Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Giovanzana, Stefano (2011) A virtual environment for modeling and analysis of human eye. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF - Versione accettata
4002Kb

Abstract (inglese)

The aim of this work is to develop a virtual environment for modelling and analyse individual virtual eyes which are able to integrate the modern imaging techniques input data. This environment is realized in 3D CAD software by means of specific plug-ins. The tools for analysing the virtual eye are based on ray-tracing and curvature analysis, while the shape of the eye is represented by NURBS or mesh surfaces. This thesis develops, and validates the use of, the plug-ins for the modelization of virtual eyes inside a 3D CAD environment; in particular a novel lens model whose shape is linked to geometrical and optical constraints was created. Shape was also tested on real crystalline images obtained with shadow photogrammetry. Moreover real eye topography was used for modelization of anterior cornea and preliminary results from ray tracing are shown. This model and the ray-tracing tools may be used in future works for design of ophthalmic, contact or intraocular lenses, specifically customised of a single ametropy.

Abstract (italiano)

Lo scopo di questo lavoro è stato quello di sviluappare un ambiente virtuale per la modellazione e l’analisi di un occhio virtuale personalizzato, che fosse in grado di integrare le moderne tecniche di analisi ottica come dati di ingresso. Questo ambiente è stato sviluppato all’interno di un software CAD tramite l’ultilizzo di plug-in specifici. Gli strumenti utilizzati per analizzare l’occhio virtuale sono basati sul ray-tracing e sull’analisi di curvatura, mentre la geometria dell’occhio è stata modellizzata tramite l’utilizzo di superfici NURBS o mesh. La presente tesi sviluppa, e valida l’utilizzo, di codesti plug-in per la modellizzazione di un occhio virtuale in un ambiente CAD 3D; in particolare è stato creato un modello innovativo di lente, la cui forma è legata a vincoli geometrici ed ottici. La forma di tale lente è stata confrontata con cristallini reali le cui immagini sono state ottenute tramite fotografia ad ombra. Inoltre la topografia di un occho reale è state utilizzata per modellare la superficie anteriore della cornea e sono quindi riportati i risultati preliminari del ray-tracing. Questo modello e gli strumenti di ray-tracing utilizzati potranno essere utilizzati in futuro per la progettazione di lenti oftalmiche, a contatto o intraoculari specificatamente costumizzate sulle esigenze dell’ametrope.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Concheri, Gianmaria
Correlatore:Meneghello, Roberto - Savio, Gianpaolo
Dottorato (corsi e scuole):Ciclo 23 > Scuole per il 23simo ciclo > INGEGNERIA INDUSTRIALE > PROGETTAZIONE MECCANICA E INGEGNERIA MOTOCICLISTICA
Data di deposito della tesi:NON SPECIFICATO
Anno di Pubblicazione:27 Gennaio 2011
Parole chiave (italiano / inglese):modellazione geometrica, analisi di curvature, ray tracing, modelli di occhio, modelli di lente, errori di rifrazione / geometric modeling, curvature analysis, ray tracing, eye model, human lens, refraction errror
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/15 Disegno e metodi dell'ingegneria industriale
Struttura di riferimento:Dipartimenti > Dipartimento di Architettura, Urbanistica e Rilevamento
Codice ID:3579
Depositato il:21 Lug 2011 09:18
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Abolmaali, A., Schachar, R.A., Le, T., 2007. Sensitivity study of human crystalline lens. Comput. Meth. Progr. Bio. 85 (1), 77–90. Cerca con Google

Alonso, J., Alda, J., 2003. Ophthalmic Optics. Encyclopedia of Optical Engineering, Marcel Dekker, Inc Cerca con Google

Angel, E., 1990. Computer graphics. Addison-Wesley Publishing Company. Atchison, D.A., 1992. Spectacle lens design: a review. Optical Society of America 31 (19), 3579- Cerca con Google

3585. Atchison, D.A., 2006. Optical Models for Human Myopic Eyes. Vision Research 46, 2236-2250. Atchison, D.A., Smith, G., 2000. Optics of the Human Eye. Butterworth-Heinemann, Australia. Bakaraju, R.C., Ehrmann, K., Papas, E., Ho, A., 2008. Finite schematic eye models and their accuracy to in-vivo data. Vision Research 48, 1681–1694. Bennett, R.B., Rabbetts, R.B., 1984. Bennett & Rabbetts’ Clinical Visual Optics. Butterworth- Cerca con Google

Heinemann, Australia. Campbell, C.E., 2010. Nested shell optical model of the lens of the human eye. J. Opt. Soc. Am. Cerca con Google

A. 27, 2432-2441. Chen, X., Schmitt, F., 1992. Intrinsic Surface Properties from Surface Triangulation. The Second European Conference on Computer Vision, 739-743. Chien, M.C., Tseng, H., Schachar, R.A., 2003. A mathematical expression for the human crystalline lens. Compr. Ther. 29 (4), 245–258. Cerca con Google

Concheri, G., Savio, G., Meneghello, R., 2006. Curvature estimation for optical analysis. Proceedings of the 6th Euspen International Conference, 87-90. De Antonia, L., 2004. Caratterizzazione micro- e macro-geometrica nel processo produttivo di stampi per lenti oftalmiche. DAUR - Laboratorio di Disegno e Metodi dell’Ingegneria Industriale - Università degli Studi di Padova, A.A. 2003-2004. de Castro, A., Ortiz, S., Gambra, E., Siedlecki, D., Marcos, S., 2010. Three-dimensional Cerca con Google

reconstruction of the crystalline lens gradient index distribution from OCT imaging. Opt. Express. 18, 21905-21917. Dennis, J.E., 1977. Nonlinear Least-Squares. State of the Art in Numerical Analysis, ed. D. Jacobs, Academic Press, 269–312. Cerca con Google

Desbrun, M., Meyer, M., Alliez, P., 2002. Intrinsic parameterizations of Surface Meshes. Computer Graphics Forum 21 (3), 209-218. Díaz, J.A., Pizarro, C., Arasa, J., 2008. Single dispersive gradient-index profile for the aging human Cerca con Google

lens. J. Opt. Soc. Am. A. 25, 250-261. Do Carmo, M., 1976. Differential Geometry of Curves and Surfaces. Prentice-Hall, NJ. Douros, I., Buxton, B., 2002. Three-Dimensional Surface Curvature Estimation Using Quadric Surfaces Patches. Cerca con Google

Scanning 2002 Proceeding. Drasdo, N., Fowler, G.W., 1974. Non-linear Projection of the Retinal Image in a Wide-angle Cerca con Google

Schematic Eye. British Journal of Ophtalmology 58, 709-714. Cerca con Google

Dubbelman, M., Van der Heijde, G.L., 2001. The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox. Vision Research 41, 1867-1877. Dubbelman, M., Van der Heijde, G.L., Weeber, H.A., 2001. The thickness of the aging human lens obtained from corrected Scheimpflug images. Optometry and Vision Science 78, 411-416. Dubbelman, M., van der Heijde, G.L., Weeber, H.A., 2005. Change in shape of the aging human crystalline lens with accommodation. Vision Res. 45 (1), 117–132. Cerca con Google

Dubbelman, M., Weeber, H.A., Van der Heijde, G.L., Volker–Dieben, H.J., 2002. Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography. Acta Ophthalmologica 70, 255–261. Cerca con Google

Dunne, M.C.M., Royston, J.M., Barnes, D.A., 1992. Normal variation of the posterior corneal surface. Acta Ophthalmologica 70, 255-261. Dyn, N., Hormann, K., Kim, S. J., Levin, D., 2001. Optimizing 3D Triangulations Using Discrete Curvature Analysis. Mathematical Methods for Curves and Surfaces, 135-146. Einighammer, J., 2009. The Indiviual Virtual Eye. University of Tubingen. Escudero-Sanz, I., Navarro, R., 1999. Off-axis Aberrations of a Wide-angle Schematic Eye Model. Cerca con Google

Journal of the Optical Society of America A. 16, 1881-1891. Cerca con Google

Fincham, E.F., 1937. The mechanism of accommodation. Brit. J. Ophthalmol. 8, 5–80. Floater, M. S., 1997. Parametrization and smooth approximation of surface triangulation. Computer Aided Geometric Design 14, 231-250. Gatzke, T. D., Grimm, C. M., 2003. Assessing Curvature Metrics on Triangular Meshes. Tecnical Report, Washington University, St. Louis Missouri. Cerca con Google

Gatzke, T.D., Grimm, C. M., 2006. Estimating Curvature on Triangular Meshes. International Journal of Shapes Modeling 12 (1), 1-23. Glasser, A., Campbell, M.C., 1999. Biometric, optical and physical changes in the isolated human crystalline lens with age in relation with presbyopia. Vision Res. 39 (11), 1991–2015. Cerca con Google

Glasser, A., Campbell, M.C., 1999. Biometric, optical and physical changes in the isolated human crystalline lens with age in relation with presbyopia. Vision Research 39 (11), 1991-2015. Cerca con Google

Goldfeather, J., Interrante, V., 2004. A Novel Cubic-Order Algorithm for Approximating Principal Direction Vectors. ACM Trans. Graph. 23, 45-63. Goldman, R., 2005. Curvature formulas for implicit curves and surfaces. Computer Aided Cerca con Google

Geometric Design 22 (7), 632-658. Goncharov, A.V., Dainty, C., 2007. Wide-field schematic eye models with gradient-index lens. J. Opt. Soc. Am. A. 24, 2157-2174. Goncharov, A.V., Dainty, C., 2007. Wide-field schematic eye models with gradient-index lens. Journal of the Optical Society of America A 24 (8), 2157-2174. Goncharov, A.V., Nowakowski, M., Sheehan, M.T., Dainty, C., 2008. Reconstruction of the optical Cerca con Google

system of the human eye with reverse ray-tracing. Optics Express 16 (3), 1692-1703. Guirao, A., Redondo, M., Artal, P., 2000. Optical aberration of the human cornea as a funciont of Cerca con Google

age. Optical Society of America 17 (10), 1697-1702. Guo, H.Q., Wang, Z., Zhao, Q., Quan, W., Wang, Y., 2005. Individual Eye Model Based on Wavefront Aberration. Optik 116, 80-85. Cerca con Google

Hameiri, E., Shimshoni, I., 2003. Estimating the Principal Curvatures and the Darboux Frame from Real 3D Range Data. IEEE Transactions on Systems, Man and Cybernetics, Part B 33 (4), 626-637. Hamman B., 1993. Curvature Approximation for Triangulated Surfaces. Computing Supplements 8, 139-153. Cerca con Google

Hermans, E., Dubbelman, M., van der Heijde, G.L., Heethaar, R.M., 2008. Change in the accommodative force on the lens of the human eye with age. Vision Res. 48, 119–126. Hermans, E., Dubbleman, M., van der Heijde, R., Heethaar, R.M., 2007. The shape of the human lens nucleus with accommodation. J. Vision 7 (10), 1–10. Hermans, E., Pouwels, P.J., Dubbelman, M., Kuijer, J.P.A., van der Heijde, R.G.L., Heethaar, R.M., 2009. Constant volume of the human lens and decrease in surface area of the capsular bag during accommodation: an MRI and Scheimpflug study. Invest. Ophth. Vis. Sci. 50 (1), 281–289. Cerca con Google

Hermans, E.A., Dubbleman, M., van der Heijde, G.L., Heethaar, R.M., 2006. Estimating the external force acting on the human eye lens during accommodation by finite element modelling. Cerca con Google

Vision Res. 46 (21), 3642–3650. Howcroft, M.J., Parker, J.A., 1977. Aspheric curvature for the human lens. Vision Research 17. 1217-1223. ISO 10322-1:2006 Ophthalmic optics – Semi-finished spectacle lens blanks – Part 1: Cerca con Google

Specifications for single-vision and multifocal lens blanks. Cerca con Google

ISO 10322-2:2006 Ophthalmic optics – Semi-finished spectacle lens blanks – Part 2: Specifications for progressive power lens blanks. ISO 13666:1998 Ophthalmic optics – Spectacle lenses – Vocabulary. ISO 3:1973 Preferred numbers – Series of preferred numbers. ISO/IEC Guide 98-3:2008 Uncertainty of measurement – Part 3: Guide to the expression of uncertainty in measurement (GUM:1995). Jalie, M., 1977. The Principles of ophthalmic lenses. The Association of Dispensing Opticians, Cerca con Google

London. Jones, C.E., Atchison, D.A., Meder, R., Pope, J.M., 2005. Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI). Vision Res. 45 (18), 2352–2366. Cerca con Google

Jones, C.E., Atchison, D.A., Pope, J.M., 2007. Changes in lens dimension and refractive index with age and accommodation. Optometry and Vision Science 84 (10) 990-995. Jones, C.E., Atchison, D.A., Pope, J.M., 2007. Changes in lens dimension and refractive index with age and accommodation. Optometry Vision Sci. 84 (10), 990–995. Kasprzak, H.T., 2000. New approximation for the whole profile of the human crystalline lens. Ophthal. Physl Opt. 20 (1), 31–43. Kasprzak, H.T., Iskander, D.R., 2006. Approximating ocular surfaces by generalised conic curves. Ophthal. Physl Opt. 26, 602–609. Cerca con Google

Kasthurirangan, S., Markwell, E., Atchison, D.A., Pope, J.M., 2008. In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation. Cerca con Google

Investigative Ophthalmology & Visual Science 49 (6), 2531-2540. Kim, S. J., Kim, C. H., Levin, D., 2001. Surface Simplification Using Discrete Curvature Norm. The Cerca con Google

Third Israle-Korea Bineational Conference on Geometric Modeling and Computer Graphics, Seul, Korea. Cerca con Google

Krsek, P., Lukács, C., Martin, R.R., 1998. Algorithms for Computing Curvatures from Range Data. The Mathematics of Surfaces 8, 1-16. Lam, A.K.C., Douthwaite, W.A., 1999. The ageing effect on the central posterior corneal radius. Ophthalmic and Physiological Optics 20 (1), 63-69. Le, T., 2005. Non-linear finite element model analysis of human accomodation lens. University of Texas, Arlington. Cerca con Google

Levenberg, K., 1944. A Method for the Solution of Certain Problems in Least-Squares. Quarterly Applied Math. 2, 164–168. Cerca con Google

Liou, H.L., Brennan, N.A., 1996. The Prediction of Shperical Aberration with Schematic Eyes. Ophthalmic and Physiological Optics 16 (4), 348-354. Liou, H.L., Brennan, N.A., 1997. Anatomically Accurate, Finite Model Eye for Optical Modeling. Cerca con Google

Journal of the Optical Society of America A 14 (8), 1684-1695. Cerca con Google

Liu, Y.J., Wang, Z.Q., Song, L.P., Mu, G.G., 2005. An Anatomically Accurate Eye Model with a Shellstructure Lens. Optik 116, 241-246.Liu, Z., Wang, B., Xub, X., Wang, C., 2006. A study for accommodating the human crystalline lens by finite element simulation. Computerized Medical Imaging and Graphics, 30, 371–376. Loos, J., Greiner, G., Seidel, H. P., 1998. A variational approach to progressive lens design. Cerca con Google

Computer Aided Design 30 (8), 595-602. Magid, E., Soldea, O., Rivlin, E., 2007. A Comparison of Gaussian and Mean Curvature Estimation Methods on Triangular Meshes of Range Image Data. Computer Vision and Image Understanding Cerca con Google

107, 139-159. Manns, F., Fernandez, V., Zipper, S., Sandadi, S., Hamaoui., M., Ho., A., 2004. Radius of curvature Cerca con Google

and asphericity of the anterior and posterior surface of human cadaver lenses. Exp. Eye Res. 78, 39–51. Manns, F., Fernandez, V., Zipper, S., Sandadi, S., Hamaoui., M., Ho., A., 2004. Radius of curvature and asphericity of the anterior and posterior surface of human cadaver lenses. Experimental Eye Cerca con Google

Research 78, 39-51. Marquardt, D., 1963. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. SIAM Cerca con Google

Journal Applied Math. 11, 431–441. Martin, R. R., 1998. Estimation of Principal Curvatures from Range Data. International Journal of Shape Modeling 4, 521-543. Cerca con Google

McIvor, A. M., Valkenburg, R. J., 1997. A comparison of Local Surface Geometry Estimation Methods. Machine Vision and Application 10, 17-26. Meek, D. S., Walton, D. J., 2000. On Surface Normal and Gaussian Curvature Approximations Cerca con Google

Given Data Sampled from a Smooth Surface. Computer Aided Geometric Design 17 (6), 521-543. Meneghello, R., Concheri, G., Savio, G., 2005. Curvature error estimation in ground and polished surfaces of glass moulds. Congreso Internactional XVII INGEGRAF XV ADM ACTAS DEL CONGRESO, Sevila, 270-271 Meneghello, R., Concheri, G., Savio, G., Comelli, D., 2006. Surface and geometry error modeling in brittle mode grinding of ophthalmic lenses moulds. International Journal of Machine Tools and Manufacture 46 (12-13), 1662-1670. Cerca con Google

Moré, J.J., 1977. The Levenberg-Marquardt Algorithm: Implementation and Theory. Lecture Notes in Mathematics 630, 105–116. Mortenson, M. E., 2006. Geometric Modeling Third Edition. Industrial Press Inc. New York. Naik, S.M. , Jain, R.C., 1998. Spline-Based Surface Fitting on Range Images for CAD Applications. Conference on Computer Vision and Pattern Recognition 249-253. Nakao, S., Ono, T., Nagata, R., Iwata, K., 1969. The distribution of refractive index in the human Cerca con Google

crystalline lens. Japan Journal of Clinical Ophthalmology 23, 903-906. Navarro, R., Palos, F., González, L., 2007(a). Adaptive model of the gradient index of the human lens. I. Formulation and model of aging ex vivo lenses. J. Opt. Soc. Am. A. 24, 2175-2185. Navarro, R., Palos, F., González, L., 2007(b). Adaptive model of the gradient index of the human Cerca con Google

lens. II. Optics of the accommodating aging lens. J. Opt. Soc. Am. A. 24, 2911-2920. Navarro, R., Santamaría, J., Bescós, J., 1985. Accomodation-dependent Model of the Human Eye Cerca con Google

with Aspherics. Journal of the Optical Society of America A 2 (8), 1273-1281. Norrby, S., 2005. The Dubbelman eye model analysed by ray tracing through aspheric surfaces. Cerca con Google

Ophthal. Physl Opt. 25, 153–161. Norrby, S., 2005. The Dubbelman eye model analysed by ray tracing through aspheric surfaces. Ophthalmic and Physiological Optics 25, 153-161. Page, D. L., Sun, Y., Paik, J., Abidi, M. A., 2002. Normal Vector Voting: Crease Detection and Curvature Estimation on Large, Noisy Meshes. Graphical Models 64, 199-229. Pierscionek, B., Chan, D.Y.C., 1989. Refractive Index Gradient of Human Lenses. Optometry and Vision Science 66 (12), 822-829. Pierscionek, B.K., 1996. Refractive index contours in the human lens. Experimental Eye Research Cerca con Google

64, 887-893. Pierscionek, B.K., Augusteyn, R.C., 1991. Shapes and dimensions of in vitro human lenses. Clinical and Experimental Optometry 74, 223-227. Polthier, K., Schmies, M., 2006. Straightest Geodesics on Polyhedral Surfaces. International Conference on Computer Graphics and Interactive Techniques, 30-38. Pomerantzeff, O., Pankratov, M., Wang, G., Dufault, P., 1984. Wide-Angle Optical Model of the Cerca con Google

Eye, American Journal of Optometry & Physiological Optics 61 (3), 166-176. Popiolek-Masajada, A., Kasprzak, H.T., 1999. A new schematic eye model incorporating accommodation. Optometry and Vision Science 76 (10), 720-727. Popiolek-Masajada, A., Kasprzak, H.T., 2002. Model of the optical system of the human eye during accomodation. Ophthalmic and Physiological Optics 22, 201-208. Razdan, A., Bae, M., 2005. Curvature Estimation Scheme for Triangle Meshes Using Biquadratic Bézier Patches. Computer Aided Design 37 (14), 1481-1491 Rosales, P., Dubbelman, M., Marcos, S., van der Heijde, R., 2006. Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging. Journal of Vision 6, 1057-1067 Rosen, A.M., Denham, D.B., Fernandez, V., Borja, D., Ho, A., Manns, F., 2006. In vitro dimensions and curvatures of human lenses. Vision Research 46, 1002-1009. Savio, G., 2008. Strumenti e metodi per lo sviluppo prodotto di lenti oftalmiche. Università degli Studi di Bologna - Dottorato di ricerca in Disegno e metodi dell'ingegneria industriale XX Ciclo Cerca con Google

Schachar, R.A., Abolmaali, A., Le, T., 2006. Insights into the age-related decline in the amplitude of accommodation of the human lens using a non-linear finite-element model. Br J Ophthalmol 90, 1304–1309. Schachar, R.A., 2004. Central surface curvatures of post–mortem extracted intact human Cerca con Google

crystalline lenses: Implications for understanding the mechanism of accommodation. Ophthalmology 111 (9), 1699–1704. Schachar,R.A., Pierscionek, B., Abolmaali, A., Le, T., 2007. The relationship between accommodative amplitude and the ratio of central lens thickness to its equatorial diameter in vertebrate eyes. Br J Ophthalmol 91, 812–817. Sharma, A., Vizia Kumar, D., Ghatak A.K., 1982. Tracing rays through graded-index media: a new method. Applied Optics 21 (6), 984-987. Sheffer, A., de Sturler, E., 2001. Parameterization of Faceted Surfaces for Meshing using Angle- Based Flattening. Engineering with Computers 17, 326-337 Sheffer, A., de Sturler, E., 2002. Smoothing an Overlay Grid to Minimize Linear Distortion in Texture Mapping. ACM Transaction on Graphic 21 (4), 874-890. Siedlecki, D., Kasprzak, H., Pierscionek, B.K., 2004. Schematic Eye With a Gradient-index Lens and Aspheric Surfaces. Optics Letters 29 (11) 1197-1199. Smith, G., 2003. The optical properties of the crystalline lens and their significance. Clin. Exp. Optom. 86 (1), 3–18. Smith, G., Atchison, D.A., Iskander, D.R., Jones, C.E., Pope, J.M., 2009. Mathematical models for describing the shape of the in vitro unstretched human crystalline lens. Vision Res. 49, 2442–2452. Cerca con Google

Smith, G., Pierscionek, B.K., Atchison, D.A., 1991. The optical modelling of the human lens. Ophthal. Physl Opt. 11, 359–370. Cerca con Google

Stokely, E. M., Wu, S.Y., 1992. Surface Parameterization and Curvature Measurement of Arbitrary 3D-Objects: Five Practical Methods. IEEE Transaction on Pattern Analysis and Machine Intelligence 14 (8) 833-840. Stoker, J.J., 1969. Differential Geometry. Wiley, New York. Struik, D., 1961. Lectures on Classical Differential Geometry. Addison-Wesley Series in Mathematics. Surazhsky, T., Magid, E., Soldea, O., Elber, G., Rivlin, E., 2003. A comparison of Gaussian and Mean Curvatures Triangular Meshes. Robotics and Automation ICRA '03 International Conference 1, 1021-1026. Cerca con Google

Tan, B., 2008. Optical Modeling of Schematic Eyes and Opthalmic Applications. Univeristy of Tennessee, Noxville. Cerca con Google

Tang, C. K., Medioni, G., 2002. Curvature-Augmented Tensor Voting for Shape Inference from noisy 3D Data. IEEE Transactions on Pattern Analysis and Machine Intelligence 24 (6), 858-864. Taubin, G., 1995. Estimation the Tensor of Curvature of a Surface from a Polyhedral Approximation. The Fifth International Conference on Computer Vision, 902-907. Cerca con Google

Thibos, L.N., Ye, M., Zang, X., Bradley, A., 1997. Spherical Aberration of the Reduced Schematic Eye with Elliptical Refracting Surface. Optometry and Vision Science 74 (7), 548-556. Tong, W. S., Tang, C. K., 2005. Robust Estimation of Adaptive Tensors of Curvature by Tensor Voting. IEEE Transactions on Pattern Analysis and Machine Intelligence 27 (3), 434-449. Urs, R., Ho, A., Manns, F., Parel, J., 2010. Age–dependent Fourier model of the shape of the isolated ex vivo human crystalline lens. Vision Res. 50, 1041–1047. Cerca con Google

Urs, R., Manns, F., Ho, A., Borja, D., Amelinckx, A., Smith, J., 2009. Shape of the isolated ex–vivo human crystalline lens. Vision Res. 49(1), 74–83. Wang, J., Gulliver, R., Santosa, F., 2003. Analysis of a variational approach to the progressive lens Cerca con Google

designs. SIAM Journal on Applied Mathematics 64 (1), 277-296. Cerca con Google

Wang, J., Santosa, F., 2004. A numerical method for progressive lens design. Mathematical Models and Methods in Applied Science 14 (4) 619-640. Wang, Y., Thibos, L.N., 1997. Oblique (Off-axis) Astigmatism of the Reduced Schematic Eye with Elliptical Refracting Surface. Optometry and Vision Science 74 (7), 557-562. Wang, Y., Wang, Z.Q., Guo, H.Q., Wang, Y., Zuo, T., 2007. Wavefront Aberrations in the Accomodated Human Eye Based on Individual Eye Model. Optik 118, 271-277. Cerca con Google

Watanable,K., Belyaev, A. G., 2001. Detection of Salient Curvature Features on Polygonal Surfaces. Computer Graphics Forum 20 (3), 385-392. Wei, X., Thibos, L., 2008. Modeling the eye's optical system by ocular wavefront tomography. Opt. Express. 16, 20490-20502. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record