Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Pinato, Alessandro (2011) Reliability and Parylene encapsulation of organic devices. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF (Tesi di dottorato)
6Mb

Abstract (inglese)

Organic semiconductors are at the basis of a relatively new research eld, called Organic Electronics. The study of the photo-conductive, electrical and optoelectronic properties of organic materials, the charge and exciton transport as well as the thin lm growth has led to the development of organic transistors, LEDs and solar cells. More complex organic designs, like
exible electronic circuits, photovoltaic panels and Radio Frequency IDentication (RFID) tags are under development, while OLEDs modules are nowadays one of the most promising technologies for display and lighting application and their break-in the mainstream electronic markets is forthcoming. In this context the stability over time of the organic semiconductor, the use of a proper encapsulation, and a sucient lifetime of the encapsulated organic devices become essential in order to achieve the success of this technology. Moreover, the investigation of the physical phenomena behind the degradation of the performance of the basic organic devices is both a scientic challenge and an appealing quest for the research community. During the last three years I mainly focused my studies on two kind of organic devices, namely Organic Light-Emitting Diodes (OLEDs) and Organic Thin-Film Transistors (OTFTs). More precisely I have worked in two domains: the rst part of my work concerns the study of the reliability and thermal properties of OLEDs, mostly based on Alq3 Electron Transport Layer (ETL), and NPD Hole Transport Layer (HTL). These studies have been carried out by investigating the variation of the electrical, optical and thermal characteristics of the devices, during reliability stress tests. Within this work we have tested OLEDs with dierent inner structure (sort and thickness of the organic layers as well as of the contacts), dierent size and shapes of the active area. Both temperature and current have been singularly used as stress accelerating factors. The carrying out of reliability tests at dierent stress current values has allowed to extrapolate degradation laws, and consequently to calculate lifetime laws. Our studies on phosphorescent OLEDs stressed at dier-
ent current levels, show an increase of the operating voltage univocally correlated with the number of carriers injected in the devices during the stress. Electro-luminescence degradation mechanisms in small-molecules based OLEDs
have been investigated. In particular, we focused on intrinsic degradation phenomena that determine the decrease of the optical power during standard operation. The results of this analysis provide information on the physical processes
responsible for OLEDs degradation, suggesting a strong correlation between the reduction in the luminance intensity of the devices and the occurrence of defects and positive trapped charge at the Alq3/NPD interface.
Moreover, we studied the uneven decrease of the optical power along the active area of OLEDs subjected to electrical stress tests. This phenomenon has been correlated to the self-heating and surface temperature prole of the devices. A
current crowding phenomenon has been hypothesized in order to explain the light emission, as well as the surface temperature distribution. An extensive study has been applied to the thermal properties of the anode layer of the OLEDs, by comparing devices built with dierent Transparent Conduc-
tive Oxides (TCO). Particularly, the performance and reliability of OLEDs with Indium-Tin Oxide (ITO) and Indium-Zinc Oxide (IZO) anode contact layer have been investigated. The devices have been compared in terms of eciency, thermal
resistance and reliability. The results of this study have shown that OLEDs with IZO anodes guarantee performance comparable with OLEDs with ITO anodes, and proved a better heat dissipation as well as longer lifetime.
The last part of my work is related to the technological development of both bottom and top contact OTFTs, and to the study of their stability. By working in collaboration with the European microelectronic research centre IMEC, we
have manufactured innovative photo-lithographic patterned top contact OTFTs. By using a wet etching process, we have realized top contact OTFTs with 10m channel length, obtaining mobilities greater than 0.5cm2=(V s). Moreover, we
have developed an innovative process flow that allows the patterning of Silver source-drain contacts on the top of the organic semiconductor, by using plasmadry etching. The process
ow has been proved on silicon, as well as on foil substrate. Finally, we have investigated the reliability of standard Pentacene-based organic transistors and the encapsulation of these devices by using a poly(p-xylylene) polymer (Parylene C).

Abstract (italiano)

I semiconduttori organici sono alla base di un relativamente nuovo campo di ricerca, chiamato Elettronica Organica. Lo studio delle proprieta elettriche, foto-conduttive e optoelettroniche dei materiali organici, il trasporto di carica e di eccitoni, e lo studio della crescita di lm sottili, ha permesso lo sviluppo di transistors, LED e celle solari basati su semiconduttori organici. Design più
complessi, quali circuiti elettronici e pannelli fotovoltaici
essibili, RFID (Radio Frequency IDentication) tag sono al momento in via di sviluppo, mentre i display OLED sono considerati una delle tecnologie più promettenti per quanto riguarda i display e l'illuminazione, ed è prevista come imminente la loro diffusione nel mercato elettronico mondiale.
In questo contesto la stabilità nel tempo del semiconduttore, l'utilizzo di un incapsulamento adeguato e un sufficiente tempo di vita del dispositivo incapsulato, diventano essenziali al fine di ottenere il successo di questa tecnologia. Inoltre lo studio dei fenomeni fisici alla base del degrado delle performance dei dispositivi basati su semiconcuttore organico, rappresenta per la comunita scientica sia una sda, sia un'affascinante ricerca.
Nel corso degli ultimi tre anni mi sono occupato principalmente dello studio di due tipi di dispositivi organici: LED a semiconduttore organico (OLED) e transistor a semiconduttore organico (OTFT). In particolare ho lavorato in due diversi ambiti: la prima parte del mio lavoro riguarda lo studio dell'adattabilità
e delle proprietà termiche di OLED, basati sull'electron transport layer (ETL) Alq3 e sull'hole transport layer (HTL) NPD. Questi studi sono stati realizzati monitorando la variazione delle caratteristiche elettriche, ottiche e termiche dei dispositivi durante test di stress accelerato. All'interno di questo lavoro abbiamo testato OLED con differente struttura interna (tipo e spessori sia degli strati organici che dei contatti), con differente dimensione e forma dell'area attiva. Entrambe temperatura e corrente sono state singolarmente utilizzate come fattori acceleranti. La realizzazione di stress di adattabilità utilizzando differenti valori di corrente di stress, ha permesso di estrapolare leggi di degrado, e conseguentemente di calcolare il tempo di vita dei dispositivi. I nostri studi su OLED fosforescenti sottoposti a stress elettrico, con differenti valori di corrente di stress, hanno mostrato un aumento della tensione operativa dei dispositivi univocamente correlato con il numero di portatori iniettato nei dispositivi durante lo stress.
Sono stati investigati meccanismi di degrado ell'elettroluminescenza di OLED basati su oligomeri. In particolare ci siamo concentrati sui fenomeni di degrado intrinseco che provocano una diminuzione della potenza ottica durante il funzionamento standard. I risultati di questa analisi forniscono informazioni sui processi fisici responsabili del degrado degli OLED, e indicano una signicativa correlazione tra la diminuzione dell'intensità luminosa dei dispositivi e la presenza di difetti e carica positiva intrappolata all'interfaccia tra Alq3 e NPD. Inoltre abbiamo investigato la disuniforme diminuzione di potenza ottica lungo l'area attiva di OLED sottoposti a test di stress elettrico. Questo fenomeno è stato correlato all'auto-riscaldamento e al profilo superficiale di temperatura dei dispositivi. Si è ipotizzata la presenza di un effetto di current crowding al fine di spiegare la presenza delle due disuniformi distribuzioni, ottica e termica.
Uno studio approfondito è stato realizzato sulle proprietà termiche dello strato di anodo degli OLED, confrontando dispositivi realizzati con diversi ossidi trasparenti conduttivi (TCO). In particolare si sono investigate le prestazioni e
l'adattabilita di OLED con ossido di Stagno-Indio (ITO) e ossido di Zinco-Indio (IZO) come contatto di anodo. I dispositivi sono stati confrontati in termini di efficienza, resistenza termica e adattabilità. I risultati di questo studio hanno dimostrato che gli OLED realizzati con anodi di IZO hanno performance confrontabili con dispositivi con anodi di ITO, e mostrano una migliore dissipazione termica e maggiore tempo di vita.
La seconda parte del mio lavoro è legata allo sviluppo tecnologico di OTFT di tipo bottom e top contact, e allo studio della loro adabilità.
Collaborando con il centro europeo di ricerca di microelettronica IMEC, abbiamo prodotto innovativi top contact OTFT realizzati con fotolitograa. Utilizzando un processo di wet etching, abbiamo realizzato dispositivi di tipo top contact con lunghezza di canale di 10m, ottenendo mobilità maggiori di 0.5cm2/Vs.
Inoltre abbiamo sviluppato un innovativo processo che permette il patterning fotolitograco di contatti d'Argento sopra il semiconduttore organico, utilizzando dry etching mediante plasma. Tale processo di patterning è stato dimostrato sia
su substrato di silicio che di pellicola. Infine abbiamo investigato l'adattabilità di transistor organici basati sul Pentacene, e l'incapsulamento di questi dispositivi con il polimero Parylene C.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Zanoni, Enrico
Dottorato (corsi e scuole):Ciclo 23 > Scuole per il 23simo ciclo > INGEGNERIA DELL'INFORMAZIONE > SCIENZA E TECNOLOGIA DELL'INFORMAZIONE
Data di deposito della tesi:NON SPECIFICATO
Anno di Pubblicazione:25 Gennaio 2011
Parole chiave (italiano / inglese):OLED, OTFT, Parylene, encapsulation, reliability, photolithograpy, phosphorescent, thermal resistance
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-INF/01 Elettronica
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria dell'Informazione
Codice ID:3451
Depositato il:01 Ago 2011 10:45
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] A.G. MacDiarmid, H. Shirakawam, E. J. Louis, C. K. Chiang, and A. J. Heeger. Synthesis of electrically conducting organic polymers - halogen derivatives of polyacetylene, (ch)x. J. Chem. Soc. Chem. Comm., pages 578-580, 1977. Cerca con Google

[2] H. Inokuchi and Bull. Chemical Society of Japan, 27:22, 1957. Cerca con Google

[3] T. Ito, H. Shirakawa, and S. Ikeda. Journal of Polymer Science, 12:11, 1974. Cerca con Google

[4] A. Facchetti, Y. Myung-Han, and T. J Marks. Gate dielectrics for organic eld-eect transistors: New opportunities for organic electronics. Advanced Materials, 17:1705-1725, 2005. Cerca con Google

[5] C.W. Tang. Two-layer organic photovoltaic cell. Applied Physics Letters, 48:183-5, 1986. Cerca con Google

[6] A. Pocchettino. Rendiconti Accademia Lincei, 15:355, 1906. Cerca con Google

[7] C. W. Tang and S. A. VanSlyke. Applied Physics Letters, 51:913, 1987. Cerca con Google

[8] A. R. Brown R. N. Marks K. Mackay R. H. Friend P. L. Burns J. H. Burroughes, D. D. C. Bradley and A. B. Holmes. Light-emitting diodes based on conjugated polymers. Nature, 347:539, 1990. Cerca con Google

[9] S. R. Forrest L. S. Sapochak D. M. McCarty P. E. Burrows, V. Bulovic and M. E. Thompson. Reliability and degradation of organic light emitting devices. Applied Physics Letters, 23:2922-2924, 1994. Cerca con Google

[10] C. Lin V. Adamovich S. Xia M. S. Weaver R. Kwong W. D. Brian, J. Esler and J. Brown. Realizing white phosphorescent 100 lm/w oled ecacy. In Proceeding SPIE, 2008. Cerca con Google

[11] Stijn De Vusser. Organic Thin-Film Transistors: Process Technology and Circuit Design. PhD thesis, Katholieke Universiteit Leuven Faculteit Toegepaste Wetenschappen Department Elektrotechniek, 2006. Cerca con Google

[12] S. R. Forrest L. S. Sapochak P. E. Burrows, V. Bulovic and M. E. Thompson D. M. McCarty. Applied Physics Letters, 65:2922, 1994. Cerca con Google

[13] N. Hu H. Chan G. Xu Y. Liew, H. Aziz and Z. Popovic. Applied Physics Letters, 77:2650, 2000. Cerca con Google

[14] H. Lim Y. Kim, D. Choi and C. S. Ha. Applied Physics Letters, 82:2200, 2003. Cerca con Google

[15] Y. Sato and H. Kanai. Stability of organic electroluminescent diodes. Molecular Crystals and Liquid Crystal, 253:142-150, 1994. Cerca con Google

[16] N. Yamamoto E. Han, L. Do and M. Fujihira. Crystallization of organic thin lm for electroluminescent devices. Thin Solid Films, 273:202-208, 1996. Cerca con Google

[17] S. R. Forrest B. E. Koene D. E. Loy D. F. OBrien, P. Burrows and M. E. Thompson. Hole transporting materials with high glass transition temperatures for use in organic light-emitting devices. Advanced Materials, 10:1108-1112, 1998. Cerca con Google

[18] M. Stossel J. Simmerer A.Winnacker H. Spreitzer F. Weissortel F. Steuber, J. Staudigel and J. Salbeck. White light emission from organic leds utilizing spiro compounds with high-temperature stability. Advanced Materials, 12:130-133, 2000. Cerca con Google

[19] K. Noda A. Okada S. Tokito, H. Tanaka and Y. Taga. Temperature dependance of electroluminescent characteristics in the devices fabricated with novel triphenylamine derivatives. IEEE Transaction on Electron Device, 44:1239-1244, 1997. Cerca con Google

[20] K. Nagai C. Adachi and N. Tamoto. Molecular design of hole transport materials for obtaining high durability in organic electroluminescent diodes. Applied Physics Letters, 66:2679-2681, 1995. Cerca con Google

[21] N. Hu P. Dos Anjos H. Aziz, Z. Popovic and A. Ioannidis. Degradation of tris(8-hydroxyquinoline) (alq3 )-based organic light emitting devices (oleds). In Proc. SPIE Conf. Organic Light Emitting Materials and Devices, pages 251-255, 2001. Cerca con Google

[22] N. Hu A. Ioannidis Z. D. Popovic, H. Aziz and P. N. M. dos Anjos. Journal of Applied Physics, 89:4673, 2001. Cerca con Google

[23] C. V. Tang R. D. Y. Kondakov, J. R. Sandifer and H. J. Young. Applied Physics, 93:1108, 2003. Cerca con Google

[24] N. X. Hu A. M. Hor H. Aziz, Z. D. Popovic and G. Xu. Science, 283:1900, 1990. Cerca con Google

[25] D. L. Thomsen III F. Papadimitrakopoulos, X.-M. Zhang and K. A. Higginson. A chemical failure mechanism for aluminum (iii) 8-hydroxyquinoline light emitting devices. Chemical Materials, 8:1363-1365, 1996. Cerca con Google

[26] R. H. Friend T. Shimoda M. Inbasekaran W. Wu H. Shirringhaus, T. Kawase and E. P. Woo. High-resolution inkjet printing of all-polymer transistor circuits. Science, 290:2123, 2000. Cerca con Google

[27] Y.Y. Lin, D.J. Gundlach, S.F. Nelson, and T.N. Jackson. High-mobility pentacene-based organic thin lm transistors. In Device Reasearch Conference Digest, 1977. Cerca con Google

[28] M. Shtein, J. Mapei, J.B. Benziger, and S.R. Forrest. Eects of lm morphology and gate dielectric surface preparation on the electrical characteristics of organic-vapor-phase-deposited pentacene thin-lm transistors. Appl. Phys. Lett., 81:268, 2002. Cerca con Google

[29] W.S Wong, R. Lujan, S.E. Ready, J. Daniel, and R.A. Street. Low-temperature a:si:h thinlm transistor backplanes on Cerca con Google

exible substrates bydigital lithography. In Spring Meeting MRS, San Francisco 2005. Cerca con Google

[30] P. Mach, S.J. Rodriguez, R. Nortrup, and J.A. Rogers P. Wiltzius. Monolithically integrated, exible display of polymer-dispersed liquid crystal driven by rubber-stamped organic thin-lm transistors. Appl. Phys. Lett., 78:3592, 2001. Cerca con Google

[31] C.D. Sheraw, L. Zhou, J.R. Haung, D.J. Gundlach, T.N. Jackson, M.G. Kane, I.G. Hill, M.S. Hammond, J. Campi, B.K. Greening, J. Francl, and J. West. Organic thin-lm transistor-driven polymer-dispersed liquid crystal displays on exible polymeric substrates. Appl. Phys. Lett., 80:1088, 2002. Cerca con Google

[32] T.W. Kelley, P.F. Baude, C. Gerlach, D.E. Ender, D. Muyres, M.A. Haase, D.E. Vogel, and S.D. Theiss. Recent progress in organic electronics: Materials, devices, and processes. Chem. Mat., 16:4413, 2004. Cerca con Google

[33] H. Sirringhaus. Device physics of solution-processed organic eld-eecttransistors. Advanced Materials, 17:2411, 2005. Cerca con Google

[34] N. G. Greenham and R. H. Friend. Solid state physics. Academic Press, 1995. Cerca con Google

[35] B. J. de Gans H. Katz and P. C. Recent advances in semiconductor performance and printing processes for organic transistor-based electronics. Chem. Mater., 16:4748, 2004. Cerca con Google

[36] B.J. de Gans, P.C. Duineveld, and U.S. Schubert. Inkjet printing of polymers: State of the art and future developments. Advanced Materials, 16:203, 2004. Cerca con Google

[37] H. Sirringhaus, R. Friends, T. Kawase, and L. Buergi. Thin-Film Transistors. Marcel Dekker, New York 2003. Cerca con Google

[38] H. Klauk. Organic thin-lm transistors. Chemical Society Reviews, 39:2643-2666, 2010. Cerca con Google

[39] G. Horowitz, X. Z. Peng, D. Fichou, and F. Garnier . Role Cerca con Google

of the semiconductor-insulator interface in the characteristics of piconjugatedoligomer-based thin-lm transistors. Synth. Met., 51:419-424, 1992. Cerca con Google

[40] R. C. Haddon, A. S. Perel, R. C. Morris, T. T. M. Palstra, A. F. Hebard, and R. M. Fleming. C60 thin lm transistors. Appl. Phys. Lett., 67:121-123, 1995. Cerca con Google

[41] A. R. Brown, A. Pomp, C. M. Hart, and D. M. de Leeuw. Logic gates made from polymer transistors and their use in ring oscillators. Science, 270:972-974, 1995. Cerca con Google

[42] D. J. Gundlach, C. C. Kuo, S. F. Nelson, and T. N. Jackson. Organic thin lm transistors with eld eect mobility > 2 cm2/vs. In 57th Device Research Conference Digest, 1999. Cerca con Google

[43] D. Fichou G. Horowitz, X. Peng and F. Garnier. The oligothiophene-based eld eect transistor: How it works and how to improve it. Journal of Applied Physics, 67:528, 1990. Cerca con Google

[44] J. Zaumseil and H. Sirringhaus. Electron and ambipolar transport in organic eld eect transistors. Chemical Review, 107:1296-1323, 2007. Cerca con Google

[45] Stijn Verlaak. Small-molecule organic thin-lm transistors: growth, charge transport and some applications. PhD thesis, Katholieke Universiteit Leuven Faculteit Toegepaste Wetenschappen Department Elektrotechniek, 2004. Cerca con Google

[46] S. Verlaak, S. Steudel, P. Heremans, D. Janssen, and M. S. Deleuze. Nucleation of organic semiconductors on inert substrates. Phys. Rev. B 68(19):195409, 2003., 68:195409, 2003. Cerca con Google

[47] T. W. Kelley, D. V. Muyres, P. F. Baude, T. P. Smith, and T. D. Jones. High performance organic thin lm transistors. In Mater. Res. Symp. Proc., 771:L6.5.1L6.5.10, 2003. Cerca con Google

[48] R. C. Kwong V. I. Adamovich, M. S. Weaver and J. J. Brown. High temperature operation and stability of phosphorescent oleds. Current Applied Physics, 5:15-18, 2005. Cerca con Google

[49] F. Chen T. Guo S. Chang, G. He and Y. Yang. Degradation mechanism of phosphorescent-dye-doped polymer light-emitting diodes. Applied Physics Letters, 79:2088, 2001. Cerca con Google

[50] A. Di Cristofalo P. Cusumano, F. Buttitta and C. Cal. Eect of driving method on the degradation of organic light emitting diodes. Synthetic Metals, 139:657-661, 2003. Cerca con Google

[51] N. Hu P. N. M. dos Anjos, H. Aziz and Z. D. Popovic. Temperature dependence of electroluminescence degradation in organic light emitting devices without and with a copper phthalocyanine buer layer. Organic Electronics, 3:9-13, 2003. Cerca con Google

[52] V. I. Adamovich M. S. Weaver S. C. Xia, R. C. Kwong and J. J. Brown. Oled device operational lifetime: Insights and challenges. In Proc. 45th annual. IEEE international Reliability physics symposium, pages 253-257, 2007. Cerca con Google

[53] N. Hu A. Hor G. Xu H. Aziz, Z. D. Popovic. Degradation mechanism of small molecule based organic light-emitting devices. Science, 283:1900, 1999. Cerca con Google

[54] A. Nathan A. Werner J. Birnstock O. Schneider G. Reza Chaji, C. Ng and Jan Blochwitz Nimoth. Electron Device Letters, 28:1108, 2007. Cerca con Google

[55] V. Bulovic D. M. McCarty S. R. Forrest J. A. Cronin P. E. Burrows, Z. Shen Cerca con Google

and M. E. Thompson. Journal of Applied Physics, 79:7991, 1996. Cerca con Google

[56] W. Bruutting S. Berleb and G. Paasch. Interfacial charges and electric eld distribution in organic hetero-layer light-emitting devices. Organic Electronics, 1:41-47, 2000. Cerca con Google

[57] D. J. Kondakov. Applied Physics, 97:024503, 2005. Cerca con Google

[58] F. Rohlng T. Yamada and T. Tsutsui. Japanese Journal of Applied Physics, 39:1382, 2000. Cerca con Google

[59] D.M. Fleetwood and N. S. Saks. Oxide, interface and border traps in thermal, n2o, and n2o-nitrided oxides. Applied Physics Journal, 79:1538, 1996. Cerca con Google

[60] Han-Youl Ryu, Kyoung-Ho Ha, Jung-Hye Chae, Ok-Hyun Nam, and Yong-Jo Park. Measurement of junction temperature in gan-based laser diodes using voltage-temperature characteristics. Applied Physics Letters, 87(9):093506, 2005. Cerca con Google

[61] Y. Xi and Schubert. Junction-temperature measurement in gan ultraviolet light-emitting diodes using diode forward voltage method. Applied Physics Letters, 85:2163, September 2004. Cerca con Google

[62] Y. Xi, J.-Q. Xi, Th. Gessmann, J. M. Shah, J. K. Kim, E. F. Schubert, A. J. Fischer, M. H. Crawford, K. H. A. Bogart, and A. A. Allerman. Junction and carrier temperature measurements in deep-ultraviolet light-emitting diodes using three dierent methods. Applied Physics Letters, 86(3):031907, 2005. Cerca con Google

[63] B. Geroy. Organic light-emitting diode (oled) technology: materials, devices and display technologies. Polym.er International, 55:572-582, 2006. Cerca con Google

[64] J. G. Kim J. C. Woo, G. H. Kim and C. I. Kim. Etching characteristic of zno thin lms in an inductively coupled plasma. Surface & Coatings Technology, 202:5705-5708, 2008. Cerca con Google

[65] W. Lee C. Hong W. I. Lee H. W. Kim C. Lee, R. P. D. Dwivedi. Izo/al/gzo multilayer lms to replace ito lms. Journal of Materials Science: Materials in Electronics, 19:981-985, 2008. Cerca con Google

[66] B. Kumar G. Hu and H. Gong. Transparent indium zinc oxide ohmic contact to phosphor-doped n-type zinc oxide. Applied Physics Letters, 88, 2006. Cerca con Google

[67] R. Chandramohan K. Ramamoorthya, K. Kumar and K. Sankaranarayanan. Review on material properties of izo thin lms useful as epin-tcos in opto-electronic (sis solar cells, polymeric leds) devices. Materials Science and Engineering, 126:1-15, 2006. Cerca con Google

[68] J-H Bae J-M. Moon K-H. Choi S. W. Jeong N-J. Park J-J. Kim S. H. Lee J-W. Kang M-S Yi S. W. Cho, J-A. Jeong and H-K. Kim. Highly exible, transparent, and low resistance indium zinc oxideagindium zinc oxide multilayer anode on polyethylene terephthalate substrate for exible organic light-emitting diodes. Thin Solid Films, 516:78817885, 2008. Cerca con Google

[69] Th. Gessmann Y. Xi, J-Q Xi. Junction and carrier temperature measurements in deep-ultraviolet light-emitting diodes using three dierent methods. Applied Physics Letters, 86:031907, 2005. Cerca con Google

[70] L. Jia D. J. Gundlach and T. N. Jackson. An experimental study of contact eects in organic thin lm transistors. IEEE Electron Device Letters, 18:571, 2001. Cerca con Google

[71] C. C. Kuo and T. N. Jackson. Direct lithographic top contacts for pentacene organic thin-lm transistors. Applied Physics Letters, 94:053304, 2009. Cerca con Google

[72] C. R. Kagan and P. Andry. Thin-Film Transistors. Dekker, New York, 2003. Cerca con Google

[73] Iwao Yagi, Nobukazu Hirai, Makoto Noda, Ayaka Imaoka, Yoshihiro Miyamoto, Nobuhide Yoneya, Kazumasa Nomoto, Jiro Kasahara, Akira Yumoto, and Tetsuo Urabe. A full-color, top-emission am-oled display driven by otfts. In SID, 2007. Cerca con Google

[74] Kris Myny-Jan Genoe Stijn De Vusser, Soeren Steudel and Paul Heremans. Integrated shadow mask method for patterning small molecule organic semi-conductors. Applied Physics Letters, 88:1063, 2006. Cerca con Google

[75] M. Katsuhara, I. Yagi, M. Noda, N. Hirai, R. Yasuda, T. Moriwaki, S. Ushikura, A. Imaoka, K. Nomoto, A. Yumoto, and T. Urabe. A reliable exible oled display with an otft backplane manufactured using a scalable process. In SID, 2009. Cerca con Google

[76] L. Zhang H. Zhang X. Jiang-W. Zhu J. Li, X. Zhang and Z. Zhang. Eect of a sinx insulator on device properties of pentacene-tfts with a low-cost copper source/drain electrode. Semiconductor Science and Technology, 25:045027, 2010. Cerca con Google

[77] Y. Liu Y. Guo Y.Wang-W.Wu C. Di, G. Yu and D. Zhu. High-performance organic eld-eect transistors with low-cost copper electrodes. Advanced Materials, 20:1286-1290, 2008. Cerca con Google

[78] D. J. Gundlach, T. N. Jackson, D. G. Schlom, and S. F. Nelson. Solvent induced phase transition in thermally evaporated pentacene lms. Phys. Lett., 74:3302-3304, 1999. Cerca con Google

[79] A.Zakhidov et al. Advanced Materials, 20:3481-3484, 2008. Cerca con Google

[80] A. De Franco. Organic Electronics, 7:22-28, 2006. Cerca con Google

[81] P. G. Taylor J. K. Lee. Advanced Materials, 21:2314, 2009. Cerca con Google

[82] T. Umeda D. Kumaki and S. Tokitoa. Reducing the contact resistance of bottom-contact pentacene thin-lm transistors by employing a moox carrier injection layer. Apllied Physics Letters, 92:013301, 2008. Cerca con Google

[83] T. Minari M. Kano and K. Tsukagoshi. Improvement of subthreshold current transport by contact interface modication in p-type organic eld-eect transistors. Applied Physics Letters, 94:143304, 2009. Cerca con Google

[84] T. Sajoto S. Barlow-S. R. Marder-B. Kippelen S. P. Tiwari, W. J. Potscavage. Pentacene organic eld-eect transistors with doped electrode-semiconductor contacts. Organic Electronics, 11:860-863, 2010. Cerca con Google

[85] R. Nortrup H. Moon H. Katz D. Li, E. J. Borkent and Z. Bao. Applied Physics Letters, 86. Cerca con Google

[86] J. Jang S. M. Cho M. H. Oh S. H. Lee S. H. Han, J. H. Kim and D. J. Choo. Applied Physics Letters, 88, 2006. Cerca con Google

[87] T. Sekitani amd T. Someya. Air-stable operation of organic eld-eect transistors on plastic lms using organic/metallic hybrid passivation layers. Japanese Journal of Applied Physics, 46:4300-4306, 2007. Cerca con Google

[88] D. Simeone et al. Pentacene tfts with parylene passivation layer. Thin Solid Films, 517:62836286, 2009. Cerca con Google

[89] Jr. B. Domercq B. Kippelen N. Kim, W. J. Potscavage and S. Graham. A hybrid encapsulation method for organic electronics. Applied Physics Letters, 94:163308, 2009. Cerca con Google

[90] R. Ulbricht S. B. Lee M. Zhoub J. P. Ferraris P. Madakasira, K. Inoue and A. A. Zakhidov. Multilayer encapsulation of plastic photovoltaic devices. Synthetic Metals, 155:332-335, 2005. Cerca con Google

[91] Y.C. Lim K.G. Choi K.C. Lee G.B. Park C.J. Lee D.G. Moon J.I. Han Y.B. Kim S.C. Nam Y.S. Yoon, H.Y. Para. Eects of parylene buer layer on exible substrate in organic light emitting diode. Thin Solid Films, 513:258-263, 2006. Cerca con Google

[92] K. Fukuda et al. Thermal stability of organic thin-lm transistors with self-assembled monolayer dielectrics. Appl. Phys. Lett., 96, 2010. Cerca con Google

[93] T. Yasuda, K. Fujita, H. Nakashima, and T. Tsutsui. Organic eld-eect transistors with gate dielectric lms of poly-p-xylene derivatives prepared by chemical vapor deposition. J. Apply. Phys., 42:6614-6618, 2003. Cerca con Google

[94] D. Gay K.Myny G. Meneghesso E. Zanoni J. Genoe P. Heremans A. Pinato, S. De Jonge. Integration of pentacene transistor on parylene foil. In HeTech 07, 16th European Workshop on Heterostructure Technology, 2007. Cerca con Google

[95] V. Y. Butko, X. Chi, D. V. Lang, and A. P. Ramirez. Field-eect transistor on pentacene single crystal. Appl. Phys. Lett., 83:4773-4775, 2003. Cerca con Google

[96] L. Wolgemuth. The surface modication properties of parylene for medical applications. Technical report, 2002. Cerca con Google

[97] A. I. Wang. Threshold voltage in pentacene eld eect transistors with parylene dielectric. Master's thesis, Massachussetts Institute of Technology, 2004. Cerca con Google

[98] J. F. Chang E. C. W. Ou P. K. H. Ho H. Sirringhaus L. L. Chua, J. Zaumseil and R. H. Friend. General observation of n-type eld-eect behaviour in organic semiconductors. Nature, 434:194, 2005. Cerca con Google

[99] M. A. Haase T. W. Kelley D. Muyres P. F. Baude, D. E. Ender and S. D. Theiss. Pentacene-based radio-frequency identication circuitry. Applied Physics Letters, 82:3964, 2003. Cerca con Google

[100] Soeren Steudel Dimitri Janssen Robert Mller Stijn De Jonge Stijn Verlaak Jan Genoe Kris Myny, Stijn De Vusser and Paul Heremans. Self-aligned surface treatment for thin-lm organic transistors. Applied Physics Letters, 88:222103, 2006. Cerca con Google

[101] C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen. Plastic solar cells. Advaced Functional Materials, 11:15-26, 2001. Cerca con Google

[102] W. C. Lenhart D. Y. Kondakov and W. F. Nichols. Operational degradation of organic light-emitting diodes: Mechanism and identication of chemical products. Journal of Applied Physics, 101:024512, 2007. Cerca con Google

[103] H. Koezuka, A. Tsumura, and T. Ando. Field-eect transistor with poly-thiophene thin lm. Synth. Met., 18:699-704, 1987. Cerca con Google

[104] J. H. Burroughes, C. A. Jones, and R. H. Friend. New semiconductor device physics in polymer diodes and transistors. Nature, 335:137-141, 1988. Cerca con Google

[105] P. Peumans, A. Yakimov, and S. R. Forrest. Small molecular weight organic thin-lm photodetectors and solar cells. J. Appl. Phys., 93:3693-3723, 2003. Cerca con Google

[106] K. Walzer D. Kuckling S. Scholza, C. Corten and K. Leo. Photochemical reactions in organic semiconductor thin lms. Organic Electronics, 8:709-717, 2007. Cerca con Google

[107] X. Peng, G. Horowitz, D. Fichou, and F. Garnier. All-organic thin lm transistors made of-sexithienyl semiconducting and various polymeric insulating layers. Appl. Phys. Lett., 57:2013-2015, 1990. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record