi in uptake of phosphorous and nitrogen from soil. CritCrypt. Rev. Biotechnol. 15: 257–270. Cerca con Google

Germida, J. J., S. D. Siciliano, J. R. Freitas, and A. M. Seib (1998). Diversity of rootassociated bacteria associated with fieldgrown canola (Brassica napus L.) and wheat (Triticum aestivum L.). FEMS Microbiol. Ecol. 26: 43–50. Cerca con Google

Gersberg, R. M., B. V. Elkins, S. R. Lyons, and C. R. Goldman (1985). Role of aquatic plants in wastewater treatment by artificial wetlands. Water Res. 20: 363367. Cerca con Google

Ghiorse, W., and J. Wilson (1988). Microbial ecology of the terrestrial subsurface. In: Laskin, A., (Ed.), Advances in Applied Microbiology, Academic Press, New York, p. 107–172. Cerca con Google

Girvan, M. S., J. Bullimore, J. N. Pretty, A. M. Osborn, and A. S. Ball (2003). Soil Type Is the Primary Determinant of the Composition of the Total and Active Bacterial Communities in Arable Soils. Appl. Environ. Microbiol. 69: 1800–1809. Cerca con Google

Gomes, N. C. M., I. A. Kosheleva, W.-R. Abraham, and K. Smalla (2005). Effects of the inoculant strain Pseudomonas putida KT2442 (pNF142) and of naphthalene contamination on the soil bacterial community. FEMS Microbiol. Ecol. 54: 21–33. Cerca con Google

Gomez-Alvarez, V., G. M. King, and K. Nusslein (2007). Comparative bacterial diversity in recent Hawaiian volcanic deposits of di¡erent ages. FEMS Microbiol. Ecol. 60: 60–73. Cerca con Google

Gorbushina, A. A., and W. E. Krumbein (2005). Role of microorganisms in wear down of rocks and minerals. In: Buscot F, Varma A (Eds.) Microorganisms in Soils: Roles in Genesis and Functions, Springer, Berlin, Germany, pp 59–84. Cerca con Google

Gordon, S. N., A. Valenzuela, S. M. Adams, P. W. Ramsey, J. L. Pollock, W. E. Holben, and J. E. Gannon (2009). Pedobacter nyackensis sp. nov., Pedobacter alluvionis sp. nov. and Pedobacter borealis sp. nov., isolated from Montana flood-plain sediment and forest soil. Int. J. Syst. Evol. Microbiol. 59: 1720-1726. Cerca con Google

Gosselink, J. G, and R. E. Turner (1978). The role of hydrology in freshwater wetland ecosystems. In: Good, R.E., D. F. Whigham, and R. L. Simpson (Eds.). Freshwater Wetlands: Ecological Processes and Management Potential. Academic Press, New York, USA, pp. 63–78. Cerca con Google

Graham, J. H., N. C. Hodge, and J. B. Morton (1995). Fatty acid methyl ester profiles for characterization of Glomalean fungi and their endomycorrhizae. Appl. Environ. Microbiol. 61: 58– 64. Cerca con Google

Grayston, S. J., G. S. Griffith, J. L. Mawdsley, C. D. Campbell, and R. D. Bardgett (2001). Accounting for variability in soil microbial communities of temperate upland grassland ecosystems. Soil Biol Biochem. 33: 533–551. Cerca con Google

Grayston, S. J., S. Wang, C. D. Campbell, and A. C. Edwards (1998). Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol. Biochem. 30: 369–78. Cerca con Google

Green, S. J., M. B. Leigh, and J. D. Neufeld (2009). Denaturing gradient electrophoresis (DGGE) for microbial community analysis. Pages 4137-4158 in: Timmis, K.N. (Ed) Microbiology of Hydrocarbons, Oils, Lipids, and Derived Compounds. Springer (Heidelberg, 5 Germany). Cerca con Google

Gregory, S.V., F. J. Swanson, W. A. McKee, and K. W. Cummins (1991). An ecosystem perspective on riparian zones. Bioscience. 41: 540-551. Cerca con Google

Gremion, F., A. Chatzinotas, and H. Harms (2003). Comparative 16S rRNA and 16S rRNA sequence analysis indicates that Actinobacteria might be a dominant part of the metabolically active bacteria in heavy metal-contaminated bulk and rhizosphere soil. Environ. Microbiol. 10: 896–907. Cerca con Google

Gribbon, L. T, and M. R. Barer (1995). Oxidative metabolism in nonculturable Helicobacter pylori and Vibrio vulnificus cells studied by substrate-enhanced tetrazolium reduction and digital image processing. Appl. Environ. Microbiol. 61: 3379-3384. Cerca con Google

Griffiths, R. I., A. S. Whiteley, A. G. O'Donnell, and M. J. Bailey (2000). Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl. Environ. Microbiol. 66: 5488–5491. Cerca con Google

Gumiero, B., B. Boz, P. Cornelio, and S. Casella (2011). Shallow groundwater nitrogen and denitrification in a newly afforested, sub-irrigated riparian buffer. J. Appl. Ecol. (in press) Cerca con Google

Gupta, R. S (2000). The phylogeny of Proteobacteria: relationships to other eubacterial phyla and eukaryotes. FEMS Microbiol. Rev. 24: 367–402. Cerca con Google

Hackl, E., S. Zechmeister-Boltenstern, L. Bodrossy, and A. Sessitsch (2004). Comparison of diversities and compositions of bacterial populations inhabiting natural forest soils. Appl. Environ Microbiol. 70: 5057–5065. Cerca con Google

Hafez, E. E and E. Elbestawy (2009). Molecular characterization of soil microorganisms: effect of industrial pollution on distribution and biodiversity. World J Microbiol. Biotechnol. 25: 215–224. Cerca con Google

Hammer, D. A (1992). Designing constructed wetlands systems to treat agricultural non-point source pollution. Ecol. Eng. 1: 49–82. Cerca con Google

Handelsman, J (2004). Metagenomics: Application of genomics to uncultured microorganisms. Microbiol. Mol. Biol. Rev. 68: 669–685. Cerca con Google

Hanson, G.C., P.M. Groffman, and A.J. Gold. (1994). Symptoms of nitrogen saturation in a riparian wetland. Ecol. Applications. 4: 750-756. Cerca con Google

Hatamoto, M., H. Imachi, Y. Yashiro, A. Ohashi, and H. Harada (2008). Detection of active butyrate-degrading microorganisms in methanogenic sludges by RNA-based stable isotope probing. Appl Environ Microbiol. 74: 3610–3614. Cerca con Google

Haycock, N. E, and G. Pinay (1993). Groundwater nitrate dynamics in grass and poplar vegetated riparian buffer strips during winter. J. Environ. Qual. 22: 273–278. Cerca con Google

Hayward, A. C. (1993). The hosts of Xanthomonas. In Xanthomonas, J.G. Swings, and E.L. Civerolo, eds. (London, United Kingdom, Chapman and Hall), pp. 1–119. Cerca con Google

He, Q., and K. Mankin (2002). Performance variations of COD and nitrogen removal by vegetated submerged bed wetlands. J. Am. Water Res. Assoc. 38: 1679–1689. Cerca con Google

Hedrick, D. B., A. Peacock, J. R. Stephen, S. J. Macnaughton, J. Bruggemann, and D. C. White (2000). Measuring soil microbial community diversity using polar lipid fatty acid and denaturing gradient gel electrophoresis data. J. Microbiol. Methods. 41: 235–48. Cerca con Google

Hefting, M. M., and J. J.M. de Klein (1998). Nitrogen removal in buffer strips along a lowland stream in the Netherlands: a pilot study. Environ. Pol .102: 521-526 Cerca con Google

Heijs, S. K., A. M. Laverman, L. J. Forney, P. R. Hardoim, and J. D.van Elsas (2008). Comparison of deep-sea sediment microbial communities in the Eastern Mediterranean. FEMS Microbiol. Ecol. 64: 362–377. Cerca con Google

Hendrix,P. F., R. W. Parmelee, J. Crossley, D. C. Coleman, E. P. Odum, and P. M. Groffman (1986). Detritus food webs in conventional and no-tillage agro ecosystems. BioScience. 36: 374–380. Cerca con Google

Herkowitz, J (1986). Listowel Artificial Marsh Project Report, Ontario Ministry of the Environment, Water Resources Branch, Toronto. Cerca con Google

Herrera, A., M. He'ry, J. E. M. Stachc, T. Jaffr'ed, P. Normand, and E. Navarro (2007). Species richness and phylogenetic diversity comparisons of soil microbial communities affected by nickel-mining and revegetation efforts in New Caledonia. Eur. J. Soil Biol. 43: 130–139. Cerca con Google

Heuer, H., M. Krsek, P. Baker, K. Smalla, and E. M. H. Wellington (1997). Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl. Environ. Microbiol. 63: 3233–3241. Cerca con Google

Heuer, H., R. M. Kroppenstedt, G. Berg and K. Smalla (2002).Effects of T4 lysozyme release from transgenic potato roots on bacterial rhizosphere communities are negligible relative to natural factors. Appl. Environ. Microbiol. 68: 1325–1335. Cerca con Google

Heylen, K., B. Vanparys, L. Wittebolle, W. Verstraete, N. Boon, and P. De Vos (2006). Cultivation of Denitrifying Bacteria: Optimization of Isolation Conditions and Diversity Study. Appl. Environ. Microbiol. 72: 2637–2643. Cerca con Google

Heywood, V. H (1995). Global biodiversity assessment. Cambridge University Press, Cambridge. Cerca con Google

Hill, G. T., N. A. Mitkowski, L. Aldrich-Wolfe, L. R. Emele, D. D. Jurkonie, A. Ficke, S. Maldonado-Ramirez, S. T. Lynch, and E. B. Nelson (2000). Methods for assessing the composition and diversity of soil microbial communities Appl. Soil Ecol. 15: 25–36. Cerca con Google

Hoffmann, C. C., P. Berg, M. Dahl, S. E. Larsen, H. E. Andersen, and B. Andersen (2006). Groundwater flow and transport of nutrients through a riparian meadow – Field data and modeling. J. Hydrol. 331: 315– 335. Cerca con Google

Hoffmann, C. C., S. Rysgaard and P. Berg (2000). Denitrification rates predicted by Nitrogen-15 labeled nitrate microcosm studies, in situ measurements, and modeling. J. Environ. Qual. 29(6): 2020–2028. Cerca con Google

Huang, J., R. Reneau, and C. Hageborn (2000). Nitrogen removal in constructed wetlands employed to treat domestic wastewater. Water Res. 34: 2582–2588. Cerca con Google

Hugenholtz, P., B .M. Goebel, and N. R. Pace (1998). Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 180: 4765–4774. Cerca con Google

Hugenholtz, P., B. M. Goebel, and N. R. Pace (1998). Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 180: 4765–4774. Cerca con Google

Hunter, R.G., and S. P. Faulkner (2001). Denitrification Potentials in Restored and Natural Bottomland Hardwood Wetlands. Soil Sci. Soci. Am. J. 65: 1865-1872. Cerca con Google

Ibekwe, A. M, and A. C. Kennedy (1998). Phospholipid fatty acid profiles and carbon utilization patterns for analysis of microbial community structure under field and greenhouse conditions. FEMS Microbiol. Ecol. 26: 151–163. Cerca con Google

Ibekwe, A. M, and A. C. Kennedy (1999). Fatty acid methyl ester (FAME) profiles as a tool to investigate community structure of two agricultural soils. Plant Soil. 206: 151–161. Cerca con Google

Ibekwe, A. M., C. M. Grieve, and S. R. Lyon (2003). Characterization of microbial communities and composition in constructed dairy wetland wastewater effluent. Appl. Environ. Microbiol. 69: 5060–5069. Cerca con Google

Ibekwe, A. M., J. A. Poss, S. R. Grattan, C. M. Grieve, and D. Suarez (2010). Bacterial diversity in cucumber (Cucumis sativus) rhizosphere in response to salinity, soil pH, and boron Soil Biology & Biochem. 42: 567-575. Cerca con Google

Ingram, H. A. P (1983). Hydrology. In: Gore, A.J.P. (Ed.), Ecosystems of the World 4A. Mires: Swamps, Bog, Fen and Moor. Elsevier Scientific Publication Company, Amsterdam, the Netherlands, pp. 67–159. Cerca con Google

Insam, H (2001). Development in soil microbiology since mid 1960s. Geoderma. 100: 389–402. Cerca con Google

Ishii, S., M. Yamamoto, M. Kikuchi, K. Oshima, M. Hattori, S. Otsuka, and K. Senoo (2009). Microbial Populations Responsive to Denitrification-Inducing Conditions in Rice Paddy Soil, as Revealed by Comparative 16S rRNA Gene Analysis. Appl. Environ. Microbiol. 75(22): 7070–7078. Cerca con Google

Iwamoto, T., K. Tani, K. Nakamura, Y. Suzuki, N. Kitagawa, M. Eguchi, and M. Nasu (2000). Monitoring impact of in situ biostimulation treatment on groundwater bacterial community by DGGE. FEMS Microbiol. Ecol. 32: 129– 141. Cerca con Google

Jaatinen, K., E. S. Tuittila, J. Laine, K. Yrjälä and H. Fritze (2005). Methane oxidizing bacteria in Finnish raised mire complex: Effects of site fertility and drainage. Microb. Ecol. 50: 429–439. Cerca con Google

Jaatinen, K., K. Knief, K. Yrjälä, P. Dunfield, and H. Fritze (2004). Methanotrophic bacteria in boreal forest soil—effects of fire. FEMS Microbiol. Ecol. 50: 195–202. Cerca con Google

Jacobs, T. C., and J. W. Gilliam (1985). Riparian losses of nitrate from agricultural drainage waters. J. Environ. Qual. 14: 472–478. Cerca con Google

James, J. B., T. D. Sherman, and R. Devereux (2006). Analysis of bacterial communities in sea grass bed sediments by double-gradient denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA genes. Microb. Ecol. 52(4): 655-61. Cerca con Google

Janssen, P. H., P. S. Yates, B. E. Grinton, P. M. Taylor, and M. Sait (2002). Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Appl. Environ. Microbiol. 68: 2391–96. Cerca con Google

Jensen, P. R., T. J. Mincer, P. G. Williams, and W. Fenical (2005). Marine actinomycete diversity and natural product discovery. Antonie Van Leeuwenhoek 87: 43–48. Cerca con Google

Jensen, P.R., P. G. Williams, D. C. Oh, L. Zeigler, and W. Fenical (2007). Species specific secondary metabolite production in marine actinomycetes of the genus Salinispora. Appl Environ Microbiol 73: 1146–1152. Cerca con Google

Jiang, S., L. Xiang, L. Zhang, W. Sun, S. Dai, L. Xie (2008). Culturable actinobacteria from marine sponge Iotrochota sp. Mar Biol 153: 945–952. Cerca con Google

Jin, H., R. Zhou, M. S. Kang, R. Luo, X. W. Cai, and H. C.Chen (2006). Biofilm formation by field isolates and reference strains of Haemophilus parasuis. Veterin Microbiol. 118: 117–123. Cerca con Google

John, M. G. St., D. H. Wall, and V.M. Behan-Pelletier (2006).Does plant species co-occurrence influence soil mite diversity? Ecology. 87: 625–633. Cerca con Google

Jolanda, K. B, and J. D. van Elsas (2008). Analysis of Bacterial Communities in Soil by Use of Denaturing Gradient Gel Electrophoresis and Clone Libraries, as Influenced by Different Reverse Primers Appl Environ Microbiol. 74: 2717–2727. Cerca con Google

Jones, D. L., A. Hodge, and Y. Kuzyakov (2004). Plant and mycorrhizal regulation of rhizodeposition. New Phytol. 163: 459–480. Cerca con Google

Joo, H. Z., M. Hirai, and M. Shoda (2005). Characteristics of ammonium removal by heterotrophic nitrification-aerobic denitrification by Alcaligenes faecalis no. 4. J. Biosci. Bioeng. 100: 184–191. Cerca con Google

Joseph, S. J., P. Hugenholtz, P. Sangwan, C. A. Osborne, and P. H. Janssen (2003). Laboratory cultivation of widespread and previously uncultured soil bacteria. Appl. Environ. Microbiol. 69: 7210-7215. Cerca con Google

Joynt, J., M. Bischoff, R. F. Turco, A. Konopka, and C. H. Nakatsu (2006). Microbial community analysis of soils contaminated with lead, chromium and organic solvents. Microb. Ecol. 51: 209–219. Cerca con Google

Kadlec, R. H., and R. L. Knight (1996). Treatment Wetlands, CRC Press, Boca Raton Cerca con Google

Kadlec, R. H., R. L. Knight, J. Vymazal, and H. Brix. (2000). Constructed Wetlands for Pollution Control: Processes, Performance, Design and Operation, IWA specialist group on use of macrophytes in water pollution control, Scientific and Technical Report, No. 8, IWA Publishing, London. Cerca con Google

Kaiser, E. A., and O. Heinemeyer (1993). Seasonal variations of soil microbial biomass carbon within the plough layer. Soil Biol. Biochem. 25: 1649–1655. Cerca con Google

Kandeler, E., M. Stemmer, and M. H. Gerzabek (2005). Role of microorganisms in carbon cycling in soil. In: Buscot F, Varma A (Eds.) Microorganisms in Soils: Roles in Genesis and Functions, Springer, Berlin, Germany, pp 139–157 Cerca con Google

Kapley, A., T. D. Baere, and H. J. Purohit (2007). Eubacterial diversity of activated biomass from a common effluent treatment plant. Res. Microbiol. 158: 494- 500. Cerca con Google

Kataoka, M., K. Ueda, T. Kudo, T. Seki, and T. Yoshida (1997). Application of the variable region in 16S rDNA to create an index for rapid species identification in the genus Streptomyces, FEMS Microbiol. Lett. 151: 249–255. Cerca con Google

Kelly KM & Chistoserdov AY (2001) Phylogenetic analysis of the succession of bacterial communities in the Great South Bay (Long Island). FEMS Microbiol Ecol 35: 85–95. Cerca con Google

Kelly, J. J., M. Haggblom, and R. L. Tate III (1999). Changes in soil microbial communities over time resulting from one time application of zinc: a laboratory microcosm study. Soil Biol. Biochem. 31: 1455– 1465. Cerca con Google

Kennedy, A. C., and K. L. Smith (1998). Soil microbial diversity and the sustainability of agricultural soils. Plant and Soil. 170: 75–86. Cerca con Google

Kent, A. D., and E. W. Triplett (2002). Microbial communities and their interactions in soil and rhizosphere ecosystems. Annual Rev. Microbiol. 56: 211–236. Cerca con Google

Killingstad, M. W., M. A. Widdowson, and R. L. Smith (2002). Modeling enhanced in situ denitrification in groundwater. J. Environ. Eng. 128: 491–504. Cerca con Google

Kim, E., and G. J. Zylstra (1999). Functional analysis of genes involved in biphenyl, naphthalene, phenanthrene, and m-xylene degradation by Sphingomonas yanoikuyae B1. J. Ind. Microbiol. Biotechnol. 23: 294–302. Cerca con Google

Kim, S., D. H. Choi, D. S. Sim and Y. Oh (2005). Evaluation of bioremediation effectiveness on crude oil–contaminated sand. Chemosphere. 59: 845-852. Cerca con Google

Kim, S., H. Jung, K. S. Kim, and I. S. Kim (2004). Treatment of high nitrate containing waste waters by sequential heterotrophic and autotrophic denitrification. J. Environ. Eng. 130: 1475–1480. Cerca con Google

Kirchner, M. J., A. G. Wollum II, and L. D. King (1993). Soil microbial populations and activities in reduced chemical input agroecosystem. Soil Sci. Soc. Am. J. 57: 1289–1295. Cerca con Google

Kirk, J. L., L. A. Beaudette, M. Hart, P. Moutoglis, J. N. Klironomos, H. Lee, and J. T. Trevors (2004). Methods of studying soil microbial diversity. J. Microbiol Methods. 58: 169– 188. Cerca con Google

Kishimoto, N., and T. Tano (1987). Acidophilic heterotrophic bacteria isolated from acidic mine drainage, sewage and soils. J. Gen. Appl. Microbiol. 33: 11–25. Cerca con Google

Knief, C., A. Lipski, and P. F. Dunfield (2003). Diversity and activity of methanotrophic bacteria in different upland soils. Appl. Environ. Microbiol. 69: 6703– 6714. Cerca con Google

Knowles R (1982). Denitrification. Microbiol. Rev. 46: 43–70. Cerca con Google

Kobabe, S., D. Wagner, and E. M. Pfeiffer (2004). Characterisation of microbial community composition of a Siberian tundra soil by fluorescence in situ hybridization. FEMS Microb. Ecol. 50: 13-23. Cerca con Google

Kowalchuk, G. A., B. Drigo, E. Yergeau, and. J. A. van Veen (2006). Assessing bacterial and fungal community structure in soil using ribosomal RNA and other structural gene markers. In: P. Nannipieri, K. Smalla (eds) Nucleic acids and proteins in soil, chap 8. Springer, Berlin, pp 159–188. Cerca con Google

Kowalchuk, G. A., D. S. Buma, W. de Boer, P. G. L. Klinkhamer, and J. A. van Veen (2002). Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms. AV Leeuwenhoek Internat. J. Gen. Mol. Microbiol. 81: 509–520. Cerca con Google

Kowalchuk, G. A., J. R. Stephen, W. Deboer, J. I. Prosser, T. M. Embley, and J. W. Woldendorp (1997.b). Analysis of ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments. Appl. Environ. Microbiol. 63: 1489–1497. Cerca con Google

Kropf, S., H. Heuer, M. Gruning, and K. Smalla (2004). Significance test for comparing complex microbial community fingerprints using pairwise similarity measures. J. Microbiol. Methods. 57:187–195. Cerca con Google

Kuklinsky-Sobral, H. L., W. L. Araujo, R. Mendes, A. A. Pizzirani-Kleiner, and J. L. Azevedo (2005). Isolation and characterization of endophytic bacteria from soybean (Glycine max) grown in soil treated with glyphosate herbicide. Plant Soil. 273: 91–99. Cerca con Google

Kuschk, P., A. WieXner, U. Kappelmeyer, and E. WeiXbrodt (2003). Annual cycle of nitrogen removal by a pilot-scale subsurface horizontal flow in a constructed wetland under moderate climate. Water Res. 37: 4236–4242. Cerca con Google

Kuske, C. R., L. O. Ticknor, and M. E. Miller (2002). Comparison of soil bacterial communities in rhizospheres of three plant species and the interspaces in arid grassland. Appl Environ Microbiol. 68: 1854-1863. Cerca con Google

Kuske, C. R., S. M. Barns, and J. D. Busch (1997). Diverse uncultivated bacterial groups from soils of the arid southwestern United States that is present in many geographic regions. Appl. Environ. Microbiol. 63: 3614–3621. Cerca con Google

Kutako, M., T. Limpiyakorn, E. Luepromchai, S. Powtongsook, and P. Menasveta (2009). Inorganic nitrogen conversion and changes of bacterial community in sediment from shrimp pond after methanol addition. J. Applied Sci. 9: 2907-2915. Cerca con Google

Lagomarsino, A., M. C. Moscatelli, A. Di Tizio, R. Mancinelli,S. Grego, and S. Marinari (2009). Soil biochemical indicators as a tool to assess the short-term impact of agricultural management on changes in organic C in a Mediterranean environment. Ecologic. Indicat. 9: 518–527. Cerca con Google

LaMontagne, M. G., J. P. Schimel, and P. A. Holden (2003). Comparison of subsurface and surface soil bacterial communities in California grassland as assessed by terminal restriction fragment length polymorphisms of PCRamplified 16S rRNA genes. Microb. Ecol. 46: 216-227. Cerca con Google

Langergraber, G (2007). Simulation of the treatment performances of outdoor subsurface flow constructed wetlands in temperature climates. Sci. Total Environ. 380: 210–219. Cerca con Google

Latour, X., T. Corberand, G. Laguerre, F. Allard, and P. Lemanceau (1996). The composition of fluorescent Pseudomonas population associated with roots is influenced by plant and soil type. Appl. Environ. Microbiol. 62: 2449–56. Cerca con Google

Lauber, C. L., M. S. Strickland, M. A. Bradford and N. Fierer (2008). The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol. Biochem. 40: 2407– 2418. Cerca con Google

Laverman, A. M., M. Braster, W. F. M. Röling, and H. W. van Verseveld (2005). Bacterial community structure and metabolic profiles in a forest soil exhibiting spatially variable net nitrate production. Soil Biol. Biochem. 37: 1581–1588. Cerca con Google

Lee, C- G., T. D. Fletcher, and G. Sun (2009). Nitrogen removal in constructed wetland systems. Eng. Life Sci. 9: 11–22. Cerca con Google

Lee, S.-Y., J. Bollinger, D. Bezdicek, and A. Ogram (1996). Estimation of the abundance of an uncultured soil bacterial strain by a competitive quantitative PCR method. Appl. Environ. Microbiol. 62:3787–3793. Cerca con Google

Lepeuple, A. S., S. Gilouppe, E. Pierlot, and M. R. de Roubin (2004). Rapid and automated detection of fluorescent total bacteria in water samples. Int. J. Food Microbiol. 92: 327– 332. Cerca con Google

Leys, N. M., A. Ryngaert, L. Bastiaens, W. Verstraete, E. M.Top, and D. Springael (2004). Occurrence and phylogenetic diversity of Sphingomonas strains in soils contaminated with polycyclic aromatic hydrocarbons. Appl. Environ. Microbiol. 70: 1944–1955. Cerca con Google

Li, L., C. Kato and K. Horikoshi (1999). Microbial diversity in sediments collected from the deepest cold-seep area, the Japan Trench. Mar. Biotechnol. 1: 391–400. Cerca con Google

Li, Z., J. Xu, C. Tang, J. Wu, A. Muhammad, and H. Wang (2006). Application of 16S r DNA-PCR amplification and DGGE fingerprinting for detection of shift in microbial community diversity in Cu-, Zn-, and cd-contaminated paddy soils. Chemosphere. 62: 1374- 1380. Cerca con Google

Lindström, E. S., M. P. K-V. Agterveld, G. Zwart (2005). Distribution of typical freshwater bacterial groups is associated with pH, temperature, and lake water retention time. Appl. Environ. Microbiol. 71: 8201-8206. Cerca con Google

Liu, R., H. Liu, C-X. Zhang, S-Y. Yang, X-H Liu, K-Y. Zhang, and R. Lai (2008). Sphingobacterium siyangense sp. nov., isolated from farm soil. Int. J. Syst. Evol. Microbiol. .58: 1458–1462. Cerca con Google

Liu, Z., C. Rodriguez, L. Wang, Q. Cui, Y. Huang, E. T. Quintana, and M. Goodfellow (2005). Kitasatospora viridis sp. nov., a novel actinomycete from soil. Int. J. Syst. Evol. Microbiol. 55: 707-711. Cerca con Google

Lockeretz, W., G. Shearer, and D. H. Kohl (1981). Organic farming in the Corn Belt. Science. 211: 540–547. Cerca con Google

Lovely, D. R., and J. D. Coates (1997). Bioremediation of metal contamination. Curr. Opin. Biotechnol. 8: 285–289. Cerca con Google

Lowrance, R. R., R. L. Todd, J. Fail Jr, O. Hendrickson Jr, R. Leonard, and L. E. Asmussen (1984). Riparian forest as nutrient filters in agricultural watersheds. Bioscience. 34: 374–377. Cerca con Google

Lozupone, C. A., and R. Knight (2008). Species divergence and the measurement of microbial diversity. FEMS Microbiol. Rev. 32: 557–568. Cerca con Google

Lu Yu, L., Y. Liu and G. Wang (2009). Identification of novel denitrifying bacteria Stenotrophomonas sp. ZZ15 and Oceanimonas sp. YC13 and application for removal of nitrate from industrial wastewater. Biodegradation. 20: 391–400. Cerca con Google

Lu, J. J., C. L. Perng, S. Y. Lee, and C. C. Wan (2000). Use of PCR with universal primers and restriction endonuclease digestions for detection and identification of common bacterial pathogens in cerebrospinal fluid. J. Clin. Microbiol. 38: 2076–2080. Cerca con Google

Lynch, J. M., A. Benedetti, H. Insam, M. P. Nuti, K. Smalla, V. Torsvik, and P. Nannipieri (2004). Microbial diversity in soil: ecological theories, the contribution of molecular techniques and the impact of transgenic plants and transgenic microorganisms. Biol Fertil Soils. 40: 363–385. Cerca con Google

Maarit-Niemi, R., L. Heiskanen, K. Wallenius, and K. Lindstrom (2001). Extraction and purification of DNA in rhizosphere soil samples for PCR-DGGE analysis of bacterial consortia. J. Microbiol. Methods. 45: 155–165. Cerca con Google

MacGregor, B. J., D. P. Moser, B. J. Baker, E. W. Alm, M. Maurer, K. H. Nealson, and D. A. Stahl. (2001). Seasonal and spatial variability in Lake Michigan sediment small-subunit rRNA concentrations. Appl. Environ. Microbiol. 67: 3908–3922. Cerca con Google

MacNaughton, S. J., J. R. Stephen, A. D. Venosa, G. A. Davis, Y. J. Chang, and D. C. White (1999). Microbial population changes during bioremediation of an experimental oil spill. Appl. Environ. Microbiol. 65: 3566–3574. Cerca con Google

Madigan, M, and J. Martinko (ed) (2005). Brock biology of microorganisms, 11 edn. Prentice Hall, Upper Saddle River, NJ Cerca con Google

Maeda, R., H. Nagashima, J. Widada, K. Iwata, and T. Omori (2009). Novel marine carbazole-degrading bacteria. FEMS. Microbiol. Letters. 292: 203–209. Cerca con Google

Marchesi, J. R., T. Sato, A. J. Weightman, T. A. Martin, J. C. Fry, S. J. Hiom and W. G. Wade (1998). Design and Evaluation of useful Bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl. Environ. Microbiol. 64: 795-799. Cerca con Google

Mariotti, A., A. Landreu, and B. Simon, (1988). 15N isotope biogeochemistry and natural denitrification process in groundwater: Application to the chalk aquifer of northern France. Geochim. Cosmochim. Acta. 52: 1869–1878. Cerca con Google

Marschner, P., and S. Timonen (2005). Interactions between plant species and mycorrhizal colonization on the bacterial community composition in the rhizosphere. Appl. Soil. Ecol. 28: 23–36. Cerca con Google

Marschner, P., and S. Timonen S (2004). Interactions between plant species,mycorrhizal colonization and light intensity on the bacterial community composition in the rhizosphere. Appl. Soil Ecol. 28: 23–36. Cerca con Google

Marschner, P., C. H. Yang, R. Lieberei, and. D. E. Crowley (2001). Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biol. Biochem. 33: 1437–1445. Cerca con Google

Martin, T. L., N. K. Kaushik, J. T. Trevors, and H. R. Whiteley (1999). Review: denitrification in temperate climate riparian zones. Water Air soil pollution. 111: 171-186. Cerca con Google

Martins-Loução, M. A., and C. Cruz (2007). Microbial communities (Editorial). J. Soils Sediments. 7(6): 398. Cerca con Google

Mateju, V. S., J. Cizinska, Krejci, and T. Janoch (1992). Biological water denitrification -a review. Enzyme Microb. Technol. 14: 170-183. Cerca con Google

Maynard,C., F. Berthiaume, K. Lemarchand, J. Harel, P. Payment, P. Bayardelle, L. Masson, and R. Brousseau (2005). Waterborne pathogen detection by use of oligonucleotide-based microarrays. Appl Environ. Microbiol. 71: 8548–8557. Cerca con Google

Mayo, A. W., and J. Mutamba (2004). Effect of HRT on nitrogen removal in a coupled HRP and unplanted subsurface flow gravel bed constructed wetland. Phys. Chem. Earth. 29: 1253–1257. Cerca con Google

McCaig A. E., L. A. Glover and J. J. Prosser (2001). Numerical analysis of grassland bacterial community structure under different land management regimens by using 16S ribosomal DNA sequence data and denaturing gradient gel electrophoresis banding patterns. Appl. Environ. Microbiol. 67: 4554– 59. Cerca con Google

McCaig, A. E., L. A. Glover, and J. I Prosser (1999). Molecular analysis of bacterial community structure and diversity in unimproved and improved upland grass pastures. Appl. Environ. Microbiol. 65:1721-1730. Cerca con Google

McCaig, A. E., L. A. Glover, and J. I. Prosser (1999). Molecular analysis of bacterial community structure and diversity in unimproved and improved upland grass pastures. Appl. Environ. Microbiol. 65:1721-1730. Cerca con Google

Mendez, M. O., J. W. Neilson, and R. M. Maier (2008). Characterization of a bacterial community in an abandoned semiarid lead zinc mine tailing site. Appl. Environ. Microbiol. 74: 3899–3907. Cerca con Google

Mene´ndez, A. B., J. M. Scervino, and A. M. Godeas (2001). Arbucular mycorrhizal populations associated with natural and cultivated vegetation on a site of Buenos Aires province, Argentina. Biol. Fertil. Soil. 33: 373–381. Cerca con Google

Metcalf and Eddy, revised by G. Tchobanoglous, and F. L. Burton (1991). Wastewater Engineering – Treatment, Disposal, and Reuse, 3rd ed., McGraw-Hill, New York. Cerca con Google

Millar, L. C, and M. E. Barbercheck (2002). Effects of tillage practices on entomopathogenic nematodes in a corn agro ecosystem. Bio. Control. 25: 1–11. Cerca con Google

Miller, K. M., T. J. Ming, A. D. Schulze and R. E. Withler (1999). Denaturing gradient gel electrophoresis (DGGE): A rapid and sensitive technique to screen nucleotide sequence variation in populations. Bio. Techniques. 27: 1016–1030. Cerca con Google

Mills, D. K., K. Fitzgerald, C. D. Litchfield, and P. M. Gillevet (2003). A comparison of DNA profiling techniques for monitoring nutrient impact on microbial community composition during bioremediation of petroleum-contaminated soils. J Microbiol Methods. 54: 57–74. Cerca con Google

Mitsch, W. J, and J. G. Gosselink (1986). Wetlands. Van Nostrand Reinhold Company, New York, USA. Cerca con Google

Mocali, S., D. Paffetti, G. Emiliani, A. Benedetti, and R. Fani (2008). Diversity of heterotrophic aerobic cultivable microbial communities of soils treated with fumigants and dynamics of metabolic, microbial, and mineralization quotients. Biol Fertil Soils. 44: 557–569. Cerca con Google

Molla, A. H, Z. H. Shamsuddin, and H. M.Saud (2001). Mechanism of root growth and promotion of nodulation in vegetable soybean by Azospirillum brasilense. Commun. Soil Sci. Plant Ana. 32: 2177– 87. Cerca con Google

Monteiro, J. M., R. E. Vollu, M. R. R. Coelho, C. S. Alviano, A. F. Blank, and L. Seldin (2009). Culture-dependent and -independent approaches to analyze the bacterial community of different genotypes of Chrysopogon zizanioides (L.) Roberty (vetiver) rhizospheres. J. Microbiol. 47: 363–370. Cerca con Google

Mougel, C., P. Offre, L. Ranjard, T. Corbeand, E. Gamalero, C. Robin, and P. Lemanceau (2006). Dynamics of the genetic structure of bacterial and fungal communities at different developmental stages of Medicago truncatula Gaertn.cv.jemalong line J5. New Phytol. 170: 165–175. Cerca con Google

Mueller-Spitz, S. R., G. W. Goetz, and S. L. McLellan (2009). Temporal and spatial variability in near shore bacterioplankton communities of Lake Michigan. FEMS Microbiol Ecol 67: 511–522. Cerca con Google

Mühling, M., J. Woolven-Allen, C. Murrell, and I. Joint (2008). Improved group-specific PCR primers for denaturing gradient gel electrophoresis analysis of the genetic diversity of complex microbial communities. ISME J. 2: 379–392. Cerca con Google

Mullen, M. D., C. G. Melhorn, D. D. Tyler, and B. N. Duck (1998). Biological and biochemical soil properties in no-till corn with different cover crops. J. Soil Water Conserv. 53: 219–224. Cerca con Google

Mungai, N.W., P. P Motavalli, K. A. Nelson, and R. J. Kremer (2005). Differences in yields, residue composition and N mineralization dynamics of Bt and non-Bt maize. Nutr. Cycl. Agroecosyst. 73: 101–109. Cerca con Google

Murty, D., M. U. F. Kirschbaum, R. E. McMurtrie, and A. McGilvray (2002). Does conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature. Global Change Biol. 8: 105–123. Cerca con Google

Muscutt, A. D., G. L. Harris, S. W. Bailey, and D. B. Davies (1993). Buffer zones to improve water quality: a review of their potential use in UK agriculture. Agricul. Ecosyst. Environ. 45: 59-77. Cerca con Google

Muyzer, G (1999). DGGE/TGGE, a method for identifying genes from natural ecosystems. Curr. Opin. Microbiol. 2: 317–322. Cerca con Google

Muyzer, G, and K. Smalla (1998). Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoek. 73: 127–141. Cerca con Google

Muyzer, G., E. C. de Waal, and A. G. Uitterlinden (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ Microbiol. 59(3): 695-700. Cerca con Google

Nagy, M. L., A. Perez, and F. Garcia-Pichel (2005). The prokaryotic diversity of biological soil crusts in the Sonoran Desert (Organ Pipe Cactus National Monument, AZ). FEMS Microbiol. Ecol. 54: 233–245. Cerca con Google

Nakatsu, C. H (2004). Microbial community analysis. In D. Hillel et al. (ed.) Encyclopedia of soils in the environment. Elsevier, Oxford, UK. p. 455–463. Cerca con Google

Nakatsu, C. H (2007). Soil microbial community analysis using denaturing gradient gel electrophoresis. Soil Sci. Soc. Am. J. 71: 562–571. Cerca con Google

Nakatsu, C. H., N. Carmosini, B. Baldwin, F. Beasley, P. Kourtev, and A. Konopka (2005). Soil microbial community responses to additions of organic carbon substrates and heavy metals (Pb and Cr). Appl. Environ. Microbiol. 71: 7679–7689. Cerca con Google

Nakatsu, C. H., V. Torsvik, and L. Øvreas (2000). Soil community analysis using DGGE of 16S rDNA polymerase chain reaction products. Soil. Sci. Soc. Am. J. 64: 1382–1388. Cerca con Google

Nannipieri, P., J. Ascher, M. T. Ceccherini, L. Loretta, P. Giacomo, and R. Giancarlo (2003). Microbial diversity and soil functions. Eur. J. Soil. Sci. 54: 655–670 Cerca con Google

Niva, M., A. Hernesmaa, K. Haahtela, M. S-Salonen, K. Sivonen, and K. Haukka (2006). Actinobacterial communities of boreal forest soil and lake water are rich in mycobacterium. B. Environ. Res. 11: 45-53. Cerca con Google

Nogales, B., E. R. Moore, W. R. Abraham, and K. N. Timmis (1999). Identification of the metabolically active members of a bacterial community in a polychlorinated biphenyl-polluted moorland soil. Environ Microbiol. 1: 199–212. Cerca con Google

Nogales, B., K. N. Timmis, D. B. Nedwell, and A. M. Osborn (2002). Detection and diversity of expressed denitrification genes in estuarine sediments after reverse transcription-PCR amplification from mRNA. Appl. Environ. Microbiol. 68: 5017-5025. Cerca con Google

Norton, J. M., M. G. Klotz, L. Y. Stein, D. J.Arp, P. J. Bottomley, P. S. G. Chain, L. J.Hauser, M. L. Land, F. W. Larimer, M. W. Shin, ands. S. R. Starkenburg (2008). Complete genome sequence of Nitrosospira multiformis, an ammonia-oxidizing bacterium from the soil environment. Appl Environ Microbiol. 74(11): 3559–3572. Cerca con Google

Nübel, U., F. Garcia-Pichel, M. Kühl, and G. Muyzer (1999) .Quantifying microbial diversity: morphotypes, 16S rRNA genes, and carotenoids of oxygenic phototrophs in microbial mats. App Env Microbiol 65: 422–430. Cerca con Google

Nunan, N., T. J. Daniell, B. K. Singh, A. Papert, J. W. McNicol, and J. I. Prosser (2005). Links between plant and rhizoplane bacterial communities in grassland soils characterized using molecular techniques. Appl. Environ. Microbiol. 71: 6784–6792. Cerca con Google

Nusslein, K, and J. M. Tiedje (1999). Soil bacterial community shift correlated with change from forest to pasture vegetation in a tropical soil. Appl. Environ. Microbiol. 65: 3622–26. Cerca con Google

NWWG (1997). The Canadian wetland classification system. In: Warner, B. G, and C. D. A. Rubec (Eds.), National Wetland Working Group, University of Waterloo, Wetland Research Centre, pp. 1– 68. Cerca con Google

Ogram, A., G. S. Sayler, and T. Barkay (1987). The extraction and purification of microbial DNA from sediments. J Microbiol Methods. 7: 57–66. Cerca con Google

Ohtonen. R., S. Aikio, and H. Vare (1997). Ecological theories in soil biology. Soil Biol. Biochem. 29: 1613–1619. Cerca con Google

Osborn A. M., E. R. B. Moore, and K. N. Timmis (2000). An evaluation of terminal restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics. Environ. Microbiol. 2: 39-50. Cerca con Google

Ostrom, N. E., L. O. Hedin, J. C. von Fischer, and G. P. Robertson (2002). Nitrogen transformations and NO‾3 removal at a soil stream interface: a stable isotope approach. Ecol. Appl. 12(4): 1027–1043. Cerca con Google

Overhage. J., S. Sielker, S. Homburg, K. Parschat, and S. Fetzner (2005). Identification of large linear plasmids in Arthrobacter spp. encoding the degradation of quinaldine to anthranilate. Microbiol. 151: 491–500. Cerca con Google

Pace, N. R. (1997). A molecular view of microbial diversity and the biosphere. Science. 276: 734– 740. Cerca con Google

Palmer, K. M., and J. P. W. Young (2000). Higher diversity of Rhizobium leguminosarum biovar viciae populations in arable soils than in grass. Soils Appl. Environ. Microbiol. 66: 2445–50. Cerca con Google

Papert, A., C. J. Kok, and J. D. van Elsas (2004). Physiological and DNA fingerprinting of the bacterial community of Meloidogyne fallax egg masses. Soil Biol. Biochem. 36: 1843–1849. Cerca con Google

Patra, D. D., P. C. Brookes, K. Coleman, and D. S. Jenkinson (1990). Seasonal changes of soil microbial biomass in an arable and a grassland soil which have been under uniform management for many years. Soil Biol. Biochem. 22:739–742. Cerca con Google

Peacock, A. D., Y-J. Chang, J. D. Istok, L. Krumholz, R. Geyer, B. Kinsall, D. Watson, K. L. Sublette, and D.C. White (2004). Utilization of microbial biofilms as monitors of bioremediation. Microb. Ecol. 47: 284–292. Cerca con Google

Peterjohn, W. T, and. L. Correll (1984). Nutrient dynamics in an agricultural watershed: observations on the role of a riparian forest. Ecol. 65: 1466-1475. Cerca con Google

Phillips, D. A., H. Ferris, D. R. Cook, and D. R. Strong (2003). Molecular control points in rhizosphere food webs. Ecol. 84: 816– 826. Cerca con Google

Phipps, R. G. and W. G. Crumpton (1994). Factors affecting nitrogen loss in experimental wetlands with different hydrologic loads. Ecol. Eng. 3: 399–408. Cerca con Google

Pielou, E. C. (1969). An Introduction to Mathematical Ecology. John Willy & Sons. Inc., New York. Cerca con Google

Pinay, G., L. Roques, and A. Fabre (1993). Spatial and temporal patterns of denitrification in a riparian forest. J. Appl Ecol. 30: 581–591. Cerca con Google

Pindi, P. K., K. H. Kishore, G. S. Reddy, and S. Shivaji (2009). Description of Leifsonia kafniensis sp. nov. and Leifsonia antarctica sp. nov. Int. J. Syst. Evol. Microbiol. 59:1348-1352. Cerca con Google

Pomeroy, R. L., and W. J. Wiebe (2001). Temperature and substrates as interactive limiting factors for marine heterotrophic bacteria. Aquat Microb Ecol. 23: 187–204. Cerca con Google

Pommier, T., B. Canback, and L. Riemann (2007). Global patterns of diversity and community structure in marine bacterioplankton. Mol. Ecol. 16: 867–880. Cerca con Google

Price, P. B., and T. Sowers (2004). Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. PNAS. 101(13): 4631-4636. Cerca con Google

Prosnansky, M., Y. Sakakibarab, and M. Kuroda (2002). High-rate denitrification and SS rejection by biofilm-electrode reactor (BER) combined with microfiltration. Water Res. 36: 4801–4810. Cerca con Google

Purdy, K. J., D. B. Nedwell, and T. M. Embley (2003). Analysis of the sulfate-reducing bacterial and methanogenic archaeal populations in contrasting Antarctic sediments. Appl. Environ. Microbiol. 69: 3181–3191. Cerca con Google

Pyle, B. H., S. C. Broadway, and G. A. McFeters (1995). Factors affecting the determination of respiratory activity on the basis of cyanoditolyl tetrazolium chloride reduction with membrane filtration. Appl. Environ. Microbiol. 61: 4304–4309. Cerca con Google

Quinn, J. M.; G. L. Steele, C. W. Hickey, and M. L. Vickers (1994). Upper thermal tolerances of twelve common New Zealand stream invertebrate species. New Zealand J. Marine. Freshwater Research .28: 391-397. Cerca con Google

Ranjard, L., F. Poly, J. C. Lata, C. Mougel, J. Thioulouse, and S. Nazaret (2001). Characterization of bacterial and fungal soil communities by automated ribosomal intergenic spacer analysis fingerprints: biological and methodological variability. Appl. Environ. Microbiol. 67: 4479–87. Cerca con Google

Ravenschlag, K., K. Sahm, C. Knoblauch, B. B. Jorgensen and R. Amann (2000). Community structure, cellular rRNA content, and activity of sulfate-reducing bacteria in marine Arctic sediments. Appl. Environ. Microbiol. 66: 3592–3602. Cerca con Google

Reardon, C. L., D. E. Cummings, L. M. Petzke, B. L. Kinsall, D. B. Watson, B. M. Peyton, and G. G. Geesey (2004). Composition and diversity of microbial communities recovered from surrogate minerals incubated in an acidic uranium-contaminated aquifer. Appl Environ Microbiol. 70: 6037–6046. Cerca con Google

Reddy, K. R, and W. H. Patrick (1984). Nitrogen transformations and loss in flooded soils and sediments. CRC Crit Rev Environ Control. 13: 273–309. Cerca con Google

Reganold, J. P., A. S. Palmer, J. C. Lockhart, and A. N. Macgregor (1993). Soil quality and financial performance of biodynamic and conventional farms New Zealand. New Zealand. Science .260: 344–349. Cerca con Google

Rhee, S.-K., X. Liu, L. Wu, S. C. Chong, X. Wan, and J. Zhou (2004). Detection of genes involved in biodegradation and biotransformation in microbial communities by using 50-mer oligonucleotide microarrays. Appl. Environ. Microbiol. 70: 4303–4317. Cerca con Google

Richardson, W., E. Strauss, E. Bartsch, L. Monroe, E. Cavanaugh, and J. Vingum (2004). Denitrification in the upper Mississippi River: Rates, controls, and contribution to nitrate flux. Can. J. Fish. Aquat. Sci. 61: 1102–1112. Cerca con Google

Rijn, J. V., Y. Tal, and H. J. Schreier (2006). Denitrification in re-circulat Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record