Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Stella, Roberto (2011) Skeletal muscle analysis by two different approaches:
- an in vivo model to study the physiology of cellular prion protein
- proteomics to identify biomarkers of illicit animal treatments.
[Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document - Submitted Version
3084Kb

Abstract (english)

Data reported in the present thesis were obtained in two different projects. Accordingly, the thesis is divided into two chapters. The first chapter, which refers to papers I and II, reports a study aimed at unravelling the physiologic role of the cellular prion protein (PrPC) using an in vivo model of skeletal muscle regeneration. The second chapter refers to paper III in which the two dimensional electrophoresis (2DE) approach in combination with tandem mass spectrometry was used to identify potential biological markers of the illegal treatment of bulls with growth promoting agents (GPA).
By focusing on the relationship between PrPC and skeletal muscle regeneration in a live model, in the first research line (Chapter I) we investigated if and how the protein influences the proliferation and the differentiation of muscle precursor cells. PrPC is a cell surface glycoprotein involved in the onset of rare and fatal neurodegenerative disorders, known as transmissible spongiphorm encephalopathies (TSE) or prion diseases. TSE occur when PrPC converts into a conformationally modified isoform that originates the prion, a novel infectious and neuro-pathogenic agent. Although much information is now available on the different routes of prion infection, both the mechanisms underlying prion neurotoxicity and the physiologic role of PrPC remain unclear. Nonetheless, use of different animal and cell models has suggested a number of putative functions for the protein, ranging from cell protection against oxidative and apoptotic challenge, to cell adhesion, proliferation and differentiation. Skeletal muscles express significant amounts of PrPC, and have been related to PrPC pathophysiology by several findings. Therefore, in order to clarify the physiologic role of PrPC, we employed a degeneration/regeneration protocol to the tibialis anterior muscle, which allowed us to compare the regeneration in mice expressing, or not, PrPC. The analyzed histological and biochemical parameters provided proof for the physiologic relevance of PrPC commitment in signalling events involved in muscle regeneration. Indeed, we observed that the absence of PrPC significantly delayed the regenerative process compared to WT muscles. In particular, we found that the lack of PrPC caused attenuation of the signalling pathway triggered by TNF-, which in turn decreased the activation of the p38 kinase pathway, and – consequently – later exit from the cell cycle, and differentiation, of myogenic precursor cells. Importantly, restoring PrPC expression completely rescued the PrP-KO muscle phenotype, highlighting that regulation of signalling pathways by PrPC has clear physiologic importance in an extraneural tissue.
The second research line, described in Chapter II, was aimed at setting up a proteomic-based strategy to identify illicit drug treatments in bulls. Classical assays for detecting this kind of illegal practice are not suited to detect compounds either of unknown chemical structure, or present at levels below the quantification threshold of the presently used analytical techniques. The successful application of histological analyses of target organs, which are indirectly modified following these treatments, has suggested that approaches based on the biological effects of the molecules under consideration, rather than the direct detection of their residues, could be potentially valuable in the field. The most relevant advantage of this methodology is that cellular or tissue modifications by drugs remain evident long time after the end of illicit treatments, when chemical residues are no longer, or hardly detectable. On the other hand, this approach is significantly limited by subjective experience and evaluation skill of technicians. Thus new strategies are needed for detecting indirect biomarkers in animal fluids or tissues. These biomarkers can be naturally occurring molecules, such as proteins that are modified in structure, or in concentration, following variations of the normal condition of the animal.
To identify possible biologic markers of illicit drug treatments of beef cattle, we adopted a proteomic approach, including 2D differential in gel electrophoresis (DIGE) and mass spectrometry analysis, to compare the protein expression pattern of muscle specimen from experimentally treated bulls and control animals. To this aim, bulls belonging to the treated cohort were subjected to three different pharmacological protocols, including use of growth promoting agents (GPA). Two of these treatments showed a remarkable anabolic effect compared to untreated animals, resulting in an altered skeletal muscle proteome. 2DE protein maps from treatment and control groups were compared using the DeCyder software for 2D-DIGE maps analysis. We then set out to identify, using a MALDI-tandem mass spectrometry (MS/MS) approach, all proteins showing a significant alteration in their expression levels following administration of GPA. Among differentially expressed 169 proteins, 29 were identified, most of which were found to be involved in muscle contraction and energy metabolism. These results corroborate previous findings on the mechanism of action of GPA, and may be useful to design new strategies for the discovery of illicit pharmacological treatments in bulls.

Abstract (italian)

I dati riportati nella presente tesi sono stati ottenuti in due diversi progetti. Pertanto, la tesi è divisa in due distinti capitoli. Il primo capitolo, che si riferisce agli articoli I e II, riporta uno studio volto a chiarire il ruolo fisiologico della proteina prionica cellulare (PrPC) utilizzando un modello in vivo di rigenerazione del muscolo scheletrico. Il secondo capitolo si riferisce all'articolo III, in cui si è cercato di individuare possibili marcatori biologici di trattamento illecito di vitelloni con agenti promotori della crescita (GPA), utilizzando un approccio di elettroforesi bidimensionale (2DE), in combinazione con spettrometria di massa.
Focalizzando l'attenzione sul rapporto tra PrPC e la rigenerazione del muscolo scheletrico in un modello in vivo, nella prima linea di ricerca (Capitolo I) abbiamo indagato se e come la proteina influenza la proliferazione e la differenziazione delle cellule precursori del muscolo. PrPC è una glicoproteina ancorata alla membrana esterna delle cellule coinvolta nella comparsa di malattie neurodegenerative rare e mortali, conosciute con il nome di encefalopatie spongiformi trasmissibili (EST) o malattie da prioni. L'evento alla base delle EST è la conversione della PrPC in una isoforma con una modificata conformazione che dà origine al prione, un agente infettivo neurotossico. Anche se ora sono disponibili molte informazioni sulle diverse vie di infezione da parte del prione, sia i meccanismi alla base della neurotossicità, sia il ruolo fisiologico della PrPC rimangono poco chiari. Tuttavia, l'uso di diversi modelli animali e cellulari ha suggerito molteplici funzioni putative per la PrPC, che vanno dalla protezione cellulare contro lo stress ossidativo e stimoli apoptotici, all'adesione, proliferazione e differenziazione cellulare. Il muscolo scheletrico esprime quantità significative di PrPC, e molti studi l'hanno correlato alla fisiopatologia della proteina. Pertanto, al fine di chiarire il ruolo fisiologico della PrPC in questo tessuto, abbiamo impiegato una protocollo di degenerazione/rigenerazione del muscolo tibiale anteriore, che ci ha permesso di confrontare il processo rigenerativo in topi che esprimono, o meno, PrPC. I parametri istologici e biochimici analizzati hanno fornito prove della rilevanza fisiologica della PrPC e del suo coinvolgimento negli eventi di segnalazione coinvolti nella rigenerazione muscolare. Infatti, è stato osservato che l'assenza della PrPC ritarda significativamente il processo di rigenerazione rispetto ai muscoli WT. In particolare, abbiamo trovato che la mancanza di PrPC causa un'attenuazione della via di segnalazione attivata dal TNF-alpha, che porta ad una ridotta attivazione della chinasi p38, e - conseguentemente - ritarda l'uscita dal ciclo cellulare e la differenziazione dei precursori miogenici. È importante sottolineare che il ripristino dell'espressione della PrPC abolisce completamente il fenotipo osservato nei muscoli di topi PrP-KO, sottolineando che la regolazione delle vie di segnalazione da parte PrPC ha una chiara importanza fisiologica anche in tessuti extraneuronali.
La seconda linea di ricerca, descritta nel capitolo II, è stata volta a creare una strategia basata su tecniche di proteomica per l'identificazione di trattamenti farmacologici illeciti in vitelloni. L'approccio classico per la rilevazione di questa pratica illegale non è adatto ad individuare composti sia di struttura chimica sconosciuta, sia di farmaci presenti a livelli inferiori alla soglia di quantificazione delle tecniche analitiche attualmente impiegate. Il successo delle analisi istologiche di organi bersaglio, che vengono indirettamente modificati a seguito di questi trattamenti, ha suggerito che gli approcci basati sulla ricerca degli effetti biologici delle molecole in esame, piuttosto che sulla rilevazione diretta dei loro residui, potrebbero essere molto utili. Il vantaggio più rilevante di questa metodologia è che le modificazioni del tessuto indotte da un trattamento farmacologico rimangono evidenti molto tempo dopo la fine dei trattamenti illeciti, quando i residui chimici non sono più, o quasi, rilevabili. D'altra parte, questo approccio è notevolmente limitato dalla capacità di valutazione dei tecnici e l'analisi e influenzata dalla soggettività. Per questo, sono necessarie nuove strategie per il rilevamento dei biomarcatori indiretti presenti nei fluidi animali o nei tessuti. Questi biomarcatori possono essere molecole naturalmente presenti, come ad esempio proteine che abbiano subito modifiche nella struttura, o nella concentrazione, a seguito di variazioni della condizione fisiologica dell'animale.
Per identificare tali marcatori biologici di trattamenti farmacologici illeciti nei bovini da carne, abbiamo adottato un approccio proteomico, mediante elettroforesi differenziale su gel in due dimensioni (2D-DIGE) e analisi in spettrometria di massa, al fine di confrontare i pattern di espressione proteica di muscolo scheletrico tra animali trattati farmacologicamente e di controllo. A questo scopo, i vitelloni appartenenti al gruppo di trattamento sono stati sottoposti a tre differenti protocolli farmacologici, mediante l'impiego di agenti promotori della crescita. Due di questi trattamenti hanno portato ad un notevole effetto anabolico rispetto agli animali non trattati, mostrando di conseguenza un'alterazione del proteoma del muscolo scheletrico. Le mappe proteiche dei campioni appartenenti ai gruppi di trattamento e di controllo sono state confrontate utilizzando il software DeCyder per analisi di dati derivanti da 2D-DIGE. Si è poi cercato di identificare, con un approccio di spettrometria di massa (MALDI) in tandem (MS/MS), tutte le proteine che mostrano una significativa alterazione nei loro livelli di espressione in seguito a somministrazione di agenti promotori della crescita. Tra le 169 proteine che cambiano in espressione in seguito al trattamento farmacologico, sono state identificate 29 proteine diverse, la maggior parte delle quali è coinvolta nella contrazione muscolare e nel metabolismo energetico. Questi risultati confermano i precedenti risultati sul meccanismo d'azione degli agenti promotori della crescita, e possono essere utili per sviluppare nuove strategie per l'identificazione di trattamenti farmacologici illeciti nei bovini da carne.

Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Sorgato, Maria Catia
Ph.D. course:Ciclo 23 > Scuole per il 23simo ciclo > BIOCHIMICA E BIOTECNOLOGIE > BIOCHIMICA E BIOFISICA
Data di deposito della tesi:UNSPECIFIED
Anno di Pubblicazione:27 January 2011
Key Words:Cellular prion protein; skeletal muscle regeneration; TNF-alpha; 2D-DIGE; dexamethasone; clenbuterol; illicit treatments ;Mass spectrometry; MS/MS
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/10 Biochimica
Struttura di riferimento:Dipartimenti > pre 2012 Dipartimento di Chimica Biologica
Codice ID:3534
Depositato il:21 Jul 2011 12:43
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Ackermann BL, Berna MJ. Coupling immunoaffinity techniques with MS for quantitative analysis of low-abundance protein biomarkers. Expert Rev Proteomics. 2007; 4(2): 175-186. Cerca con Google

Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature. 2003; 422: 198-207. Cerca con Google

Aebersold R. A mass spectrometric journey into protein and proteome research. J Am Soc Mass Spectrom. 2003; 14(7): 685-695. Cerca con Google

Aguzzi A, Baumann F, Bremer J. The prion's elusive reason for being. Annu Rev Neurosci. 2008; 31: 439-477. Cerca con Google

Aguzzi A, Calella AM. Prions: protein aggregation and infectious diseases. Physiol Rev. 2009; 89(4): 1105-1152. Cerca con Google

Alban A, David SO, Bjorkesten L, Andersson C, Sloge E, Lewis S, Currie I. A novel experimental design for comparative two-dimensional gel analysis: two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics. 2003; 3: 36-44. Cerca con Google

Albini S, Puri PL. SWI/SNF complexes, chromatin remodeling and skeletal myogenesis: it’s time to exchange! Exp Cell Res. 2010; 316: 3073-3080 begin_of_the_skype_highlighting              3073-3080      end_of_the_skype_highlighting. Cerca con Google

Allinson TM, Parkin ET, Turner AJ, Hooper NM. ADAMs family members as amyloid precursor protein alpha-secretases. J Neurosci Res. 2003; 74: 342-352. Cerca con Google

Alper T. Does the agent of scrapie replicate without nucleic acid? Nature. 1967; 214(5090): 764-766. Cerca con Google

Amthor H, Huang R, McKinnell I, Christ B, Kambadur R, Sharma M, Patel K. The regulation and action of myostatin as a negative regulator of muscle development during avian embryogenesis. Dev Biol. 2002; 251(2): 241-257. Cerca con Google

Anderson NL, Hunter CL. Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins. Molecular and Cellular Proteomics. 2006; 5: 573-588. Cerca con Google

Andréoletti O, Simon S, Lacroux C, Morel N, Tabouret G, Chabert A, Lugan S, Corbière F, Ferré P, Foucras G, Laude H, Eychenne F, Grassi J, Schelcher F. PrPSc accumulation in myocytes from sheep incubating natural scrapie. Nat Med. 2004; 10(6): 591-593. Cerca con Google

Angers RC, Browning SR, Seward TS, Sigurdson CJ, Miller MW, Hoover EA, Telling GC. Prions in skeletal muscles of deer with chronic wasting disease. Science. 2006; 311(5764): 1117. Cerca con Google

Antignac JP, Monteau F, Negriolli J, Andrè F, Le Bizec B. Application of hyphenated mass spectrometric techniques to the determination of corticosteroid residues in biological matrices. Chromatographia 2004; 59: S13-S22. Cerca con Google

Arnold L, Henry A, Poron F, Baba-Amer Y, van Rooijen N, Plonquet A, Gherardi RK, Chazaud B. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med. 2007; 204(5): 1057-1069. Cerca con Google

Barker PE. Cancer biomarker validation: standards and process: roles for the National Institute of Standards and Technology (NIST). Annals of the New York Academy of Sciences 2003; 983: 142-150. Cerca con Google

Basler K, Oesch B, Scott M, Westaway D, Walchli M, Groth DF, McKinley MP, Prusiner SB, Weissmann C. Scrapie and cellular PrP isoforms are encoded by the same chromosomal gene. Cell. 1986; 46(3): 417-428. Cerca con Google

Belanto JJ, Diaz-Perez SV, Magyar CE, Maxwell MM, Yilmaz Y, Topp K, Boso G, Jamieson CH, Cacalano NA, Jamieson CA. Dexamethasone induces dysferlin in myoblasts and enhances their myogenic differentiation. Neuromuscul Disord. 2010; 20(2): 111-121. Cerca con Google

Bellinger-Kawahara C, Diener TO, McKinley MP, Groth DF, Smith DR, Prusiner SB. Purified scrapie prions resist inactivation by procedures that hydrolyze, modify, or shear nucleic acids. Virology. 1987; 160(1): 271-274. Cerca con Google

Bosque PJ, Ryou C, Telling G, Peretz D, Legname G, DeArmond SJ, Prusiner SB. Prions in skeletal muscle. Proc Natl Acad Sci USA. 2002; 99(6): 3812-3817. Cerca con Google

Bounhar Y, Zhang Y, Goodyer CG, LeBlanc A. Prion protein protects human neurons against Bax-mediated apoptosis. J Biol Chem. 2001; 276(42): 39145-39149. Cerca con Google

Brandner S, Raeber A, Sailer A, Blättler T, Fischer M, Weissmann C, Aguzzi A. Normal host prion protein (PrPC) is required for scrapie spread within the central nervous system. Proc Natl Acad Sci USA. 1996; 93(23): 13148-13151. Cerca con Google

Brown DR, Qin K, Herms JW, Madlung A, Manson J, Strome R, Fraser PE, Kruck T, von Bohlen A, Schulz-Schaeffer W, Giese A, Westaway D, Kretzschmar H. The cellular prion protein binds copper in vivo. Nature. 1997; 390(6661): 684-687. Cerca con Google

Buckingham M, Bajard L, Chang T, Daubas P, Hadchouel J, Meilhac S, Montarras D, Rocancourt D, Relaix F. The formation of skeletal muscle: from somite to limb. J Anat. 2003; 202(1): 59-68. Cerca con Google

Burniston JG, McLean L, Beynon RJ, Goldspink DF. Anabolic effects of a non-myotoxic dose of the beta2-adrenergic receptor agonist clenbuterol on rat plantaris muscle. Muscle Nerve. 2007; 35(2): 217-223. Cerca con Google

Büeler H, Fischer M, Lang Y, Bluethmann H, Lipp HP, DeArmond SJ, Prusiner SB, Aguet M, Weissmann C. Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature. 1992; 356, 577-582. Cerca con Google

Cabane C, Englaro W, Yeow K, Ragno M, Derijard B. Regulation of C2C12 myogenic terminal differentiation by MKK3/p38-pathway. Am. J. Physiol. Cell Physiol. 2003; 284: C658–C666. Cerca con Google

Cantiello M, Carletti M, Dacasto M, Martin PG, Pineau T, Capolongo F, Gardini G, Nebbia C. Cytochrome P450 inhibition profile in liver of veal calves administered a combination of 17beta-estradiol, clenbuterol, and dexamethasone for growth-promoting purposes. Food Chem Toxicol. 2008; 46(8): 2849-5285. Cerca con Google

Cantini M, Giurisato E, Radu C, Tiozzo S, Pampinella F, Senigaglia D, Zaniolo G, Mazzoleni F, Vittiello L. Macrophage-secreted myogenic factors: a promising tool for greatly enhancing the proliferative capacity of myoblasts in vitro and in vivo. Neurol Sci. 2002; 23: 189-194. Cerca con Google

Cardone F, Thomzig A, Schulz-Schaeffer W, Valanzano A, Sbriccoli M, Abdel-Haq H, Graziano S, Pritzkow S, Puopolo M, Brown P, Beekes M, Pocchiari M. PrPTSE in muscle-associated lymphatic tissue during the preclinical stage of mice infected orally with bovine spongiform encephalopathy.J Gen Virol. 2009; 90(Pt 10): 2563-2568. Cerca con Google

Caughey B, Brown K, Raymond GJ, Katzenstein GE, Thresher W. Binding of the protease-sensitive form of PrP (prion protein) to sulfated glycosaminoglycan and congo red. J Virol. 1994; 68(4): 2135-2141. Erratum in: J Virol. 1994; 68(6): 4107. Cerca con Google

Caughey B, Raymond GJ. The scrapie-associated form of PrP is made from a cell surface precursor that is both protease- and phospholipase-sensitive. J Biol Chem. 1991; 266(27): 18217-18223. Cerca con Google

Chargé SB, Rudnicki MA. Cellular and molecular regulation of muscle regeneration. Physiol Rev. 2004; 84(1): 209-238. Cerca con Google

Chazaud B, Sonnet C, Lafuste P, Bassez G, Rimaniol AC, Poron F, Authier FJ, Dreyfus PA, Gherardi RK. Satellite cells attract monocytes and use macrophages as a support to escape apoptosis and enhance muscle growth. J Cell Biol. 2003; 163(5): 1133-1143. Cerca con Google

Chen S, Mangé A, Dong L, Lehmann S, Schachner M. Prion protein as trans-interacting partner for neurons is involved in neurite outgrowth and neuronal survival. Mol Cell Neurosci. 2003; 22(2): 227-233. Cerca con Google

Chen SE, Gerken E, Zhang Y, Zhan M, Mohan RK, Li A, Reid MB, Li YP. Role of TNFalpha signaling in regeneration of cardiotoxin-injured muscle. Am J Physiol Cell Physiol. 2005; 289: 1179-87. Cerca con Google

Chen SE, Jin B, Li YP. TNFalpha regulates myogenesis and muscle regeneration by activating p38 MAPK. Am J Physiol Cell Physiol. 2007; 292: 1660-1671. Cerca con Google

Chiesa R, Pestronk A, Schmidt RE, Tourtellotte WG, Ghetti B, Piccardo P, Harris DA. Primary myopathy and accumulation of PrPSc-like like molecules in peripheral tissues of transgenic mice ex pressing a prion protein insertional mutation. Neurobiol Dis. 2001; 8(2): 279-288. Cerca con Google

Chrétien F, Dorandeu A, Adle-Biassette H, Ereau T, Wingertsmann L, Brion F, Gray F. A process of programmed cell death as a mechanisms of neuronal death in prion diseases. Clin Exp Pathol. 1999; 47(3-4): 181-191. Cerca con Google

Cohen FE, Pan KM, Huang Z, Baldwin M, Fletterick RJ, Prusiner SB. Structural clues to prion replication. Science. 1994;264(5158): 530-531. Cerca con Google

Coitinho AS, Freitas AR, Lopes MH, Hajj GN, Roesler R, Walz R, Rossato JI, Cammarota M, Izquierdo I, Martins VR, Brentani RR. The interaction between prion protein and laminin modulates memory consolidation. Eur J Neurosci. 2006; 24(11): 3255-3264. Cerca con Google

Collinge J, Owen F, Poulter M, Leach M, Crow TJ, Rossor MN, Hardy J, Mullan MJ, Janota I, Lantos PL. Prion dementia without characteristic pathology. Lancet. 1990; 336(8706): 7-9. Cerca con Google

Cooper RN, Tajbakhsh S, Mouly V, Cossu G, BuckinghamM, Butler-Browne GS. In vivo satellite cell activation via Myf5 andMyoD in regenerating mouse skeletal muscle. J Cell Sci. 1999; 112: 2895–2901. Cerca con Google

Cornelison DD, Olwin BB, Rudnicki MA, Wold BJ. MyoD(-/-) satellite cells in single-fiber culture are differentiation defective and MRF4 deficient. Dev Biol. 2000; 224(2): 122-137. Cerca con Google

Courtheyn D, Le Bizec B, Brambilla G, De Brabander HF, Cobbaert E, Van de Wiele M, Vercammena J, De Wasch K. Recent developments in the use and abuse of growth promoters. Anal. Chim. Acta. 2002, 473: 71-82. Cerca con Google

Cox J, Mann M. Is proteomics the new genomics? Cell. 2007; 130(3): 395-398. Cerca con Google

Dayon L, Hainard A, Licker V, Turck N, Kuhn K, Hochstrasser DF, Burkhard PR, Sanchez JC. Relative quantification of proteins in human cerebrospinal fluids by MS/MS using 6-plex isobaric tags. Anal Chem. 2008; 80: 2921-2931. Cerca con Google

Dong MW. Tryptic mapping by reversed phase liquid chromatography. Adv Chromatogr. 1992; 32: 21-51. Cerca con Google

Dorandeu A, Wingertsmann L, Chrétien F, Delisle MB, Vital C, Parchi P, Montagna P, Lugaresi E, Ironside JW, Budka H, Gambetti P, Gray F. Neuronal apoptosis in fatal familial insomnia. Brain Pathol. 1998; 8(3): 531-537. Cerca con Google

dos Ramos FJ. Beta2-agonist extraction procedures for chromatographic analysis. J Chromatogr A. 2000; 880: 69-83. Cerca con Google

Dwivedi RC, Spicer V, Harder M, Antonovici M, Ens W, Standing KG, Wilkins JA, Krokhin OV. Practical implementation of 2D HPLC scheme with accurate peptide retention prediction in both dimensions for high-throughput bottom-up proteomics. Anal Chem. 2008; 80: 7036-7042. Cerca con Google

Edwards DR, Handsley MM, Pennington CJ. The ADAM metalloproteinases. Mol Aspects Med. 2008; 29: 258-289. Cerca con Google

Elliott CT, McEvoy JD, McCaughey WJ, Crooks SRH, Hewitt SA. Improved detection of the -agonist clenbuterol by analysis of retina extracts. Vet. Rec. 1993b; 132: 301-302. Cerca con Google

Eng JK, McCormack AL, Yates JR. An approach to correlate MS/MS data to amino acid sequences in proten database. J Am Soc Mass Spectrom 1994; 5: 976-89. Cerca con Google

Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM. Electrospray ionization for mass spectrometry of large biomolecules. Science. 1989; 246: 64-71. Cerca con Google

Forloni G, Angeretti N, Chiesa R, Monzani E, Salmona M, Bugiani O, Tagliavini F. Neurotoxicity of a prion protein fragment. Nature. 1993 Apr 8;362(6420):543-6. Cerca con Google

Fornai F, Ferrucci M, Gesi M, Bandettini di Poggio A, Giorgi FS, Biagioni F, Paparelli A. A hypothesis on prion disorders: are infectious, inherited, and sporadic causes so distinct? Brain Res Bull. 2006; 69(2): 95-100. Cerca con Google

Friso G, Kaiser L, Raud J, Wikström L. Differential protein expression in rat trigeminal ganglia during inflammation. Proteomics. 2001; 1: 397-408. Cerca con Google

Gauczynski S, Peyrin JM, Haïk S, Leucht C, Hundt C, Rieger R, Krasemann S, Deslys JP, Dormont D, Lasmézas CI, Weiss S. The 37-kDa/67-kDa laminin receptor acts as the cell-surface receptor for the cellular prion protein. EMBO J. 2001; 20(21): 5863-5875. Cerca con Google

Gillette MA, Mani DR, Carr SA. Place of pattern in proteomic biomarker discovery. J Proteome Res. 2005; 4: 1143-1154. Cerca con Google

Glatzel M, Abela E, Maissen M, Aguzzi A. Extraneural pathologic prion protein in sporadic Creutzfeldt-Jakob disease. N Engl J Med. 2003; 349(19): 1812-1820. Cerca con Google

Gopinath SD, Rando TA. Stem cell review series: aging of the skeletal muscle stem cell niche. Aging Cell. 2008; 7(4): 590-598. Cerca con Google

Görg A, Drews O, Lück C, Weiland F, Weiss W. 2-DE with IPGs. Electrophoresis. 2009; 30 Suppl 1: S122-132. Cerca con Google

Görg A, Weiss W, Dunn MJ. Current two-dimensional electrophoresis technology for proteomics. Proteomics. 2004; 4(12): 3665-3685. Erratum in: Proteomics. 2005; 5(3): 826-827. Cerca con Google

Gowik P, Jülicher B, Ladwig M, Behrendt D. Measurement of beta-agonist residues in retinal tissue of food producing animals. Analyst. 2000; 125: 1103-1107. Cerca con Google

Graner E, Mercadante AF, Zanata SM, Forlenza OV, Cabral AL, Veiga SS, Juliano MA, Roesler R, Walz R, Minetti A, Izquierdo I, Martins VR, Brentani RR. Cellular prion protein binds laminin and mediates neuritogenesis. Brain Res Mol Brain Res. 2000a; 76(1): 85-92. Cerca con Google

Griffith JS. Self-replication and scrapie. Nature. 1967 215(105):1043-4. Cerca con Google

Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol. 1999; 17: 994-999. Cerca con Google

Haab BB, Zhou H. Multiplexed protein analysis using spotted antibody microarrays. Methods Mol Biol. 2004; 264: 33-45. Cerca con Google

Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol 2007; 8:101-12. Cerca con Google

Hajj GN, Lopes MH, Mercadante AF, Veiga SS, da Silveira RB, Santos TG, Ribeiro KC, Juliano MA, Jacchieri SG, Zanata SM, Martins VR. Cellular prion protein interaction with vitronectin supports axonal growth and is compensated by integrins. J Cell Sci. 2007; 120(Pt 11): 1915-1926. Cerca con Google

Han J, Jiang Y, Li Z, Kravchenko VV, Ulevitch RJ. Activation of the transcription factor MEF2C by the MAP kinase p38 in inflammation. Nature. 1997; 386: 296-299. Cerca con Google

Hanash S. Disease proteomics. Nature. 2003; 422 :226-232. Cerca con Google

Hansen SM, Berezin V, Bock E. Signaling mechanisms of neurite outgrowth induced by the cell adhesion molecules NCAM and N-cadherin. Cell Mol Life Sci. 2008; 65(23): 3809-3821. Cerca con Google

Hawke TJ, Garry DJ. Myogenic satellite cells: physiology to molecular biology. J Appl Physiol. 2001; 91(2): 534-551. Erratum in: J Appl Physiol 2001; 91(6): 2414. Cerca con Google

Hill AF, Joiner S, Linehan J, Desbruslais M, Lantos PL, Collinge J. Species-barrier-independent prion replication in apparently resistant species. Proc Natl Acad Sci USA. 2000; 97(18): 10248-10253. Cerca con Google

Hooper NM. Roles of proteolysis and lipid rafts in the processing of the amyloid precursor protein and prion protein. Biochem Soc Trans. 2005; 33: 335-338. Cerca con Google

Huang S, Liang J, Zheng M, Li X, Wang M, Wang P, Vanegas D, Wu D, Chakraborty B, Hays AP, Chen K, Chen SG, Booth S, Cohen M, Gambetti P, Kong Q. Inducible overexpression of wild-type prion protein in the muscles leads to a primary myopathy in transgenic mice. Proc Natl Acad Sci USA. 2007; 104(16): 6800-6805. Cerca con Google

Huber LA, Pfaller K, Vietor I. Organelle proteomics: implications for subcellular fractionation in proteomics. Circ Res. 2003; 92: 962-968. Cerca con Google

Hulsmeier AJ, Paesold-Burda P, Hennet T. N-glycosylation site occupancy in serum glycoproteins using multiple reaction monitoring liquid chromatography–mass spectrometry. Mol. Cell. Proteomics. 2007; 6(12): 2132-2138. Cerca con Google

Hundt C, Peyrin JM, Haïk S, Gauczynski S, Leucht C, Rieger R, Riley ML, Deslys JP, Dormont D, Lasmézas CI, Weiss S. Identification of interaction domains of the prion protein with its 37-kDa/67-kDa laminin receptor. EMBO J. 2001; 20(21): 5876-86. Cerca con Google

Istasse L, De Haan V, Van Eenaeme C, Buts B, Baldwin P, Gielen M, Demeyer D, Bienfait JM. Effects of dexamethasone injections on performances in a pair of monozygotic cattle twins. J. Anim. Physiol. Anim. Nutr. 1984; 62: 150-158. Cerca con Google

Kabouridis PS. Lipid rafts in T cell receptor signaling. Mol Membr Biol. 2006;23(1): 49-57. Cerca con Google

Kalhovde JM, Jerkovic R, Sefland I, Cordonnier C, Calabria E, Schiaffino S, Lømo T. "Fast" and "slow" muscle fibres in hindlimb muscles of adult rats regenerate from intrinsically different satellite cells. J Physiol. 2005; 562(Pt 3): 847-857. Cerca con Google

Kanaani J, Prusiner SB, Diacovo J, Baekkeskov S, Legname G. Recombinant prion protein induces rapid polarization and development of synapses in embryonic rat hippocampal neurons in vitro. J Neurochem. 2005; 95(5): 1373-1386. Cerca con Google

Karas M, Bachmann D, Bahr U, Hillenkamp F. Matrix assisted ultraviolet laser desorption of non-volatile compounds. Int. J. Mass Spectrom. Ion Proc. 1987; 78: 53-68. Cerca con Google

Kim BH, Lee HG, Choi JK, Kim JI, Choi EK, Carp RI, Kim YS. The cellular prion protein (PrPC) prevents apoptotic neuronal cell death and mitochondrial dysfunction induced by serum deprivation. Brain Res Mol Brain Res. 2004; 124(1): 40-50. Cerca con Google

Kim MR, Kim CW. Human blood plasma preparation for two-dimensional gel electrophoresis. J Chromatogr B Analyt Technol Biomed Life Sci. 2007; 849: 203-210. Cerca con Google

Kitteringham NR, Jenkins RE, Lane CS, Elliott VL, Park BK. Multiple reaction monitoring for quantitative biomarker analysis in proteomics and metabolomics. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2009; 877: 1229-1239. Cerca con Google

Klamt F, Dal-Pizzol F, Conte da Frota ML JR, Walz R, Andrades ME, da Silva EG, Brentani RR, Izquierdo I, Fonseca Moreira JC. Imbalance of antioxidant defense in mice lacking cellular prion protein. Free Radic Biol Med. 2001; 30(10): 1137-1144. Cerca con Google

Klose J. Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik. 1975; 26: 231-243. Cerca con Google

Kovacs GC, Linleck-Pozza E, Chimelli L, Araujo AQ, Gabbai AA, Strobel T, Glatzel M, Aguzzi A, Budke H. Creutzfeld-Jacob and inclusion body myositis: abundant disease-associated prion protein in muscle. Ann Neurol. 2004; 55(1): 121-125. Cerca con Google

Krasemann S, Neumann M, Geissen M, Bodemer W, Kaup FJ, Schulz-Schaeffer W, Morel N, Aguzzi A, Glatzel M. Preclinical deposition of pathological prion protein in muscle of experimentally infected primates. PLoS One. 2010; 5(11): e13906. Cerca con Google

Kuhn E, Wu J, Karl J, Liao H, Zolg W, Guild B. Quantification of C-reactive protein in the serum of patients with rheumatoid arthritis using multiple reaction monitoring mass spectrometry and 13C-labeled peptide standards. Proteomics. 2004; 4: 1175-1186. Cerca con Google

Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970; 227: 680-685. Cerca con Google

Lasmézas CI, Deslys JP, Robain O, Jaegly A, Beringue V, Peyrin JM, Fournier JG, Hauw JJ, Rossier J, Dormont D. Transmission of the BSE agent to mice in the absence of detectable abnormal prion protein. Science. 1997; 275(5298): 402-5. Cerca con Google

Le Grand F, Rudnicki MA. Skeletal muscle satellite cells and adult myogenesis. Curr Opin Cell Biol. 2007; 19(6): 628-633. Cerca con Google

Li YP, Schwartz RJ. TNF-alpha regulates early differentiation of C2C12 myoblasts in an autocrine fashion. FASEB J. 2001; 15: 1413-1415. Cerca con Google

Linden R, Martins VR, Prado MA, Cammarota M, Izquierdo I, Brentani RR. Physiology of the prion protein. Physiol Rev. 2008; 88(2): 673-728. Cerca con Google

Loboda AV, Krutchinsky AN, Bromirski M, Ens W, Standing KG. A tandem quadrupole /time-of-flight mass spectrometer with a matrix-assisted laser desorption/ionization source: design and performance. Rapid Commun. Mass Spectrom. 2000; 14: 1047-1057. Cerca con Google

Lopes MH, Hajj GN, Muras AG, Mancini GL, Castro RM, Ribeiro KC, Brentani RR, Linden R, Martins VR. Interaction of cellular prion and stress-inducible protein 1 promotes neuritogenesis and neuroprotection by distinct signaling pathways. J Neurosci. 2005; 25(49): 11330-11339. Cerca con Google

MacBeath G. Protein microarrays and proteomics. Nat Genet. 2002; 32 Suppl: 526-532. Cerca con Google

Makarov A. Electrostatic axially harmonic orbital trapping: a highperformance technique of mass analysis. Anal. Chem. 2000; 72: 1156-1162. Cerca con Google

Málaga-Trillo E, Sempou E. PrPs: Proteins with a purpose: Lessons from the zebrafish. Prion. 2009; 3(3): 129-133. Cerca con Google

Málaga-Trillo E, Solis GP, Schrock Y, Geiss C, Luncz L, Thomanetz V, Stuermer CA. Regulation of embryonic cell adhesion by the prion protein.PLoS Biol. 2009; 7(3): e55. Cerca con Google

Mallucci G, Collinge J. Update on Creutzfeldt-Jakob disease. Curr Opin Neurol. 2004; 17(6): 641-647. Cerca con Google

Mallucci G, Ratte S, Asante EA, Linehan J, Gowland I, Jefferys JG, Collinge J. Post-natal knockout of prion protein alters hippocampal CA1 properties, but does not result in neurodegeneration. EMBO J. 2002; 21(3): 202-210. Cerca con Google

Mann M, Hendrickson RC, Pandey A. Analysis of proteins and proteome by mass spectrometry. Annu Rev Biochem. 2001; 70: 437-473. Cerca con Google

Mann M, Wilm MS. Error tolerant identification of peptides in sequence databases by peptide sequence tags. Anal. Chem. 1994; 66: 4390-4399. Cerca con Google

Manson JC, Clarke AR, Hooper ML, Aitchison L, McConnell I, Hope J. 129/Ola mice carrying a null mutation in PrP that abolishes mRNA production are developmentally normal. Mol Neurobiol. 1994; 8(2-3): 121-127. Cerca con Google

Massimino ML, Ferrari J, Sorgato MC, Bertoli A. Heterogeneous PrPC metabolism in skeletal muscle cells. FEBS Lett. 2006; 580(3): 878-884. Cerca con Google

Mauro A. Satellite cell of skeletal muscle fibers. J Biophys Biochem. 1961; 9: 493-495. Cerca con Google

Mayya V, Rezual K, Wu L, Fong MB, Han DK. Absolute quantification of multisite phosphorylation by selective reaction monitoring mass spectrometry: determination of inhibitory phosphorylation status of cyclin-dependent kinases. Mol. Cell. Proteomics. 2006; 5(6): 1146-1157. Cerca con Google

Mazzanti G, Daniele C, Boatto G, Manca G, Brambilla G, Loizzo A. New beta-adrenergic agonists used illicitly as growth promoters in animal breeding: chemical and pharmacodynamic studies. Toxicology. 2003; 187: 91-99. Cerca con Google

McKerracher L, Chamoux M, Arregui CO. Role of laminin and integrin interactions in growth cone guidance. Mol Neurobiol. 1996; 12(2): 95-116. Cerca con Google

McLennan NF, Brennan PM, McNeill A, Davies I, Fotheringham A, Rennison KA, Ritchie D, Brannan F, Head MW, Ironside JW, Williams A, Bell JE. Prion protein accumulation and neuroprotection in hypoxic brain damage. Am J Pathol. 2004; 165(1): 227-235. Cerca con Google

Medori R, Montagna P, Tritschler HJ, LeBlanc A, Cortelli P, Tinuper P, Lugaresi E, Gambetti P. Fatal familial insomnia: a second kindred with mutation of prion protein gene at codon 178. Neurology. 1992; 42(3 Pt 1): 669-670. Cerca con Google

Medzihradszky KF, Campbell JM, Baldwin MA, Falick AM, Juhasz P, Vestal ML, Burlingame AL. The characteristics of peptide collision-induced dissociation using a high performance MALDI-TOF/TOF tandem mass spectrometer. Anal. Chem. 2000; 72: 552-558. Cerca con Google

Miele G, Alejo Blanco AR, Baybutt H, Horvat S, Manson J, Clinton M. Embryonic activation and developmental expression of the murine prion protein gene. Gene Expr. 2003; 11(1): 1-12. Cerca con Google

Minden JS, Dowd SR, Meyer HE, Stühler K. Difference gel electrophoresis. Electrophoresis. 2009; 30 (Suppl 1): S156-161. Cerca con Google

Mitchell AD, Steele NC, Solomon MB, Alila HW, Lindsey TO, Cracknell V. Influence of dietary background on the response of pigs to the beta-adrenergic agonist BRL 47672. J. Anim. Sci. 1994; 72: 1516-1521. Cerca con Google

Mitteregger G, Vosko M, Krebs B, Xiang W, Kohlmannsperger V, Nölting S, Hamann GF, Kretzschmar HA. The role of the octarepeat region in neuroprotective function of the cellular prion protein.Brain Pathol. 2007; 17(2): 174-183. Cerca con Google

Monnet C, Gavard J, Mège RM, Sobel A. Clustering of cellular prion protein induces ERK1/2 and stathmin phosphorylation in GT1-7 neuronal cells. FEBS Lett. 2004; 576(1-2): 114-118. Cerca con Google

Moritz B, Meyer HE. Approaches for the quantification of protein concentration ratios. Proteomics. 2003; 3: 2208-2220. Cerca con Google

Mouillet-Richard S, Ermonval M, Chebassier C, Laplanche JL, Lehmann S, Launay JM, Kellermann O. Signal transduction through prion protein. Science, 2000; 289: 1925-1928. Cerca con Google

Nazor KE, Seward T, Telling GC. Motor behaviour and neuropathological deficits in mice deficient form normal prion protein expression. Biochim Biophys Acta. 2007; 1772(6): 645-653. Cerca con Google

Neuhoff V, Arold N, Taube D, Ehrhardt W. Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis. 1988; 9: 255-262. Cerca con Google

Nico PB, Lobão-Soares B, Landemberger MC, Marques W Jr, Tasca CI, de Mello CF, Walz R, Carlotti CG Jr, Brentani RR, Sakamoto AC, Bianchin MM. Impaired exercise capacity, but unaltered mitochondrial respiration in skeletal or cardiac muscle of mice lacking cellular prion protein. Neurosci Lett. 2005; 388(1): 21-26. Cerca con Google

O'Farrell PH. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975; 250: 4007-21. Cerca con Google

Old WM, Meyer-Arendt K, Aveline-Wolf L, Pierce KG, Mendoza A, Sevinsky JR, Resing KA, Ahn NG. Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol. Cell. Proteomics. 2005; 4: 1487-1502. Cerca con Google

Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics. 2002; 1: 376-386. Cerca con Google

Palacios D, Mozzetta C, Consalvi S, Caretti G, Saccone V, Proserpio V, Marquez VE, Valente S, Mai A, Forcales SV, Sartorelli V, Puri PL. TNF/p38α/polycomb signaling to Pax7 locus in satellite cells links inflammation to the epigenetic control of muscle regeneration. Cell Stem Cell. 2010; 7: 455-69. Cerca con Google

Pan KM, Baldwin M, Nguyen, Gasset M, Serban A, Groth D, Mehlhorn I, Huang Z, Fletterick RJ, Cohen FE. Conversion of alpha-helices into beta sheet features in the formation of scrapie prion protein. Proc. Natl. Acad. Sci. USA 1993; 90: 10962-10966. Cerca con Google

Pan T, Wong BS, Liu T, Li R, Petersen RB, Sy MS. Cell-surface prion protein interacts with glycosaminoglycans. Biochem J. 2002; 368(Pt 1): 81-90. Cerca con Google

Parker MH, Seale P, Rudnicki MA. Looking back to the embryo: defining transcriptional networks in adult myogenesis. Nat Rev Genet. 2003; 4(7): 497-507. Cerca con Google

Patterson SD, Aebersold RH. Proteomics: the first decade and beyond. Nat. Genet. 2003; 33: 311–323. Cerca con Google

Peden AH, Ritchie DL, Head MW, Ironside JW. Detection and localization of PrPSc in the skeletal muscle of patients with variant, iatrogenic, and sporadic forms of Creutzfeldt-Jakob disease. Am J Pathol. 2006; 168(3): 927-935. Cerca con Google

Peters PJ, Mironov A Jr, Peretz D, van Donselaar E, Leclerc E, Erpel S, DeArmond SJ, Burton DR, Williamson RA, Vey M, Prusiner SB. Trafficking of prion proteins through a caveolae-mediated endosomal pathway. J Cell Biol. 2003; 162(4): 703-717. Cerca con Google

Pradines E, Loubet D, Mouillet-Richard S, Manivet P, Launay JM, Kellermann O, Schneider B. Cellular prion protein coupling to TACE-dependent TNF-alpha shedding controls neurotransmitter catabolism in neuronal cells. J Neurochem. 2009; 110(3): 912-923. Cerca con Google

Prestori F, Rossi P, Bearzatto B, Laine J, Necchi D, Diwakar S, Schiffmann SN, Axelrad H, D’Angelo E. Altered neuron excitability and synaptic plasticity in the cerebellar granular layer of juvenile prion protein knock-out mice with impaired motor control. J. Neurosci. 2008; 28: 7091–7103. Cerca con Google

Prusiner SB. Prions. Proc. Natl. Acad. Sci. 1998; 95: 13363-13383. Cerca con Google

Prusiner SB. Prions: novel infectious pathogens. Adv Virus Res. 1984; 29: 1-56. Cerca con Google

Rabilloud T, Strub JM, Luche S, van Dorsselaer A, Lunardi J. A comparison between Sypro Ruby and ruthenium II tris (bathophenanthroline disulfonate) as fluorescent stains for protein detection in gels. Proteomics. 2001; 1: 699-704. Cerca con Google

Rabilloud T. Membrane proteins and proteomics: love is possible, but so difficult. Electrophoresis. 2009; 30 Suppl 1: S174-180. Cerca con Google

Race R, Chesebro B. Scrapie infectivity found in resistant species. Nature. 1998; 392(6678): 770. Cerca con Google

Relaix F, Montarras D, Zaffran S, Gayraud-Morel B, Rocancourt D, Tajbakhsh S, Mansouri A, Cumano A, Buckingham M. Pax3 and Pax7 have distinct and overlapping functions in adult muscle progenitor cells. J Cell Biol. 2006; 172(1): 91-102. Erratum in: J Cell Biol. 2007; 176(1): 125. Cerca con Google

Reynolds JEF. Marthindale - The Extra Pharmacopoeia, 1996; 31st edition. Cerca con Google

Rieger R, Edenhofer F, Lasmezas CI, Weiss S. The human 37-kDa laminin receptor precursor interacts with the prion protein in eukaryotic cells. Nat Med. 1997; 3(12): 1383-1388. Cerca con Google

Riek R, Hornemann S, Wider G, Billeter M, Glockshuber R, Wüthrich K. NMR structure of the mouse prion protein domain PrP(121-321). Nature. 1996; 382(6587): 180-182. Cerca con Google

Rogers M, Graham J, Tonge RP. Statistical models of shape for the analysis of protein spots in two-dimensional electrophoresis gel images. Proteomics. 2003; 3: 887-896. Cerca con Google

Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteomics. 2004; 3: 1154-1169. Cerca con Google

Safar J, Roller PP, Gajduesek DC, Gibbs CJ Jr. Thermal stability and conformational transitions of scrapie amyloid (prion) protein correlate with infectivity. Protein Sci. 1993; 2: 2206-2216. Cerca con Google

Samaia HB, Brentani RR. Can loss-of-function prion-related diseases exist? Mol Psychiatry. 1998; 3(3): 196-197. Cerca con Google

Santoni V, Molloy M, Rabilloud T. Membrane proteins and proteomics: un amour impossible? Electrophoresis. 2000; 21: 1054-1070. Cerca con Google

Santuccione A, Sytnyk V, Leshchyns’ka I, Schachner M. Prion protein recruits its neuronal receptor NCAM to lipid rafts to activate p59Fyn and to enhance neurite outgrowth. J Cell Biol. 2005; 169(2): 341-354. Cerca con Google

Schmalbruch H, Lewis DM. Dynamics of nuclei of muscle fibers and connective tissue cells in normal and denervated rat muscles. Muscle Nerve. 2000; 23(4): 617-626. Cerca con Google

Schmitt-Ulms G, Legname G, Baldwin MA, Ball HL, Bradon N, Bosque PJ, Crossin KL, Edelman GM, DeArmond SJ, Cohen FE, Prusiner SB. Binding of neural cell adhesion molecules (N-CAMs) to the cellular prion protein. J Mol Biol. 2001; 314(5): 1209-1225. Cerca con Google

Schneider B, Mutel V, Pietri M, Ermoval M, Mouillet-Richard S, Kellermann O. NADPH oxidase and extracellular regulated kinases1/2 are targets of prions protein signalling in neuronal and nonneuronal cells. Proc Natl Acad Sci U S A. 2003; 100(23): 13326-13331. Cerca con Google

Schwartz JC, Senko MW, Syka JE. A two-dimensional quadrupole ion trap mass spectrometer. J Am Soc Mass Spectrom. 2002; 13(6): 659-669. Cerca con Google

Scigelova M, Makarov A. Orbitrap mass analyzer-overview and applications in proteomics. Proteomics. 2006; 6 (Suppl 2): 16-21. Cerca con Google

Seale P, Sabourin LA, Girgis-Gabardo A, Mansouri A, Gruss P, Rudnicki MA. Pax7 is required for the specification of myogenic satellite cells. Cell. 2000; 102(6): 777-786. Cerca con Google

Serra C, Palacios D, Mozzetta C, Forcales SV, Morantte I, Ripani M, Jones DR, Du K, Jhala US, Simone C, Puri PL. Functional interdependence at the chromatin level between the MKK6/ p38 and IGF1/PI3K/AKT pathways during muscle differentiation. Mol Cell. 2007; 28: 200-213. Cerca con Google

Serrano AL, Baeza-Raja B, Perdiguero E, Jardí M, Muñoz-Cánoves P. Interleukin-6 is an essential regulator of satellite cell-mediated skeletal muscle hypertrophy. Cell Metab. 2008; 7(1): 33-44. Cerca con Google

Shaw J, Rowlinson R, Nickson J, Stone T, Sweet A, Williams K, Tonge R. Evaluation of saturation labelling two-dimensional difference gel electrophoresis fluorescent dyes. Proteomics. 2003; 3(7): 1181-1195. Cerca con Google

Shyu WC, Lin SZ, Chiang MF, Ding DC, Li KW, Chen SF, Yang HI, Li H. Overexpression of PrPC by Adenovirus-mediated gene targeting reduces ischemic injury in a stroke rat model. J Neurosci. 2005; 25(39): 8967-8977. Cerca con Google

Simone C, Forcales SV, Hill DA, Imbalzano AN, Latella L, Puri PL. p38 pathway targets SWI-SNF chromatin-remodeling complex to muscle-specific loci. Nat Genet. 2004; 36: 738-743. Cerca con Google

Simons K, Ikonen E. Functional rafts in cell membranes. Nature. 1997; 387(6633): 569-572. Cerca con Google

Smith CK II, Janney MJ, Allen RE. Temporal expression of myogenic regulatory genes during activation, proliferation, and differentiation of rat skeletal muscle satellite cells. J Cell Physiol. 1994; 159: 379-385. Cerca con Google

Sparkes RS, Simon M, Cohn VH, Fournier RE, Lem J, Klisak I, Heinzmann C, Blatt C, Lucero M, Mohandas T. Assignment of the human and mouse prion protein genes to homologous chromosomes. Proc Natl Acad Sci U S A. 1986; 83(19): 7358-7362. Cerca con Google

Spudich A, Frigg R, Kilic E, Kilic U, Oesch B, Raeber A, Bassetti CL, Hermann DM. Aggravation of ischemic brain injury by prion protein deficiency: role of ERK-1/-2 and STAT-1. Neurobiol Dis. 2005; 20(2): 442-449. Cerca con Google

Steele AD, Lindquist S, Aguzzi A. The prion protein knockout mouse: a phenotype under challenge. Prion. 2007;1(2): 83-93. Cerca con Google

Steele AD, Zhou Z, Jackson WS, Zhu C, Auluck P, Moskowitz MA, Chesselet MF, Lindquist S. Context dependent neuroprotective properties of prion protein (PrP). Prion. 2009; 3(4): 240-249. Cerca con Google

Stolker AA, Brinkman UA. Analytical strategies for residue analysis of veterinary drugs and growth-promoting agents in food-producing animals--a review. J Chromatogr A. 2005; 1067(1-2): 15-53. Cerca con Google

Streit F, Armstrong VW, Oellerich M. Rapid liquid chromatography-tandem mass spectrometry routine method for simultaneous determination of sirolimus, everolimus, tacrolimus, and cyclosporin A in whole blood. Clinical Chemistry. 2002; 48: 955-958. Cerca con Google

Stuermer CA, Langhorst MF, Wiechers MF, Legler DF, Von Hanwehr SH, Guse AH, Plattner H. PrPc capping in T cells promotes its association with the lipid raft proteins reggie-1 and reggie-2 and leads to signal transduction. FASEB J. 2004; 18(14): 1731-1733. Cerca con Google

Taylor DR, Hooper NM. The prion protein and lipid rafts. Mol Membr Biol. 2006; 23(1): 89-99. Cerca con Google

Taylor DR, Parkin ET, Cocklin SL, Ault JR, Ashcroft AE, Turner AJ, Hooper NM. Role of ADAMs in the ectodomain shedding and conformational conversion of the prion protein. J Biol Chem 2009; 284: 22590-22600. Cerca con Google

Ten Broek RW, Grefte S, Von den Hoff JW. Regulatory factors and cell populations involved in skeletal muscle regeneration. J Cell Physiol. 2010; 224(1): 7-16. Cerca con Google

Thompson A, Schäfer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, Neumann T, Johnstone R, Mohammed AK, Hamon C. Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem. 2003; 75: 1895-1904. Cerca con Google

Thomzig A, Schulz-Schaeffer W, Kratzel C, Mai J, Beekes M. Preclinical deposition of pathological prion protein PrPSc in muscles of hamsters orally exposed to scrapie. J Clin Invest. 2004; 113(10): 1465-1472. Cerca con Google

Tidball JG, Berchenko E, Frenette J. Macrophage invasion does not contribute to muscle membrane injury during inflammation. J Leukoc Biol. 1999; 65: 492-498. Cerca con Google

Tidball JG, Wehling-Henricks M. Macrophages promote muscle membrane repair and muscle fibre growth and regeneration during modified muscle loading in mice in vivo. J Physiol. 2007; 578(Pt 1): 327-336. Cerca con Google

Tidball JG. Inflammatory cell response to acute muscle injury. Med Sci Sports Exerc. 1995; 27(7): 1022-1032. Cerca con Google

Tsai WJ, McCormick KM, Brazeau DA, Brazeau GA. Estrogen effects on skeletal muscle insulin-like growth factor 1 and myostatin in ovariectomized rats. Exp Biol Med (Maywood). 2007; 232(10): 1314-1325. Cerca con Google

Unlü M, Morgan ME, Minden JS. Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis. 1997; 18: 2071-2077. Cerca con Google

Uptain SM, Lindquist S. Prions as protein-based genetic elements. Annu Rev Microbiol. 2002; 56: 703-741. Cerca con Google

Vardy ER, Catto AJ, Hooper NM. Proteolytic mechanisms in amyloid-beta metabolism: therapeutic implications for Alzheimer’s disease. Trends Mol Med. 2005; 11: 464-472. Cerca con Google

Vey M, Pilkuhn S, Wille H, Nixon R, DeArmond SJ, Smart EJ, Anderson RG, Taraboulos A, Prusiner SB. Subcellular colocalization of the cellular and scrapie prion proteins in caveolae-like membranous domains. Proc Natl Acad Sci USA. 1996; 93(25): 14945-9. Cerca con Google

Villalta SA, Nguyen HX, Deng B, Gotoh T, Tidball JG. Shifts in macrophage phenotypes and macrophage competition for arginine metabolism affect the severity of muscle pathology in muscular dystrophy. Hum Mol Genet. 2009; 18: 482-496. Cerca con Google

Wagner K, Miliotis T, Marko-Varga G, Bischoff R, Unger KK. An automated on-line multidimensional HPLC system for protein and peptide mapping with integrated sample preparation. Anal Chem. 2002; 74: 809-820. Cerca con Google

Wang X, Wu H, Zhang Z, Liu S, Yang J, Chen X, Fan M, Wang X. Effects of interleukin-6, leukemia inhibitory factor, and ciliary neurotrophic factor on the proliferation and differentiation of adult human myoblasts. Cell Mol Neurobiol. 2008; 28: 113–124. Cerca con Google

Watt NT, Hooper NM. The prion protein and neuronal zinc homeostasis. Trends Biochem Sci 2003; 28: 406-410. Cerca con Google

Weise J, Crome O, Sandau R, Schulz-Schaeffer W, Bähr M, Zerr I. Upregulation of cellular prion protein (PrPC) after focal cerebral ischemia and influence of lesion severity. Neurosci Lett. 2004; 372(1-2): 146-150. Cerca con Google

Weise J, Doeppner TR, Müller T, Wrede A, Schulz-Schaeffer W, Zerr I, Witte OW, Bähr M. Overexpression of cellular prion protein alters postischemic Erk1/2 phosphorylation but not Akt phosphorylation and protects against focal cerebral ischemia. Restor Neurol Neurosci. 2008; 26(1): 57-64. Cerca con Google

Weise J, Sandau R, Schwarting S, Crome O, Wrede A, Schulz-Schaeffer W, Zerr I, Bähr M. Deletion of cellular prion protein results in reduced Akt activation, enhanced postischemic caspase-3 activation, and exacerbation of ischemic brain injury. Stroke. 2006; 37(5): 1296-1300. Cerca con Google

Weissmann C, Flechsig E. PrP knock-out and PrP transgenic mice in prion research. Br Med Bull. 2003; 66: 43-60. Cerca con Google

Westermeier R, Marouga R. Protein detection methods in proteomics research. Biosci Rep. 2005; 25: 19-32. Cerca con Google

Wilkins MR, Sanchez JC, Gooley AA, Appel RD, Humphery-Smith I, Hochstrasser DF, Williams KL. Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev. 1996; 13: 19-50. Cerca con Google

Wolf-Yadlin A, Hautaniemi S, Lauffenburger DA, White FM. Multiple reaction monitoring for robust quantitative proteomic analysis of cellular signaling networks. Proc. Natl. Acad. Sci. USA. 2007; 104: 5860-5865. Cerca con Google

Wu Z, Woodring PJ, Bhakta KS, Tamura K, Wen F, Feramisco JR, Karin M, Wang JY, Puri PL. p38 and extracellular signal-regulated kinases regulate the myogenic program at multiple steps. Mol Cell Biol. 2000; 20: 3951-3964. Cerca con Google

Zammit PS, Golding JP, NagataY, Hudon V, Partridge TA, Beauchamp JR. Muscle satellite cells adopt divergent fates: a mechanism for self-renewal? J. Cell Biol. 2004; 166: 347-357. Cerca con Google

Zammit PS, Partridge TA, Yablonka-Reuveni Z. The skeletal muscle satellite cell: the stem cell that came in from the cold. J Histochem Cytochem. 2006; 54(11): 1177-1191. Cerca con Google

Zanata SM, Lopes MH, Mercadante AF, Hajj GN, Chiarini LB, Nomizo R, Freitas AR, Cabral AL, Lee KS, Juliano MA, de Oliveira E, Jachieri SG, Burlingame A, Huang L, Linden R, Brentani RR, Martins VR. Stress-inducible protein 1 is a cell surface ligand for cellular prion that triggers neuroprotection. EMBO J. 2002; 21(13): 3307-3316. Cerca con Google

Zanusso G, Vattemi G, Ferrari S, Tabaton M, Pecini E, Cavallaro T, Tomelleri G, Filosto M, Tonin P, Nardelli E, Rizzuto N, Monaco S. Increased expression of the normal cellular isoform of prion protein in inclusion-body myositis, inflammatory myopathies and denervation atrophy. Brain Pathol. 2001; 11(2): 182-189. Cerca con Google

Zhan M, Jin B, Chen SE, Reecy JM, Li YP. TACE release of TNFalpha mediates mechanotransduction induced activation of p38 MAPK and myogenesis. J Cell Sci. 2007; 120: 692-701. Cerca con Google

Zhang CC, Steele AD, Lindquist S, Lodish HF. Prion protein is expressed on long-term repopulating hematopoietic stem cells and is important for their self-renewal. Proc Natl Acad Sci USA. 2006; 103(7): 2184-2189. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record