Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Di Giorgio, Elisa (2011) How the adult social brain becomes the way it is. The origin and the developmental time course of face processing. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
6Mb

Abstract (inglese)

One central issue in cognitive developmental science is to understand how cognition grows and change over time to reach an adult level of specialization. Determining the abilities with which infants come equipped into the world, their mechanisms for acquiring knowledge, and whether and how these abilities change as a function of development and experience is a challenging issue. Face processing is an interesting topic of research in that respect because faces form a special class of visual objects elaborated in adults by a specific anatomical and functional face system (e.g., Kanwisher, 2000; Farah, Wilson, Drain, & Tanaka, 1998). Since what determines this specialization and how this specialization emerges during development still remain unknown, the purpose of my PhD dissertation is to study cognitive specialization during early infancy through the investigation of the development of infants’ abilities to process faces. In particular, my hypothesis is that the face processing specificity is not present at birth, but emerges gradually from the interaction between general constraints and attentional biases present in the first months of life and the critical visual input provided by the specie-specific environment (Nelson, 2001, 2003; Johnson, 1993).
With this consideration in mind, my thesis begins with two theoretical chapters: Chapter 1 describes a neoconstructivistic approach to the emergence of cognition as the theoretical framework and discuss the specialty of the face stimulus for humans, whereas Chapter 2 is about the specificity of the face processing system in adults and I review two theoretical models of face processing and the neural bases underlying this skill.
Subsequently, in the second part of the thesis I describe three studies aiming at investigating the origin and the developmental time course of both face detection and face recognition (Chapters 3, 4 and 5). Importantly, to examine both the emergence and the developmental time course of the face processing abilities to become specialized, the same experimental paradigms are employed with newborns, 3- and 6-month-old infants and adults (e.g., composite face paradigm, a modified visual search paradigm). This allows a direct comparison between adults’ and infants’ performance.
In Study 1 (Chapter 3), using both the visual preference and visual habituation techniques, a first series of experiments investigates the nature of face representation in newborns and in 3-month-old infants. According to recent evidence showing that infants’ response to faces becomes more and more tuned to the face category over the first three-months of life (Turati, Valenza, Leo, & Simion, 2005), collected data demonstrate that 3-month-old infants, but not newborns, are sensitive to specific perceptual cues within a face, such as the correct position and orientation of the eyes (Experiments 1, 2 and 3). Furthermore, results obtained from Experiments 4, 5, 6 and 7 demonstrate that early facial representation is not human-specific, corroborating the hypothesis that newborns come into the world with a face representation that is sufficiently general as to bias newborns’ visual attention toward multiple categories of faces (e.g., monkey faces vs. human faces), and that this face representation, due to the visual experience that infants do in the specie-specific environment, becomes more specific to human face during the first 3 months of life (Nelson, 2001; Pascalis & Kelly, 2009).
Due to the social relevance of the face stimulus and due to the ability of 3-month-old infants to form a specific representation of the human face, the aim of Study 2 (Chapter 4) is to investigate whether human face grab and maintain infants’ attention in complex visual scenes. Specifically, using an eye-tracker system, adults’ and 6- and 3-month-old infants’ visual search behavior is compared in a modified visual search task of a target face among heterogeneous (e.g., various objects, Experiments 8, 9 and 10) and homogeneous distractors (e.g., inverted faces, Experiments 11, 12). Results demonstrate that a face among heterogeneous distractors captures and maintains adults’ and 6-month-old infants’ attention and that 3-month-old infants detect a target face only when embedded among inverted faces (e.g., homogeneous distractors), corroborating previous findings showing the face detection advantage in infants (Gliga, Elsabbagh, Andravizou, & Johnson, 2009).
Importantly, to detect a target face among other distractors, infants have to process a face as a Gestalt, where the whole is more than the sum of its constituent parts (Tanaka & Farah, 1993). This kind of face processing, called “holistic”, is investigated in newborns, 3-month-old-infants, and adults through a modified version of the composite face paradigm (Young, Hellawell, & Hay, 1987) and the recording of eye movements in Study 3 (Chapter 5). The main outcome of the present study is that the tuning toward holistic information appears very early in life, although gradual experience-based developmental processes will progressively refine early holistic processing abilities (Experiments 13, 14 and 15).
Overall, these data demonstrate that face specificity is not prewired, but rather arises from general perceptual processes that, during development, become progressively tuned to the human face, as a result of extensive experience with this stimulus category in the first months of life.

Abstract (italiano)

Uno dei problemi fondamentali nello studio dello sviluppo cognitivo è comprendere come la cognizione emerga e quali siano i cambiamenti a cui essa va incontro nel corso dello sviluppo per raggiungere il livello maturo osservato negli adulti. Una grande sfida per tutti i ricercatori dello sviluppo riguarda il riuscire a determinare quali sono le abilità e le predisposizioni che il neonato possiede alla nascita, a comprendere i processi cognitivi che mette in atto per acquisire la conoscenza del mondo che lo circonda, e a studiare se e come tali predisposizioni si modificano in funzione dell’esperienza durante il corso dello sviluppo. Poichè è stato dimostrato che il volto è uno stimolo speciale per gli adulti, in quanto elaborato da aree neurali (Kanwisher, 2000) e da processi percettivi specifici e diversi da quelli utilizzati per l’elaborazione degli oggetti (Farah, Wilson, Drain, & Tanaka, 1998), lo studio dell’origine e dello sviluppo della capacità di elaborare tale stimolo risulta essere funzionale allo studio di un processo di specializzazione cognitiva.
In quest’ottica, la presente tesi di dottorato vuole essere un contributo allo studio della specializzazione funzionale del sistema umano per l’elaborazione del volto nei primi mesi di vita, con particolare riferimento alle modificazioni che il sistema subisce nella rappresentazione ed elaborazione di tale stimolo in funzione dell’esperienza. In particolare, i cambiamenti evolutivi a cui va incontro il sistema cognitivo per raggiungere il livello maturo osservato negli adulti sono stati esaminati confrontando in modo diretto le prestazioni di neonati, bambini di tre e sei mesi ed adulti attraverso l’utilizzo degli stessi paradigmi di ricerca (ricerca visiva, composite face paradigm). L’ipotesi su cui si basa questo lavoro è che la specializzazione cognitiva per il volto umano osservata negli adulti non sia presente alla nascita, ma sia il prodotto di un processo di sviluppo continuo e dinamico in cui l’esperienza esperita nell’ambiente di vita specie-specifico gioca un ruolo fondamentale (Nelson, 2001, 2003; Johnson, 1993).
I primi due capitoli sono a carattere teorico: nel Capitolo 1 viene descritto l’approccio Neocostruttivista, considerato il quadro teorico di riferimento entro cui si inseriscono gli esperimenti presenti nella tesi, e viene spiegato il motivo per cui viene scelto il volto come stimolo paradigmatico per lo studio della specializzazione cognitiva. Nel Capitolo 2 viene invece discussa la specificità, neurale e funzionale, del sistema per l’elaborazione del volto negli adulti. Vengono riportati inoltre due modelli teorici fondamentali per la comprensione dell’abilità di elaborazione di tale stimolo negli adulti.
Nella seconda parte della tesi sono presentati i tre studi principali che la costituiscono la tesi e che hanno lo scopo di studiare le origini e il corso dello sviluppo della capacità di percepire e di riconoscere un volto umano (Capitoli 3, 4, e 5).
Nello Studio 1 (Capitolo 3), attraverso l’utilizzo della preferenza e dell’abituazione visiva, è stata indagata la natura della rappresentazione del volto alla nascita e nei primi mesi di vita. In linea con l’idea che la rappresentazione del volto si specializzi grazie all’esperienza visiva con tale stimolo nei primi tre mesi di vita (Turati, Valenza, Leo, & Simion, 2005), i risultati degli esperimenti dimostrano che alla nascita tale rappresentazione è di natura generale, mentre a 3 mesi essa diventa più specifica per questo particolare tipo di stimolo (Esperimenti 1, 2 e 3). Inoltre, gli Esperimenti 4, 5 e 6 dimostrano che la rappresentazione del volto alla nascita non è specie-specifica, in linea con l’ipotesi che il neonato entra a far parte del mondo con una rappresentazione del volto abbastanza generale da permettergli di percepire un volto umano e un volto di scimmia come appartenenti alla stessa “categoria volto”. E’ solo a 3 mesi, grazie all’esperienza visiva con tale stimolo, che tale rappresentazione diventa specifica per il volto umano (Nelson, 2001; Pascalis & Kelly, 2009).
Lo scopo dello Studio 2 (Capitolo 4) è stato quello di studiare se la preferenza per il volto osservata in contesti semplici (i.e., presentazione di soli due stimoli) potesse essere osservata anche in contesti complessi, quindi più ecologici. I movimenti oculari di bambini di tre e sei mesi e adulti sono stati registrati attraverso un sistema di eye-tracker durante un compito di ricerca visiva. È stato indagato se bambini di pochi mesi sono in grado di percepire ed identificare in modo efficiente un volto umano quando inserito in contesti complessi, ossia tra oggetti (i.e., stimoli distrattori eterogenei, Esperimenti 8, 9 e 10) e tra volti invertiti (i.e., stimoli distrattori omogenei, Esperimenti 11 e 12). I risultati hanno dimostrato come il volto umano è in grado di catturare e mantenere l’attenzione di adulti e bambini di sei mesi quando è inserito fra distrattori eterogenei, mentre tale stimolo cattura e mantiene l’attenzione dei bambini di tre mesi solo quando è inserito tra distrattori omogenei. Tali risultati sono in linea con gli studi che hanno dimostrato che il volto cattura l’attenzione dei bambini di pochi mesi di vita quando si trova in contesti complessi (Gliga, Elsabbagh, Andravizou, & Johnson, 2009).
Per percepire il volto target in contesti complessi, i bambini hanno dovuto elaborare il volto come una unità complessa, una Gestalt (Tanaka & Farah, 1993). Questo tipo di strategia di elaborazione del volto viene definita olistica e lo scopo dello Studio 3 (Capitolo 5) è stato quello di studiarne l’origine e lo sviluppo in neonati, bambini di tre mesi e adulti utilizzando lo stesso compito chiamato “composite face paradigm” (Young, Hellawell, & Hay, 1987) (Esperimenti 13, 14 e 15). I risultati dimostrano che, sebbene i primi segni della capacità di elaborare un volto come un’unità complessa si osservano in bambini di pochi mesi di vita, tuttavia è necessaria l’esperienza visiva per raffinare tale tipo di elaborazione del volto.
Complessivamente, i dati presentati in questa tesi sono in linea con l’idea che la specificità del sistema cognitivo per l’elaborazione del volto umano non sia presente alla nascita, ma sia invece il risultato di un processo di sviluppo, in cui giocano un ruolo fondamentale sia le predisposizioni innate del neonato, sia l’esperienza visiva esperita nel proprio ambiente di vita specie-specifico nei primi mesi di vita.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Simion, Francesca
Dottorato (corsi e scuole):Ciclo 23 > Scuole per il 23simo ciclo > SCIENZE PSICOLOGICHE > PSICOLOGIA DELLO SVILUPPO E DEI PROCESSI DI SOCIALIZZAZIONE
Data di deposito della tesi:NON SPECIFICATO
Anno di Pubblicazione:31 Gennaio 2011
Parole chiave (italiano / inglese):elaborazione volto, rappresentazione del volto, neonati, bambini di pochi mesi, restringimento percettivo, sistema eye-tracker, paradigma di ricerca visiva, paradigma del composite. face processing, face representation, newborns, infants, perceptual narrowing, eye-tracker system, visual search paradigm, composite face paradigm
Settori scientifico-disciplinari MIUR:Area 11 - Scienze storiche, filosofiche, pedagogiche e psicologiche > M-PSI/04 Psicologia dello sviluppo e psicologia dell'educazione
Struttura di riferimento:Dipartimenti > Dipartimento di Psicologia dello Sviluppo e della Socializzazione
Codice ID:3437
Depositato il:20 Lug 2011 09:45
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Abramov, I., Gordon, J., Hendrickson, A., Hainline, L., Dobson, V., & LaBossiere, E. (1982). The retina of the newborn human infant. Science, 217, 265-267. Cerca con Google

Acerra, F., Burnod, Y., & de Schonen S. (2002). Modelling aspects of face processing in early infancy. Developmental Science, 5, 98-117. Cerca con Google

Adler, S. A., Gerhardstein, P., & Rovee-Collier, C. (1998). Levels of processing effects in infant memory? Child Development, 69, 280-294. Cerca con Google

Adler, S. A., Inslicht, S., Rovee-Collier, C., & Gerhardstein, P. C. (1998). Perceptual asymmetry and memory retrieval in 3-month-old infants. Infant Behavior & Development, 21, 253-272. Cerca con Google

Adler, S. A., & Orprecio, J. (2006). The eyes have it: visual pop-out in infants and adults. Developmental Science, 9, 189-206. Cerca con Google

Adolphs, R. (1999). Social cognition and the human brain. Trends in Cognitive Science, 3, 469-479. Cerca con Google

Allison, T., Puce, A., & McCarthy, G. (2000). Social perception from visual cues: role of the STS region. Trends in Cognitive Neuroscience, 4, 267-278. Cerca con Google

Althoff, R. R., & Cohen, N. J. (1999). Eye-movement-based memory effect: A reprocessing effect in face perception. Journal of Experimental Psychology: learning, Memory & Cognition, 25, 997-1010. Cerca con Google

Antell, S., Caron, A. J., & Myers, R. S. (1985). Perception of relational invariants by newborns. Developmental Psychology, 21, 942-948. Cerca con Google

Aslin, R. N., & Fiser, J. (2005). Methodological challenges for understanding cognitive development in infants. Trends in Cognitive Sciences, 9, 92-98. Cerca con Google

Atkinson, J., & Braddick, O. (1989). Development of basic visual functions. In A. Slater and G. Bremner (Eds.). Infant Development. Erlbaum, UK. Cerca con Google

Atkinson, J., Hood, B., Wattam-Bell, J., & Braddick, O. (1992). Changes in infants’ ability to switch visual attention in the first three months of life. Perception, 21, 643–653. Cerca con Google

Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effcts modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59, 390-412. Cerca con Google

Baillargeon, R., & Wang, S. (2002). Event categorization in infancy. Trends in Cognitive Sciences, 6, 85-93. Cerca con Google

Banks, M. S., & Ginsburg, A. P. (1985). Infant visual preferences: a review and new theoretical treatment. Advances in Child Development and Behavior, 19, 207-245. Cerca con Google

Banks, M. S., & Salapatek, P. (1981). Infant pattern vision: a new approach based on the contrast sensitivity function. Journal of Experimental Child Psychology, 31, 1-45. Cerca con Google

Bar-Haim, Y., Talee, Z., Lamy, D., & Hodes, R. M. (2006). Nature and nurture in own-race face processing. Psychological Science, 17, 159-163. Cerca con Google

Baron-Cohen, S. (1995). Mind blindness: an essay on autism and theory of mind. Cambridge, MA: MIT Press. Cerca con Google

Bartrip, J., Morton, J., & de Schonen, S. (2001). Responses to mother's face in 3-week to 5-month-old infants. British Journal of Developmental Psychology, 19, 219-232. Cerca con Google

Bates, D. M. (2007). Linear mixed model implementation in lme4. Manuscript, University of Wisconsin -Madison, January, 2007. Cerca con Google

Bates, E. A., & Elman, J. L., (1993). Connectionism and the study of change. In M. Johnson (Ed.), Brain development and cognition: A reader (pp. 420-440). Oxford: Blackwell Publishers. Cerca con Google

Batki, A., Baron-Cohen, S., Wheelwright, S., Connellan, J., & Ahluwalia, J. (2000). Is there an innate module? Evidence from human neonates. Infant Behavior & Development, 23, 223–229. Cerca con Google

Bailey, A. J., Braeutigam, S., Jousmaki, V., & Swithenby, S. S. (2005). Abnormal activation of face processing systems at early and intermediate latency in individuals with autism spectrum disorder: a magnetoencephalographic study. European Journal of Neuroscience, 21, 2575–2585. Cerca con Google

Bertin, E., & Bhatt, R. S. (2004). The Thatcher illusion and face processing in infancy. Developmental Science, 7, 431-436. Cerca con Google

Bhatt, R. S. Bertin, E., Hayden, A., & Reed, A. (2005). Face processing in infancy: developmental changes in the use of different kinds of relational information. Child Development, 76, 169-181. Cerca con Google

Bindemann, M., Burton, M., Hooge, I. T. C., Jenkins, R., & de Haan, E. H. F. (2005). Faces retain attention. Psychonomic Bulletin & Review, 12, 1048-1053. Cerca con Google

Brothers, L. (1996). Brain mechanisms of social cognition. Journal of Psychopharmacology, 10, 2-8. Cerca con Google

Brown, V. Huey, D., & Findlay, J. M. (1997) Face detection in peripheral vision: do faces pop out? Perception, 26, 1555-1570. Cerca con Google

Bruce, V., & Young, A. (1986). Understanding face recognition. British Journal of Psychology, 77, 305-327. Cerca con Google

Bulf, H., Valenza, E., & Simion, F. (2009). Searching for an illusory figure: A comparison between infants and adults. Perception, 38, 1313-1327. Cerca con Google

Bukach, C. M., Gauthier, I., & Tarr, M. J. (2006). Beyond faces and modularity: the power of an expertise framework. Trends in Cognitive Sciences, 10, 159-166. Cerca con Google

Burton, A. M., Bruce, V., & Johnston, R. A., (1990). Understanding face recognition with an interactive activation model. British Journal of Psychology, 81, 361-380. Cerca con Google

Bushnell, I.W.R., Sai, F., & Mullin, J.T. (1989). Neonatal recognition of the mother's face. British Journal of Developmental Psychology, 7, 3-15. Cerca con Google

Calder, A. J., & Young, A. W. (2005). Understanding the recognition of facial identity and facial expression. Nature Reviews Neuroscience, 6, 641-651. Cerca con Google

Calvo, M. G. & Nummenmaa, L. (2008). Detection of emotional faces: salient physical features guide effective visual search. Journal of Experimental Psychology: General, 137, 471-494. Cerca con Google

Carey, S., & Diamond, R. (1994). Are faces perceived as configurations more by adults than by children? Visual Cognition, 1, 253-274. Cerca con Google

Cashon, C. H., & Cohen, L. B. (2001). Do 7-month-old infants process independent features or facial configurations? Infant and Child Development, 10, 83-92. Cerca con Google

Cashon, C. H. & Cohen, L. (2003). The construction, deconstruction, and reconstruction of infant face perception. In O. Pascalis & A. Slater (Eds.), The development of face processing in infancy and early childhood: Current perspectives (pp. 13–25). New York: Nova Science Publishers. Cerca con Google

Chao, L. L., Haxby, J. V., & Martin, A. (1999). Attribute-based substrates in temporal cortex for perceiving and knowing about objects. Nature Neuroscience, 2, 913-919. Cerca con Google

Cheour, M., Ceponiene, R., Lehtokoski, A., Luuk, A., Allik, J., Alho, K., et al. (1998). Development of language-specific phoneme representations in the infant brain. Nature neuroscience, 1, 351-353. Cerca con Google

Chomsky, N. (1988). Language and the problems of knowledge: The Managua lectures. Cambridge, MA: MIT Press. Cerca con Google

Cohen, L. B. (1972). Attention-getting and attention-holding processes of infant visual preferences. Child Development, 43, 869-879. Cerca con Google

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd Ed.). Hillsdale, NJ: Erlbaum. Cerca con Google

Collishaw, S. M., & Hole, G. J. (2000). Featural and configurational processes in the recognition of faces of different familiarity. Perception, 29, 893-909. Cerca con Google

Colombo, J., Ryther, J. S., Frick, J. E., & Gifford, J. G. (1995). Visual pop-out in infants: evidence for preattentive search in 3- and 4-month-olds. Psychonomic Bulletin & Review, 2, 266-268. Cerca con Google

Costen, N. P., Ellis, H. D., & Craw, I. (1994). Masking of faces by facial and non-facial stimuli. Visual Cognition, 1, 227-251. Cerca con Google

Darwin, C. (1859). On the origin of the species by means of a natural selection, or, preservation of favoured races in the struggle for life. London: Murray. Cerca con Google

de Haan, M. (2001). The neuropsychology of face processing during infancy and childhood. In C. A. Nelson & M. Luciana, (Eds). Handbook of Developmental Cognitive Neuroscience (pp. 381-398). Cambridge, MA: MIT Press. Cerca con Google

de Haan, M., & Halit, H.(2001). Neural bases and development of face recognition during infancy. In A. Kalverboer, & A. Gramsbergen, (Eds.). Handbook of Brain and Behaviour in Human Development (pp. 921–938). Kluwer Academic, Dordrecht. Cerca con Google

de Haan, M., Johnson, M. H., Maurer, D., & Perrett, D. (2001). Recognition of individual faces and average face prototypes by 1- and 3-month-old infants. Cognitive Development, 1, 659-678. Cerca con Google

de Heering, A., Houthuys, S., & Rossion, B. (2007). Holistic face processing is mature at 4 years of age: evidence from the composite face effect. Journal of Experimental Child Psychology, 96, 57-70. Cerca con Google

de Heering, A., Rossion, B., Turati, C., & Simion, F. (2008). Holistic face processing can be independent of gaze behaviour: Evidence from the composite face illusion. Journal of Neuropsychology, 2, 183-195. Cerca con Google

De Renzi, E. (1986). Slowly progressive visual agnosia or apraxia without dementia. Cortex, 22, 171-180. Cerca con Google

Deruelle, C., & de Schonen, S. (1998). Do the right and left hemispheres attend to the same visuospatial information within a face in infancy? Developmental Neuropsychology, 14, 535-554. Cerca con Google

de Schonen, S. (2002). Epigenesis of the cognitive brain: a task for the 21st Century. In L. Backman and C. von Hofsten (Eds.), Psychology at the turn of the millenium Hove, UK: Psychology Press, pp. 55–88. Cerca con Google

de Schonen, S., & Mathivet, E. (1989). First come first served. A scenario about development of hemispheric specialization in face recognition during infancy. European Bulletin of Cognitive Psychology, 9, 3–44. Cerca con Google

Desimone, R. (1991). Face-selective cells in the temporal cortex of monkeys. Journal of Cognitive Neuroscience, 3, 1-8. Cerca con Google

Diamond, R., & Carey, S. (1986). Why faces are and are not special: an effect of expertise. Journal of Experimental Psychology: General, 115, 107-117. Cerca con Google

Di Giorgio, E., Leo, I., Pascalis, O., & Simion, F. (submitted). Is early facial representation human-specific? Developmental Psychology. Cerca con Google

Di Giorgio, E., Leo, I., & Simion, F. (submitted). The role of the low-level variables in newborns’ eyes perception. Visual Cognition. Cerca con Google

Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological Review, 96, 433-458. Cerca con Google

Ekman, P., & Friesen, W. V. (1982). Felt, false, and miserable smiles. Journal of Nonverbal Behavior, 6, 238-252. Cerca con Google

Ellis, A. W., Burton, A. M., Young, A., & Flude, B. M. (1997). Repetition priming between parts and wholes: tests of a computational model of familiar faced recognition. British Journal of Psychology, 88, 579-608. Cerca con Google

Elman, J. L., Bates, E. A., Johnson, M. H., Karmiloff-Smith, A., Parisi, D., & Plunkett, K. (1996). Rethinking innateness. A connectionist perspective on development. Cambridge, MA: The MIT Press. Cerca con Google

Epstein, R., & Kanwisher, N. (1998). A cortical representation of the local environment. Nature, 392, 598-601. Cerca con Google

Easterbrook, M. A., Kisilevsky, B. S., Hains, S. M. J., &Muir, D. W. (1999). Faceness or complexity: evidence from newborn visual tracking of facelike stimuli. Infant Behavior & Development, 22, 17-35. Cerca con Google

Farah, M. J. (1996). Is face recognition special? Evidence from neuropsychology. Behavioural Brain Research, 76, 181-189. Cerca con Google

Farah, M. J., Rabinowitz, C., Quinn, G. E., & Liu, G. T. (2000). Early commitment of neural substrates for face recognition. Cognitive Neuropsychology, 17, 117-123. Cerca con Google

Farah, M. J., Wilson, K. D., Drain, M., & Tanaka, J. N. (1998). Psychological Review, 105, 482-498. Cerca con Google

Faraway, J. J. (2006). Extending the Linear Model with R: generalized linear, mixed effects and nonparametric regression models. CRC Press. Cerca con Google

Farroni, T., Csibra, G., Simion, F., & Johnson, M. H. (2002). Eye contact detection in humans from birth. Proceedings of the National Academy of Sciences of the United States of America, 99, 9602-9605. Cerca con Google

Farroni, T. Valenza, E., Simion, F., & Umiltà, C. (2000). Configural processing at birth: evidence for perceptual organization. Perception, 29, 355-372. Cerca con Google

Findlay, J. M. (1997). Saccade target selection in visual search. Vision Research, 37, 617-631. Cerca con Google

Fletcher-Watson, S., Findlay, J. M., Leekam, S. R., & Benson, V. (2008). Rapid detection of person information in a naturalistic scene. Perception, 37, 571-583. Cerca con Google

Fodor, J. (1983). The modularity of mind. An essay on faculty psychology. Cambridge, MA: MIT Press. Cerca con Google

Frank, M. C., Vul, E., & Johnson, S. P. (2009). Development of infants’ attention to face during the first year. Cognition, 210, 160-170. Cerca con Google

Freire, A., Lee, K., & Symons, L. A. (2000). The face-inversion effect as a deficit in the encoding of configural information: direct evidence. Perception, 29, 159-170. Cerca con Google

Galton, F. (1883). Inquiries into human faculty and its development. London: Macmillan. Cerca con Google

Gauthier, I., & Logothetis, N. K. (2000). Is face recognition unique after all? Cognitive Neuropsychology, 17, 125-142. Cerca con Google

Gauthier, I., & Nelson, C. A. (2001). The development of face expertise. Current Opinion in Neurobiology, 11, 219-224. Cerca con Google

Gauthier, I., Skudlarski, P., Gore, J. C., & Anderson, A. W. (2000). Expertise for cars and birds recruits brain areas involved in face recognition. Nature Neuroscience, 3, 191-197. Cerca con Google

Gauthier, I., & Tarr, M. J. (1997). Becoming a greeble expert: exploring mechanisms for face recognition. Vision Research, 37, 1673-1682. Cerca con Google

Gauthier, I., & Tarr, M. J., & Anderson, A. W., Skudlarski, P., & Gore, J. C. (1999). Activation of the middle fusiform “face area” increases with experience in recognizing novel objects. Nature Neuroscience, 2, 568-573. Cerca con Google

Gauthier, I., Tarr, M. J., Moylan, J., Skudlarski, P., Gore, J. C., & Anderson, A. W. (2000). The fusiform face area is part of a network that processes faces at the individual level. Journal of Cognitive Neuroscience, 12, 495-504. Cerca con Google

Gauthier, I., Williams, P., Tarr, M. J., & Tanaka, J. (1998). Training greeble’ experts: a framework for studying expert object recognition processes. Vision Research, 38, 2401-2428. Cerca con Google

Gava, L., Valenza, E., Turati, C., & de Schonen, S. (2008). Effect of partial occlusion on newborns' face preference and recognition. Developmental Science, 11, 563-574. Cerca con Google

Gallay, M., Baudouin, J. Y., Durand, K., Lemoine, C., & Lécuyer, R. (2006). Qualitative differences in the exploration of upright and upside-down faces in four-mounth-old infants: An eye-movement study. Child Development, 77, 984-996. Cerca con Google

Gelman, R. (1990). First principles organize attention to and learning about relevant data: number and animate-inanimate distinction as examples. Cognitive Science, 1, 79-106. Cerca con Google

Gliga, T. & Csibra, G. (2007). Seeing the face through the eyes: a developmental perspective on face expertise. In C. von Hofsten & K. Rosander (Eds.), Progress in Brain Research, 164 (pp. 323-339). Elsevier. Cerca con Google

Gliga, T., Elsabbagh, M., Andravizou, A., & Johnson, M. H. (2009). Face attract infants’ attention in complex displays. Infancy, 14, 550-562. Cerca con Google

Gobbini, M. I., & Haxby, J. V. (2007). Neural systems for recognition of familiar faces. Neuropsychologia, 45, 32-41. Cerca con Google

Goldstein, H. (2005). Multilevel models. In P. Armitage, & T. Colton (Eds.) Encyclopedia of Biostatistics. Wiley. Cerca con Google

Goren, C. C., Sarty, M., & Wu, P. Y. K. (1975). Visual following and pattern discrimination of face-like stimuli by newborn infants. Pediatrics, 56, 544–549. Cerca con Google

Gottlieb, G. (1992). Individual development and evolution: The genesis of novel behavior. Oxford, Oxford University Press. Cerca con Google

Gottlieb, G. (2007). Probabilistic epigenesis. Developmental Science, 10, 1-11. Cerca con Google

Greenough, W. T., & Black, J. E. (1992). Induction of brain structure by experience: Substrates for cognitive development. In M. Gunnar and C. A. Nelson (Eds.), Behavioral developmental neuroscience. Vol. 24. Minnesota symposia on child psychology (pp. 35-52). Hillsdale, NJ: Erlbaum. Cerca con Google

Greenough, W. T., Black, J. E., & Wallace, C. S. (1987). Experience and brain development. Child Development, 58, 539-559. Cerca con Google

Gross, C. G., Roche-Miranda, C. E., & Bender, D. B. (1972). Visual properties of neurons in infero-temporal cortex of the macaque. Journal of Neuropsychology, 35, 96-111. Cerca con Google

Hainline, L., (1978). Developmental changes in visual scanning of face and nonface patterns by infants. Journal of Experimental Child Psychology, 25, 90-115. Cerca con Google

Halit, H., de Haan, M., & Johnson, M.H. (2003). Cortical specialization for face processing: Face-sensitive event-related potential components in 3- and 12-month-old infants. Neuroimagine, 19, 1180-1193. Cerca con Google

Hancock, P. J. B., Bruce, V., & Burton, A. M. (2000). Recognition of unfamiliar faces. Trends in Cognitive Sciences, 4, 330-337. Cerca con Google

Hansen, C. H., & Hansen, R. D. (1988). Finding a face in the crowd: an angry superiority effect. Journal of Personality and Social Psychology, 54, 917-924. Cerca con Google

Hasselmo, M. E., Rolls, E. T., & Baylis, G. C. (1989). The role of expression and identity in the face-selective responses of neurons in the temporal visual cortex of the monkey. Behavioural Brain Research, 32, 203-218. Cerca con Google

Haxby, J. V., Hoffmann, E. A., & Gobbini, M. I. (2000). The distributed human neural system for face perception. Trends in Cognitive Sciences, 4, 223-233. Cerca con Google

Haxby, J. V., Hoffmann, E. A., & Gobbini, M. I. (2002). Human neural system for face recognition and social communication. Biological Psychiatry, 51, 59-67. Cerca con Google

Haxby, J. V., Ungerleider, L. G., Clark, V. P., Schouten, J. L., Hoffmann, E. A., & Martin, A. (1999). The effect of face inversion on activity in human neural systems for face and object perception. Neuron, 22, 189-199. Cerca con Google

Hayden, A., Bhatt, R. S., Reed, A., Corby, C. R., Joseph, J. E. (2007). The development of expert face processing: are infants sensitive to normal differences in second-order relational information? Journal of Experimental Child Psychology, 7, 85–98. Cerca con Google

Henderson, J. M. (2006). Eye movements. In C.Senior, T. Russell, & M. Gazzaniga (Eds.), Methods in mind (pp. 171-191). Cambridge, MA: MIT Press. Cerca con Google

Henderson, J. M., Falk, R. J., Minut, S., Dyer, F. C., & Mahadevan, S. (2001). Gaze control for face learning and recognition by humans and machines. In T. Shipley & P. Kellman (Eds.), From fragments to objects: segmentation processes in vision (pp. 463-482) Amsterdam: Elsevier. Cerca con Google

Henderson, J. H., Williams C. C., & Falk, R. (2005). Eye movements are functional during face learning. Memory & Cognition, 33, 98-106. Cerca con Google

Heron-Delaney, M., Wirth, S., & Pascalis, O. (in press). Infants’ knowledge of their own Cerca con Google

species. Cerca con Google

Herschler, O. & Hochstein, S. (2005). At first sight: a high-level pop-out effect for faces. Vision Research, 45, 1707-1724. Cerca con Google

Heywood, S., & Churcher, J. (1980). Structure of the visual array and saccadic latency: implications for oculomotor control. Quarterly Journal of Experimental Psychology, 32, 335-341. Cerca con Google

Hoffmann, E. A., & Haxby, J. V. (2000). Distinct representations of eye gaze and identity in the distributed human neural system for face perception. Nature Neuroscience, 3, 80-84. Cerca con Google

Hole, G. (1994). Configurational factors in the perception of unfamiliar faces. Perception, 23, 65-74. Cerca con Google

Hole, G. J., George, P. A., & Dunsmore, V. (1999). Evidence for holistic processing of faces viewed as photographic negatives. Perception, 28, 341-359. Cerca con Google

Horowitz, F. D., Paden, L., Bhama, K., & Self, P. (1972). An infant-control procedure for studying infant visual fixation. Developmental Psychology, 7, 90. Cerca con Google

Humphreys, G. W., Hodsoll, J., & Campbell, C. (2005). Attending but not seeing: the other race effect in face and person perception studied through change blindness. Visual Cognition, 12, 249-262. Cerca con Google

Ishai, A., Ungerleider, L. G., Martin, A., Schouten, J. L., & Haxby, J. V. (1999). Distributed representation of objects in the human ventral visual pathway. Proceedings of the National Academy of Sciences of the United States of America, 96, 9379-9384. Cerca con Google

Johnson, M. H. (1993). Constraints on cortical plasticity. In M. J. Johnson (Eds.). Brain Development and Cognition. A reader (pp. 703-721). Cambridge, MA: Blackwell. Cerca con Google

Johnson, M. H. (1997). Developmental cognitive neuroscience. Blackwell Publisher. Cerca con Google

Johnson, M. H. (2000). Functional brain development in infants: Elements of an interactive specialization framework. Child Development, 71, 75 – 81. Cerca con Google

Johnson, M. H. (2001). Functional brain development in humans. Nature Reviews Neuroscience, 2, 475-483. Cerca con Google

Johnson, M. H. (2002). Neural mechanisms of cognitive development in infancy. In: J.L. McClelland & R. M. Thompson (Eds.), International Encyclopedia of the Social and Behavioral Sciences (pp. 2103-2108). Elsevier Science Ltd. Cerca con Google

Johnson, M. H. (2005). Subcortical face processing. Nature Reviews Neuroscience, 6, 766–773. Cerca con Google

Johnson, M. H. (2006). Biological Motion: A perceptual life detector? Current Biology, 16, R376-R377. Cerca con Google

Johnson, M. H. (2007). The social brain in infancy: A developmental cognitive neuroscience approach. In D. Coch, K.W, Fischer, & G. Dawson (Eds.), Human Behavior, Learning and the Developing Brain: Typical Development.(pp. 115-137). New York: Guilford Press. Cerca con Google

Johnson, M. H., Dziurawiec, S., Ellis, H., & Morton, J. (1991). Newborns’ preferential tracking of face-like stimuli and its subsequent decline. Cognition, 40, 1-19. Cerca con Google

Johnson, M.H., Grossman, T., & Farroni, T. (2008). The social cognitive neuroscience of infancy: Illuminating the early development of social brain functions. Advances in Child Development and Behavior, 36, 331-372. Cerca con Google

Johnson, M. H., & Morton, J. (1991). Biology and cognitive development: the case of face recognition. Oxford, UK: Blackwell. Cerca con Google

Kanwisher, N. (2000). Domain specificity in face perception. Nature Neuroscience, 3, 759-763. Cerca con Google

Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: a module in extrastriate cortex specialized for face perception. The Journal of Neuroscience, 17, 4302-4311. Cerca con Google

Kanwisher, N., & Moscovitch, M. (2000). The cognitive neuroscience of face processing: an introduction. Cognitive Neuropsychology, 17, 1-11. Cerca con Google

Kanwisher, N., Tong, F., & Nakayama, K. (1998). The effect of face inversion on the human fusiform face area. Cognition, 68, B1-B11. Cerca con Google

Kanwisher, N., & Yovel, G. (2006). The fusiform face area: a cortical region specialized for the perception of faces. Philosophical Transactions of the Royal Society B: Biological Sciences, 361, 2109-2128. Cerca con Google

Karmiloff-Smith, A. (1992). Beyond modularity: a developmental perspective on cognitive science. Cambridge, MA: MIT Press. Cerca con Google

Karmiloff-Smith, A. (1994). Precis of beyond modularity: a developmental perspective on cognitive science. Behavioral and Brain Sciences, 17, 693-707. Cerca con Google

Karmiloff-Smith, A. (1998). Developmental itself is the key to understanding developmental disorders. Trends in Cognitive Sciences, 2, 389-398. Cerca con Google

Kellman, P. J. (1993). Kinematic foundations of infant visual perception. In C. Granrud, Visual perception and cognition in infancy (pp. 121-173). Hillsdale, NJ: Erlbaum. Cerca con Google

Kelly, D. J., Slater, A. M., Lee, K., Gibson, A., Smith, M., Ge, L., & Pascalis, O. (2005). Three-month-olds, but not newborns, prefer own-race faces. Developmental Science, 8, F31-F36. Cerca con Google

Kleiner, K. A. (1987). Amplitude and phase spectra as indices of infants’ pattern preferences. Infant behavior and development, 10, 49-59. Cerca con Google

Kobayashi, H., & Kohshima, S. (1997). Unique morphology of the human eye. Nature, 387, 767-768. Cerca con Google

Kuehn, S. M., & Jolicoeur, P. (1994). Impact of quality of the image, orientation, and similarity of the stimuli on visual search for faces. Perception, 23, 95-122. Cerca con Google

Kuhl, P. K., Williams, K. A., Lacerda, F., Stevens, K. N., & Lindblom, B. (1992). Linguistic experience alters phonetic perception in infants by 6 months of age. Science, 255, 606-608. Cerca con Google

Langlois, J. H., & Roggman, L. A. (1990). Attractive faces are only average. Psychological Science, 1, 115-121. Cerca con Google

Langton, S. R. H. (2000). The mutual influence of gaze and head orientation in the analyses of social attention direction. The Quarterly Journal of Experimental Psychology A, 3, 825-845. Cerca con Google

Langton, S. R. H., Law, A. S., Burton, M., & Schweinberger, S. R. (2008). Attention capture by face. Cognition, 107, 330-342. Cerca con Google

Leder, H., & Bruce, V. (1998). Local and relational aspects of face distinctiveness. Quarterly Journal of Experimental Psychology, 51A, 449-473. Cerca con Google

Leder, H., & Bruce, V. (2001). When inverted faces are recognised: the role of configural information in face recognition. Quarterly Journal of Experimental Psychology: Human Perception and Performance, 22, 904-915. Cerca con Google

Leder, H., Candrian, G., Huber, O., & Bruce, V. (2001). Configural features in the context of upright and inverted faces. Perception, 30, 73-83. Cerca con Google

Le Grand, R., Mondloch, C. J., Maurer, D., & Brent, H. P. (2003). Expert face processing requires visual input to the right hemisphere during infancy. Nature neuroscience, 6, 1108-1112. Cerca con Google

Leo, I., & Simion, F. (2009a). Newborns' Mooney face perception. Infancy, 14, 641-653. Cerca con Google

Leo, I., & Simion, F. (2009b). Face processing at birth: a Thatcher illusion study. Developmental Science, 12, 492-498. Cerca con Google

LeRoy Conel., J. (1939). The postnatal development of the human cerebral cortex: vol. 1. Harvard University Press. Cerca con Google

Lewkowicz, D. J., & Ghazanfar, A. A. (2006). The decline of cross-species intersensory perception in human infants. Proceedings of The National Academy of Sciences of the United States of America, 103, 6771-6774. Cerca con Google

Lewis, M. B., & Edmonds, A. J. (2005). Searching for faces in scrambled scenes. Visual Cognition, 12, 1309-1336. Cerca con Google

Macchi Cassia, V., Kuefner, D., Westerlund, A., & Nelson, C. A. (2006). A behavioral and ERP investigation of 3-month-olds’ face preferences. Neuropsychologia, 44, 2113-2125. Cerca con Google

Macchi Cassia, V., Picozzi, M., Kuefner, D., Bricolo, & Turati, C. (2009). Holistic processing for faces and cars in preschool-aged children and adults: evidence from the composite effect. Developmental Science, 12, 236-248. Cerca con Google

Macchi Cassia, V., Simion, F., Milani, I., & Umilta`, C. A. (2002). Dominance of global visual properties at birth. Journal of Experimental Psychology: General, 4, 398-411. Cerca con Google

Macchi Cassia, V., Turati, C., & Simion, F. (2004). Can a non-specific bias toward top-heavy patterns explain newborns’ face preference? Psychological Science, 15, 379-383. Cerca con Google

Macchi Cassia, V., Valenza, E., Simion, F, Leo, I. (2008). Congruency as a nonspecific perceptual property contributing to newborns’ face preference. Child Development, 79, 807-820. Cerca con Google

Malcom, G. L., Lanyon, L. J., Fugard, A. J. B., & Barton, J. J. S. (2008). Scan patterns during the processing of facial expression versus identity: an exploration of task-driven and stimulus-driven effects. Journal of Vision, 8, 1-9. Cerca con Google

Mareschal., D., Johnson, M. H., Sirois, S., Spartling, M. W., Thomas, M. S. C., & Westermann, G. (2007). Neuroconstructivism: How the brain constructs cognition. Oxford: Oxford University Press. Cerca con Google

Mareschal., D., Sirois, S., Westermann, G., & Johnson, M. H. (2007). Neuroconstructivism vol II: Perspectives and prospects. Oxford: Oxford University Press. Cerca con Google

Maurer, D. (1985). Infants’ perception of facedness. In T. N. Field & N. Fox (Eds.), Social perception in infants (pp. 73-100). Norwood, NJ: Ablex. Cerca con Google

Maurer, D., Le Grand, R., & Mondloch, C. J. (2002). The many faces of configural processing. Trends in Cognitive Sciences, 6, 255-260. Cerca con Google

McKone, E., Kanwisher, N., & Duchaine, B. C. (2007). Can generic expertise explain special processing for faces? Trends in Cognitive Sciences, 11, 8-15. Cerca con Google

McNeil, J. E., & Warrington, E. K. (1993). Prosopagnosia: a face-specific disorder. Quarterly Journal of Experimental Psychology A, 46, 1-10. Cerca con Google

McSorley E. & Findlay J. M. (2003). Saccade target selection in visual search: accuracy improves when more distractors are present. Journal of Vision, 3, 877-892. Cerca con Google

Meissner, C. A., & Brigham, J.C. (2001). Thirty years of investigating the own-race bias memory for faces: a meta-analytic review. Psychology, Public Policy, and Law, 7, 3–35. Cerca con Google

Meltzoff, A. N., & Moore, M. K. (1977). Imitation of facial and manual gestures by human neonates. Science, 198, 75–78. Cerca con Google

Mondloch, C. J., Le Grand, R., & Maurer, D. (2002). Configural face processing develops more slowly than featural face processing. Perception, 31, 553-566. Cerca con Google

Mondloch, C. J., Pathman, T., Maurer, D., Le Grand, R., & de Schonen, S. (2007). The composite effect in six-year-old children: evidence for adult-like holistic face processing. Visual Cognition, 15, 564-577. Cerca con Google

Morton, J., & Johnson, M. H. (1991). CONSPEC and CONLERN: A two-process theory of infant face recognition. Psychological Review, 98, 164-181. Cerca con Google

Moscovitch, M., Winocur, G., & Behrmann, M. (1997). What is special in face recognition? Nineteen experiments on a person with visual object agnosia and dyslexia but normal face recognition. Journal of Cognitive Neuroscience, 9, 555-604. Cerca con Google

Motter, B. C., & Belky, E. J. (1998). The guidance of eye movements during active visual search. Vision Research, 38, 1805-1818. Cerca con Google

Nahm, F. D., Perret, A., Amaral, D. G., & Albright, T. D. (1997). How do monkeys look at faces. Journal of Cognitive Neuroscience, 9, 611-623. Cerca con Google

Nelson, C. A. (2001). The development and neural bases of face recognition. Infant and Child Development, 10, 3-18. Cerca con Google

Nelson, C. A. (2003). The developmental of face recognition reflects an experience-expectant and experience-dependent process. In O. Pascalis and A. Slater, (Eds.) The development of face processing in infancy and early childhood: Current Perspectives (pp. 79-88). Nova Science Publishers, New York. Cerca con Google

Nelson, C. A., & Luciana, M. (Eds.) (2001). Handbook of developmental cognitive neuroscience. Cambridge, MA: MIT Press. Cerca con Google

Nothdurft, H. C. (1993). Faces and facila expressions do not pop out. Perception, 22, 1287-1298. Cerca con Google

Ohman, A., Lundqvist, D., & Esteves, F. (2001). The face in the crowd revisited: a threat advantage with schematic stimuli. Journal of Personality and Social Psychology, 80, 381-396. Cerca con Google

Palermo, R., & Rhodes, G. (2003). Change detection in the flicker paradigm: Do faces have an advantage? Visual Cognition, 10, 683-713. Cerca con Google

Palermo, R., & Rhodes, G. (2007). Are you always on my mind? A review of how face perception and attention interact. Neuropsychologia, 45, 75-92. Cerca con Google

Palmer, S. E. (1991). Goodness, gestalt, groups, and Garner: Local symmetry subgroups as a theory of figural goodness. In G. R. Lockhead and J. R. Pomerantz (Eds.), The perception of structure: Essays in honor of Wendell R. Garner (pp. 23-29). American Psychological Association, Washington, DC. Cerca con Google

Pascalis, O., de Haan, M., & Nelson, C. A. (2002). Is face processing specie-specific during the first year of life? Science, 296, 1321-1323. Cerca con Google

Pascalis, O., de Haan, M., Nelson, C. A., & de Schonen, S. (1998). Long-term recognition memory for faces assessed by visual paired comparison in 3- and 6-month-old infants. Journal of Experimental Psychology: Learning, Memory, and Cognition, 24, 249-260. Cerca con Google

Pascalis, O., & de Schonen, S. (1994). Recognition memory in 3-4-day-old human infants. NeuroReport, 5, 1721-1724. Cerca con Google

Pascalis, O., & Kelly, D. J. (2009). The origins of face processing in humans. Perspectives on Psychological Science, 4, 200-209. Cerca con Google

Pascalis, O., Scott, L. S., Kelly, D. J., Shannon, R. W., Nicholson, E., Coleman, M., & Nelson, C. A. (2005). Plasticity of face processing in infancy. Proceedings of the National Academy of Sciences of the United States of America,12, 5297–5300. Cerca con Google

Pellicano E., & Rhodes, R. (2003). Holistic processing of faces in preschool children and adults. Psychological Science, 14, 618-622. Cerca con Google

Perret, D. I., & Mistlin, A. J. (1990). Perception of facial attributes. In W. C. Stebbins and M. A. Berkley (Eds.), Comparative perception: vol. II. Complex signal (pp.187-215). New York: John Wiley. Cerca con Google

Perrett, D. I., Smith, P. A., Potter, D. D., Mistlin, A. J., Head, A. S., Milner, A. D., & Jeeves, M. A. (1985). Visual cells in the temporal cortex sensitive to face view and gaze direction. Proceedings of the Royal Society of London - Series B: Biological Sciences, 223, 293-317. Cerca con Google

Pinheiro, J. C., & Bates, D. M. (2000). Mixed-effects models in S and S-PLUS. New York: Springer. Cerca con Google

Prechtl, H., & O’Brien, M. J. (1982). Behavioral states of the full term newborn: The emergence of a concept. In P. Stratton (Eds.), Psychobiology of the human newborn. New York: Wiley. Cerca con Google

Puce, A., Allison, T., Gore, J. C., & McCarthy, G. (1995). Face-sensitive regions in human extrastriate cortex studied by functional MRI. Journal of Neuropsychology, 74, 1192-1199. Cerca con Google

Purcell, D. G., & Stewart, A. L. (1986). The face-detection effect. Bulletin of the Psychonomic Society, 24, 118-120. Cerca con Google

Purcell, D. G., Stewart, A. L., & Stov, R. B. (1996). It takes a confounded face to pop out of a crowd. Perception, 25, 1091-1108. Cerca con Google

Quartz, S. R., & Sejnowski, T. J. (1997). The neural basis of cognitive development: a constructivist manifesto. Behavioral and Brain Sciences, 20, 537-596. Cerca con Google

Quinn, P. C., & Bhatt, R. S. (1998). Visual pop-out in young infants: convergent evidence and an extension. Infant Behavior & Development, 21, 273-288. Cerca con Google

Quinn, P. C., Kelly, D. J., Lee, K., Pascalis, O., & Slater, A. (2008). Preference for attractive Cerca con Google

faces in human infants extends beyond conspecifics. Developmental Science, 11, 76-83. Cerca con Google

Quinn, P. C., & Slater, A. (2003). Face perception at birth and beyond. In O. Pascalis & A. Cerca con Google

Slater (Eds.), The development of face processing in infancy and early childhood. Current perspectives (pp. 3-12). Huntington, NY: Nova Science. Cerca con Google

Quinn, P. C., Uttley, L., Lee, K., Gibson, A., Smith, M., Slater, A., & Pascalis, O. (2008). Infant preference for female faces occurs for same- but not other-race faces. Journal of Neuropsychology, 2, 15-26. Cerca con Google

Quinn, P. C., Yahr, J., Kuhn, A., Slater, A. M., & Pascalis, O. (2002). Representation of the gender of human faces by infants: a preference for female. Perception, 31, 1109-1121. Cerca con Google

Raftery, A. E. (1995). Bayesian model selection in social research. Social Methodology, 25, 111-163. Cerca con Google

Rensink, R. A. (2002). Change detection. Annual Review of Psychology, 53, 245–277. Cerca con Google

Rensink, R., O'Regan, K., Clark J. J. (1997)To see or not to see: The need for attention to perceive changes in scenes. Psychological Science, 8, 368-373 Cerca con Google

Regolin, L., Tommasi, L., & Vallortigara, G. (2000). Visual perception of biological motion in newly hatched chicks as revealed by an imprinting procedure. Animal Cognition, 3, 53-60. Cerca con Google

Richmond, J., Sowerby, P., Colombo, M., & Hayne, H. (2004). The effect of familiarization time, retention interval, and context change on adults’ performance in the visual paired-comparison task. Developmental Psychobiology, 44, 146-155. Cerca con Google

Rizzolatti, G., Riggio, L., Dascola, I., & Umiltà, C. A. (1987). Reorienting attention across the horizontal and vertical meridians: evidence in favor of a premotor theory of attention. Neuropsychologia, 25, 31-40. Cerca con Google

Ro, T., Russell, C., & Lavie, N. (2001). Changing face: a detection advantage in the flicker paradigm. Psychological Science, 12, 94-99. Cerca con Google

Rolls, E. T. (1984). Neurons in the cortex of the temporal lobe and in the amygdala of the monkey selective for faces. Human Neurobiology, 3, 209-222. Cerca con Google

Rousselet, G. A., Mace, M. J., & Fabre-Thorpe, M. (2003). Is it an animal? Is it a human face? Fast processing in upright and inverted natural scenes. Journal of Vision, 3, 440-455. Cerca con Google

Rovee-Collier, C., Bhatt, R. S., & Chazin, S. (1996). Set size, novelty, and visual pop-out in infancy. Journal of Experimental Psychology: Human Perception and Performance, 22, 1178-1187. Cerca con Google

Rovee-Collier, C., Hankins, E., & Bhatt, R. S., & (1992). Textons, visual pop-out effects, and object recognition in infancy. Journal of Experimental Psychology: General, 121, 435-445. Cerca con Google

Rubenstein, A. J., Kalakanis, L., & Langlois, J. H. (1999). Infant preferences for attractive Cerca con Google

faces: a cognitive explanation. Developmental Psychology, 35, 848-855. Cerca con Google

Samaria, F., & Harter, A. (1994). Parameterization of a stochastic model for human face identification. Paper presented at the 2nd IEEE Workshop on Applications of Computer Vision, Sarasota (Florida), December. Cerca con Google

Scott, L. S., Pascalis, O., & Nelson, C. A. (2007). A domain-general theory of perceptual development. Current Direction in Psychological Science, 16, 197-201. Cerca con Google

Sergent, J., Ohta, S., & MacDonald, B. (1992). Functional neuroanatomy of face and object processing, a positron emission tomography study. Brain, 115, 15-36. Cerca con Google

Simion, F., Di Giorgio, E., Leo, I., & Bardi, L. (in press). The processing of social stimuli in infancy: from faces to biological motion perception. Chapter to appear in: Gene Expression to neurobiology and Behavior: Human Brain Development and Developmental Disorders. Progress in Brain Research, 189. Elsevier (Eds.). Cerca con Google

Simion F., & Leo, I. (2010). A neoconstructivistic approach to the emergence of a face processing system. In S. P. Johnson (Eds.). Neoconstructivism: the new science of cognitive development (pp. 314- 332). Oxford: Oxford University Press. Cerca con Google

Simion, F., Macchi Cassia, V., Turati, C., & Valenza, E. (2001). The origins of face perception: specific vs non-specific mechanisms. Infant and Child Development, 10, 59-65. Cerca con Google

Simion, F., Macchi Cassia, V., Turati, C. & Valenza, E. (2003). Non-specific perceptual biases at the origins of face processing. In A. Slater & O. Pascalis (Eds.),The development of face processing in infancy and early childhood (pp. 13-25). New York: Nova Science. Cerca con Google

Simion, F., Turati, C., Valenza, E., & Leo, I. (2006). The emergence of cognitive specialization in infancy: The case of face preference. In M. Johnson and M. Munakata (Eds.), Attention and Performance XXI, Processes of change in brain and cognitive development (pp. 189-208).Oxford University Press. Cerca con Google

Simion, F., Valenza, E., Macchi Cassia, V., Turati, C., & Umiltà, C. A. (2002). Newborns’ preference for up-down asymmetrical configurations. Developmental Science, 5, 427-434. Cerca con Google

Simion, F., Valenza, E., Umiltà, C., & Dalla Barba, B. (1998). Preferential orienting to faces in newborns: A temporal-nasal asymmetry. Journal of Experimental Psychology: Human Perception and Performance, 24, 1399-1405. Cerca con Google

Simons, D. J., Chabris, C. F., Schnur, T. T., & Levin, D. T. (2002). Evidence for preserved representations in change blindness. Consciousness and Cognition, 11, 78–97. Cerca con Google

Sirois, S., & Mareschal, D. (2002). Models of habituation in infancy. Trends in Cognitive Sciences, 6, 293-298. Cerca con Google

Sirois, S., & Mareschal, D. (2004). An interacting systems model of infant habituation. Journal of Cognitive Neuroscience, 16, 1352-1362. Cerca con Google

Sirois, S., Spratling, M., Thomas, M. S. C., Westermann, G., Mareschal, D., & Johnson, M. H. (2008). Precis of neuroconstructivism: how the brain construct cognition. Behavioral and Brain Sciences, 31, 321-356. Cerca con Google

Slater, A., Bremner, G., Johnson, S. P., Sherwood, P., Hayes, R., & Brown, E.(2000). Newborn infants' preference for attractive faces: The role of internal and external facial features. Infancy, 1, 265-274. Cerca con Google

Slater, A., Earle, D. C., Morison, V., & Rose, D. (1985). Pattern preferences at birth and their interaction with habituation-induced novelty preferences. Journal of Experimental Child Psychology, 39, 37-54. Cerca con Google

Slater, A., & Kirby, R. (1998). Innate and learned perceptual abilities in the newborn infant. Cerca con Google

Experimental Brain Research, 123, 90-94. Cerca con Google

Slater, A., & Quinn, P. C. (2001). Face recognition in the newborn infant. Infant and Child Cerca con Google

Development, 10, 21-24. Cerca con Google

Slater, A., Quinn, P. C., Hayes, R. A. & Brown, E. (2000). The role of facial orientation in Cerca con Google

newborn infants’ preference for attractive faces. Developmental Science, 3, 181-185. Cerca con Google

Slater, A., von der Schulenburg, C., Brown, E., Badenoch, M., Butterworth, G., Parsons, S., & Samuels, C. (1998). Newborn infants prefer attractive faces. Infant Behavior and Development, 21, 345-354. Cerca con Google

Spelke, E. S. (1990). Principles of object perception. Cognitive Science, 14, 29-56. Cerca con Google

Spelke, E. S. (1991). Physical knowledge in infancy: Reflections on Piaget’s theory. In S. Carey & R. Gelman (Eds.).The epigenesis of mind: Essays on biology and cognition (pp. 133-169). Hilsdale, NJ: Erlbaum. Cerca con Google

Sprague, J. M., Berlucchi, G., & Rizzolatti, G. (1973). The role of the superior colliculus and pretectum in vision and visually guided behavior. In R. Jung (Ed.), Handbook of sensory physiology (Vol. 7/3, part B pp. 27–101), Springer-Verlag, Germany, Cerca con Google

Stacey, P. C.,Walker, S., & Underwood, J. D. M. (2005). Face processing and familiarity: Evidence from eye-movement data. British Journal of Psychology, 96, 407-422. Cerca con Google

Sugita, Y. (2008). Face perception in monkeys reared with no exposure to faces. Proceedings of the National Academy of Sciences of the United States of America, 105, 394-398. Cerca con Google

Suzuki, S. & Cavanagh, P. (1995). Facial organization blocks access to low-level features: an object inferiority effect. Journal of Experimental Psychology: Human Perception and Performance, 21, 901-913. Cerca con Google

Tanaka, J. W., & Farah, M. J. (1993). Parts and wholes in face recognition. Quarterly Journal of Experimental Psychology, 46A, 225-245. Cerca con Google

Tanaka, J. W., Kay, J. B., Grinnel, E., Stansfield, B., & Szechter, L. (1998). Face recognition in young children: When the whole is greater than the sum of its parts. Visual Cognition, 5, 479-496. Cerca con Google

Tarr, M. J., & Gauthier, I. (2000). FFA: a flexible fusiform area for subordinate-level visual processing automatized by expertise. Nature Neuroscience, 3, 764-769. Cerca con Google

Thomas, M. S. C., & Karmiloff-Smith, A. (2003). Connectionist models of development, developmental disorders and individual differences. In R. J. Sternberg, J. Lautrey, & T. Lubart (Eds.). Models of intelligence: International perspectives (pp. 133-150). Washington, DC: American Psychological Association. Cerca con Google

Thompson, L. A. (1980). Margaret Thatcher: a new illusion. Perception, 9, 483-484. Cerca con Google

Thompson, L. A., Madrid, V., Westbrook, S., & Johnston, V. (2001). Infants attend to second-order relational properties of faces. Psychonomic Bulletin and Review, 8, 769-777. Cerca con Google

Tomalski, P., Csibra, G., & Johnson, M. H. (2009). Rapid orienting toward face-like stimuli with gaze-relevant contrast information. Perception, 38, 569-578. Cerca con Google

Tong, F., & Nakayama, K. (1999). Robust representations for faces: Evidence from visual search. Journal of Experimental Psychology: Human Perception and Performance, 25, 1016-1035. Cerca con Google

Treisman, A., & Gelade, G. (1980). A feature integration theory of attention. Cognitive Psychology, 12, 97-136. Cerca con Google

Turati, C. (2004). Why faces are not special to newborns: an alternative account of the face preference. Current Directions in Psychological Science, 13, 5-8. Cerca con Google

Turati, C., Bulf, H., & Simion, F. (2008). Newborns’ face recognition over changes in viewpoint. Cognition, 106, 1300-1321. Cerca con Google

Turati, C., Di Giorgio, E., Bardi, L., & Simion, F. (2010). Holistic face processing in newborns, 3-month-old infants and adults: Evidence from the composite face effect. Child Development, 81, 1894-1905. Cerca con Google

Turati, C., Macchi Cassia, V., Simion, F. & Leo, I. (2006). Newborns' face recognition: role of inner and outer facial features. Child Development, 77, 297-311. Cerca con Google

Turati, C., Sangrigoli, S., Ruel, J., & de Schonen, S. (2004). Evidence of the face inversion effect in 4-month-old infants. Infancy, 6, 275-297. Cerca con Google

Turati, C., Simion, F., & Milani, I., & Umiltà, C. (2002). Newborns' preference for faces: What is crucial? Developmental Psychology, 38, 875-882. Cerca con Google

Turati, C., Valenza, E., Leo, I., & Simion, F. (2005). Three-month-olds’ visual preference for faces and its underlying mechanisms. Journal of Experimental Child Psychology, 90, 255-273. Cerca con Google

Turkewitz, G., & Kenny, P. A. (1982). Limitations on input as a basis for neural organization and perceptual development: a preliminary theoretical statement. Developmental Psychobiology, 15, 357-368. Cerca con Google

Tzourio-Mazoyer, N., de Schonen, S., Crivello, F., Reutter, B., Aujard, Y., & Mazoyer, B. (2002). Neural correlates of woman face processing by 2-month-old infants. Neuroimagine, 15, 454-461. Cerca con Google

Valentine, T. (1991). A unified account of the effects of distinctiveness, inversion, and race in face recognition. Quarterly Journal of Experimental Psychology, 43, 161-204. Cerca con Google

Valenza, E., & Bulf, H. (2007). The role of kinetic information in newborns’ perception of illusory contours. Developmental Science, 10, 492-501. Cerca con Google

Valenza, E., Simion, F., Macchi Cassia, V. & Umiltà, C. (1996). Face preference at birth. Journal of Experimental Psychology: Human Perception and Performance, 22, 892-903. Cerca con Google

Vuilleumier, P., & Pourtois, G. (2007). Distributed and interactive brain mechanisms during emotion face perception: Evidence from functional neuroimaging. Neuropsychologia, 45, 174-194. Cerca con Google

Walton, G. E., Amstrong, E. S., & Bower, T. G. R. (1997). Faces as forms in the world of the newborns. Infant Behavior and Development, 20, 537-543. Cerca con Google

Walton, G. E., & Bower, T. G. R. (1993). Newborns form ‘‘prototypes’’ in less than 1 minute. Psychological Science, 4, 203-205. Cerca con Google

Werker, J. F., & Vouloumanos, A. (2001). Speech and language processing in infancy: A neurocognitive approach. In C. A. Nelson & M. Luciana (Eds.), Handbook of Developmental Cognitive Neuroscience (pp. 269-280). Cambridge, MA: MIT Press. Cerca con Google

Westermann, G., Mareschal, D., Johnson, M. H., Sirois, S., Spratling, W., & Thomas, M. S. C. (2007). Neuroconstructivism. Developmental Science, 10, 75-83. Cerca con Google

Williams, C., & Henderson, J. M. (2007). The face inversion effect is not a consequence of aberrant eye movements. Memory & Cognition, 35, 1977-1985. Cerca con Google

Wynn, K. (1995). Origins of numerical knowledge. Mathematical Cognition, 1, 35-60. Cerca con Google

Yin, R. K. (1969). Looking at upside-down faces. Journal of Experimental Psychology, 81, 141-145. Cerca con Google

Young, A. W., Hellawell, D., & Hay, D. (1987). Configural information in face perception. Perception, 16, 747-759. Cerca con Google

Zelinsky, G. J. (1996). Using eye saccades to assess the selectivity of search movements. Vision Research, 36, 2177-2187. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record