Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Ditadi, Andrea (2008) Approccio di terapia cellulare mediante l'utilizzo di cellule fetali isolate dal liquido amniotico per malattie del sistema ematopoieico. [Ph.D. thesis]

Full text disponibile come:

Documento PDF

Abstract (english)

Cell therapy is an attractive perspective for the treatment of life threatening disorders. In this context, foetal tissues are gaining interest as sources of cells for auto- and allo-transplantation, because of their pluripotency, proliferative capability and their low, if any, immunogenicity. Recently a pluripotent stem cell population has been isolated from Amniotic Fluid (AF). It is able to proliferate for more than 18 months, maintaining their differentiative ability as well as a normal karyotype. In term of differentiation potential, we succeeded in obtaining in vitro mesenchymal-, ectodermal- and endodermal-derived tissues from human Amniotic Fluid Stem (AFS) cells. Furthermore, murine AFS cells injected in blastocytes took part to the formation not only of several different foetal organs, but also of the placenta and the umbilical cord. In the present study we investigated the possibility of differentiating AFS cells towards the hematopoietic pathway.
AFS cells isolated from human amniotic fluid, collected during routine diagnostic procedures and obtained under informed consent, were firstly expanded in vitro and selected on the basis of their ckit expression. We achieved a reproducible erythroid differentiation by culturing hAFSCs as embryoid bodies (EBs) under serum free conditions with haematopoietic cytokines. Erythroid cells expressing CD235a constituted 70% of the total hAFSCs forming EBs showing also a co-expression of CD36 and CD71. Furthermore, human erythrocytes (human CD235a) were isolated from bone marrow and spleen of sublethally irradiated NOD/SCID mice at 3 months after the injection of hAFSCs.
To determine if the expansion procedure had led to a restriction of the hematopoietic potential towards the erythroid pathway, we compared expanded AFSCs and freshly isolated cKit+ Lin- (AFKL) cells. We also harvested cKit+ Lin- KL cells from the membrane surrounding the AF, the Amnion, in search for a possible origin. We compared the hematopoietic potential of mAFKL and mAmKL to Fetal Liver KL, the main source of fetal HSC. When cultivated immediatly after their sorting, freshly isolated murine AFKL and AmKL cells gave rise to all the different hematopoietic lineages both in vitro and in vivo. Actually, when cocultivated with OP9(d)1 cells, AFKL and AmKL undergo complete T cell differentiation within 2 weeks. They also generate myeloid and erythroid colonies when cultivated in methylcellulose for clonogenic assay. The erythroid restricted potential of human AFS cells was thus probably linked to the in vitro expansion procedure.
Moreover, cells belonging to all the three hematopoietic lineages (lymphoid, myeloid and erythroid) and arising from freshly isolated mAFKL and mAmKL are found in the peripheral blood of sublethally irradiated RAG1 deficient mice only 4 weeks after transplantation. Four month later, transplanted mice showed mAFKL-derived lymphoid, myeloid and erythroid cells, in all the hematopoietic organs. Successful econdary transplantation strongly suggest that mAFKL and mAmKL comprise HSC, with self-renewal ability. Those results were very similar to those obtained with mFLKL, confirming the strong hematopoietic potential of mAFKL and mAmKL. Experiments with freshly isolated hAFKL gave good results in the in vitro assays being able to give rise to erythroid, myeloid and lymphoid lineages, but failed to reconstitute the hematopoietic system in irradiated NOD/SCID mice, probably due to the poor amount of cells injected.
This is the first report demonstrating that AFKL and AmKL do have an haematopoietic potential, supporting the idea that AF and Am may be an excellent source for therapeutic application.

Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Zanesco, Luigi and Cavazzana-Calvo, Marina
Data di deposito della tesi:24 January 2008
Anno di Pubblicazione:24 January 2008
Key Words:cellule staminali, AFS, liquido amniotico, ematopoiesi
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/13 Biologia applicata
Struttura di riferimento:Dipartimenti > pre 2012 - Dipartimento di Pediatria
Codice ID:367
Depositato il:17 Oct 2008
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Almeida-Porada, G., Porada, C., and Zanjani, E. D. (2001). Adult stem cell plasticity and methods of detection. Rev Clin Exp Hematol 5, 26-41. Cerca con Google

2. Alvarez-Silva, M., Belo-Diabangouaya, P., Salaun, J., and Dieterlen- Lievre, F. (2003). Mouse placenta is a major hematopoietic organ. Development 130, 5437-5444. Cerca con Google

3. Assady, S., Maor, G., Amit, M., Itskovitz-Eldor, J., Skorecki, K. L., and Tzukerman, M. (2001). Insulin production by human embryonic stem cells. Diabetes 50, 1691-1697. Cerca con Google

4. Bartha, J. L., Romero-Carmona, R., Comino-Delgado, R., Arce, F., and Arrabal, J. (2000). Alpha-fetoprotein and hematopoietic growth factors in amniotic fluid. Obstet Gynecol 96, 588-592. Cerca con Google

5. Baschat, A. A., and Hecher, K. (2004). Fetal growth restriction due to placental disease. Semin Perinatol 28, 67-80. Cerca con Google

6. Bertrand, J. Y., Giroux, S., Golub, R., Klaine, M., Jalil, A., Boucontet, L., Godin, I., and Cumano, A. (2005). Characterization of purified intraembryonic hematopoietic stem cells as a tool to define their site of origin. Proc Natl Acad Sci U S A 102, 134-139. Cerca con Google

7. Bjerknes, M., and Cheng, H. (2006). Intestinal epithelial stem cells and progenitors. Methods Enzymol 419, 337-383. Cerca con Google

8. Bosman, E. A., Lawson, K. A., Debruyn, J., Beek, L., Francis, A., Schoonjans, L., Huylebroeck, D., and Zwijsen, A. (2006). Smad5 determines murine amnion fate through the control of bone Cerca con Google

9. morphogenetic protein expression and signalling levels. Development 133, 3399-3409. Cerca con Google

10. Boyer, L. A., Lee, T. I., Cole, M. F., Johnstone, S. E., Levine, S. S., Zucker, J. P., Guenther, M. G., Kumar, R. M., Murray, H. L., Jenner, R. G., et al. (2005). Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947-956. Cerca con Google

11. Brons, I. G., Smithers, L. E., Trotter, M. W., Rugg-Gunn, P., Sun, B., Chuva de Sousa Lopes, S. M., Howlett, S. K., Clarkson, A., Ahrlund-Richter, L., Pedersen, R. A., and Vallier, L. (2007). Cerca con Google

12. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448, 191-195. Cerca con Google

13. Bryan, T. M., Englezou, A., Dunham, M. A., and Reddel, R. R. (1998). Telomere length dynamics in telomerase-positive immortal human cell populations. Exp Cell Res 239, 370-378. Cerca con Google

14. Cabrita, G. J., Ferreira, B. S., da Silva, C. L., Goncalves, R., Almeida- Porada, G., and Cabral, J. M. (2003). Hematopoietic stem cells: from the bone to the bioreactor. Trends Biotechnol 21, 233-240. Cerca con Google

15. Campagnoli, C., Roberts, I. A., Kumar, S., Bennett, P. R., Bellantuono, I., and Fisk, N. M. (2001). Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 98, 2396-2402. Cerca con Google

16. Caprioli, A., Jaffredo, T., Gautier, R., Dubourg, C., and Dieterlen- Lievre, F. (1998). Blood-borne seeding by hematopoietic and endothelial precursors from the allantois. Proc Natl Acad Sci U S A Cerca con Google

17. 95, 1641-1646. Cerca con Google

18. Caprioli, A., Minko, K., Drevon, C., Eichmann, A., Dieterlen-Lievre, F., and Jaffredo, T. (2001). Hemangioblast commitment in the avian allantois: cellular and molecular aspects. Dev Biol 238, 64-78. Cerca con Google

19. Chambers, I., and Smith, A. (2004). Self-renewal of teratocarcinoma and embryonic stem cells. Oncogene 23, 7150-7160. Cerca con Google

20. Check, E. (2007). Stem cells: the hard copy. Nature 446, 485-486. Cerca con Google

21. Christensen, J. L., Wright, D. E., Wagers, A. J., and Weissman, I. L. (2004). Circulation and chemotaxis of fetal hematopoietic stem cells. PLoS Biol 2, E75. Cerca con Google

22. Christopherson, K. W., 2nd, Hangoc, G., Mantel, C. R., and Broxmeyer, H. E. (2004). Modulation of hematopoietic stem cell homing and engraftment by CD26. Science 305, 1000-1003. Cerca con Google

23. Colucci, F., Soudais, C., Rosmaraki, E., Vanes, L., Tybulewicz, V. L., and Di Santo, J. P. (1999). Dissecting NK cell development using a novel alymphoid mouse model: investigating the role of the c-abl proto-oncogene in murine NK cell differentiation. J Immunol 162, 2761-2765. Cerca con Google

24. Coulombel, L. (2004). Identification of hematopoietic stem/progenitor cells: strength and drawbacks of functional assays. Oncogene 23, 7210-7222. Cerca con Google

25. Cumano, A., Dieterlen-Lievre, F., and Godin, I. (1996). Lymphoid potential, probed before circulation in mouse, is restricted to caudal intraembryonic splanchnopleura. Cell 86, 907-916. Cerca con Google

26. Cumano, A., and Godin, I. (2007). Ontogeny of the hematopoietic system. Annu Rev Immunol 25, 745-785. Cerca con Google

27. D'Ippolito, G., Diabira, S., Howard, G. A., Menei, P., Roos, B. A., and Schiller, P. C. (2004). Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young Cerca con Google

28. and old human cells with extensive expansion and differentiation potential. J Cell Sci 117, 2971-2981. Cerca con Google

29. Dancis, J., Jansen, V., Brown, G. F., Gorstein, F., and Balis, M. E. (1977). Treatment of hypoplastic anemia in mice with placental transplants. Blood 50, 663-670. Cerca con Google

30. Dancis, J., Jansen, V., Gorstein, F., and Douglas, G. W. (1968). Hematopoietic cells in mouse placenta. Am J Obstet Gynecol 100, 1110-1121. Cerca con Google

31. Dang, S. M., Gerecht-Nir, S., Chen, J., Itskovitz-Eldor, J., and Zandstra, P. W. (2004). Controlled, scalable embryonic stem cell differentiation culture. Stem Cells 22, 275-282. Cerca con Google

32. Dang, S. M., Kyba, M., Perlingeiro, R., Daley, G. Q., and Zandstra, P. W. (2002). Efficiency of embryoid body formation and hematopoietic development from embryonic stem cells in different Cerca con Google

33. culture systems. Biotechnol Bioeng 78, 442-453. Cerca con Google

34. De Coppi, P., Bartsch, G., Jr., Siddiqui, M. M., Xu, T., Santos, C. C., Perin, L., Mostoslavsky, G., Serre, A. C., Snyder, E. Y., Yoo, J. J., et al. (2007). Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 25, 100-106. Cerca con Google

35. de Sousa Lopes, S. M., Roelen, B. A., Monteiro, R. M., Emmens, R., Lin, H. Y., Li, E., Lawson, K. A., and Mummery, C. L. (2004). BMP signaling mediated by ALK2 in the visceral endoderm is necessary for the generation of primordial germ cells in the mouse embryo. Genes Dev 18, 1838-1849. Cerca con Google

36. Deans, R. J., and Moseley, A. B. (2000). Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol 28, 875-884. Cerca con Google

37. Delassus, S., and Cumano, A. (1996). Circulation of hematopoietic progenitors in the mouse embryo. Immunity 4, 97-106. Cerca con Google

38. Doetschman, T., Gregg, R. G., Maeda, N., Hooper, M. L., Melton, D. W., Thompson, S., and Smithies, O. (1987). Targetted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature 330, 576-578. Cerca con Google

39. Dorrell, C., and Grompe, M. (2005). Liver repair by intra- and extrahepatic progenitors. Stem Cell Rev 1, 61-64. Cerca con Google

40. Downs, K. M., and Harmann, C. (1997). Developmental potency of the murine allantois. Development 124, 2769-2780. Cerca con Google

41. Downs, K.A. (2001). Mouse Early Development: Molecular Basis. Encyclopedia of Life Science, JohnWiley and Sons Cerca con Google

42. Draper, J. S., Pigott, C., Thomson, J. A., and Andrews, P. W. (2002). Surface antigens of human embryonic stem cells: changes upon differentiation in culture. J Anat 200, 249-258. Cerca con Google

43. Eiges, R., and Benvenisty, N. (2002). A molecular view on pluripotent stem cells. FEBS Lett 529, 135-141. Cerca con Google

44. Ema, H., Morita, Y., Yamazaki, S., Matsubara, A., Seita, J., Tadokoro, Y., Kondo, H., Takano, H., and Nakauchi, H. (2006). Adult mouse hematopoietic stem cells: purification and single-cell Cerca con Google

45. assays. Nat Protoc 1, 2979-2987. Cerca con Google

46. Engels, W. R. (1993). Contributing software to the internet: the Amplify program. Trends Biochem Sci 18, 448-450. Cerca con Google

47. Evans, M. J., and Kaufman, M. H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154-156. Cerca con Google

48. Ferrari, G., Cusella-De Angelis, G., Coletta, M., Paolucci, E., Stornaiuolo, A., Cossu, G., and Mavilio, F. (1998). Muscle regeneration by bone marrow-derived myogenic progenitors. Cerca con Google

49. Science 279, 1528-1530. Cerca con Google

50. Fleming, H. E., and Scadden, D. T. (2006). Embryonic stem cells make human T cells. Proc Natl Acad Sci U S A 103, 12213-12214. Cerca con Google

51. Fontaine-Perus, J. C., Calman, F. M., Kaplan, C., and Le Douarin, N. M. (1981). Seeding of the 10-day mouse embryo thymic rudiment by lymphocyte precursors in vitro. J Immunol 126, 2310-2316. Cerca con Google

52. Fujikawa, T., Oh, S. H., Pi, L., Hatch, H. M., Shupe, T., and Petersen, B. E. (2005). Teratoma formation leads to failure of treatment for type I diabetes using embryonic stem cell-derived insulinproducing cells. Am J Pathol 166, 1781-1791. Cerca con Google

53. Fujiwara, T., Dunn, N. R., and Hogan, B. L. (2001). Bone morphogenetic protein 4 in the extraembryonic mesoderm is required for allantois development and the localization and Cerca con Google

54. survival of primordial germ cells in the mouse. Proc Natl Acad Sci U S A 98, 13739-13744. Cerca con Google

55. Galic, Z., Kitchen, S. G., Kacena, A., Subramanian, A., Burke, B., Cortado, R., and Zack, J. A. (2006). T lineage differentiation from human embryonic stem cells. Proc Natl Acad Sci U S A 103, 11742- 11747. Cerca con Google

56. Galli, S. J., Tsai, M., and Wershil, B. K. (1993). The c-kit receptor, stem cell factor, and mast cells. What each is teaching us about the others. Am J Pathol 142, 965-974. Cerca con Google

57. Gambardella, L., and Barrandon, Y. (2003). The multifaceted adult epidermal stem cell. Curr Opin Cell Biol 15, 771-777. Cerca con Google

58. Gang, E. J., Bosnakovski, D., Figueiredo, C. A., Visser, J. W., and Perlingeiro, R. C. (2007). SSEA-4 identifies mesenchymal stem cells from bone marrow. Blood 109, 1743-1751. Cerca con Google

59. Gekas, C., Dieterlen-Lievre, F., Orkin, S. H., and Mikkola, H. K. (2005). The placenta is a niche for hematopoietic stem cells. Dev Cell 8, 365-375. Cerca con Google

60. Georgopoulos, K. (2002). Haematopoietic cell-fate decisions, chromatin regulation and ikaros. Nat Rev Immunol 2, 162-174. Cerca con Google

61. Gerecht-Nir, S., and Itskovitz-Eldor, J. (2004). Human embryonic stem cells: a potential source for cellular therapy. Am J Transplant 4 Suppl 6, 51-57. Cerca con Google

62. Godin, I., Dieterlen-Lievre, F., and Cumano, A. (1995). Emergence of multipotent hemopoietic cells in the yolk sac and paraaortic splanchnopleura in mouse embryos, beginning at 8.5 days postcoitus. Proc Natl Acad Sci U S A 92, 773-777. Cerca con Google

63. Godin, I., Garcia-Porrero, J. A., Dieterlen-Lievre, F., and Cumano, A. (1999). Stem cell emergence and hemopoietic activity are incompatible in mouse intraembryonic sites. J Exp Med 190, 43-52. Cerca con Google

64. Godin, I. E., Garcia-Porrero, J. A., Coutinho, A., Dieterlen-Lievre, F., and Marcos, M. A. (1993). Para-aortic splanchnopleura from early mouse embryos contains B1a cell progenitors. Nature 364, 67-70. Cerca con Google

65. Green, H., Easley, K., and Iuchi, S. (2003). Marker succession during the development of keratinocytes from cultured human embryonic stem cells. Proc Natl Acad Sci U S A 100, 15625-15630. Cerca con Google

66. Greiner, D. L., Hesselton, R. A., and Shultz, L. D. (1998). SCID mouse models of human stem cell engraftment. Stem Cells 16, 166- 177. Cerca con Google

67. Guo, C. B., Kagey-Sobotka, A., Lichtenstein, L. M., and Bochner, B. S. (1992). Immunophenotyping and functional analysis of purified human uterine mast cells. Blood 79, 708-712. Cerca con Google

68. Hanks, G. E., Cassell, M., Ray, R. N., and Chaplin, H., Jr. (1960). Further modification of the benzidine method for measurement of hemoglobin in plasma; definitionn of a new range of normal values. J Lab Clin Med 56, 486-498. Cerca con Google

69. Hayashi, K., de Sousa Lopes, S. M., and Surani, M. A. (2007). Germ cell specification in mice. Science 316, 394-396.+ Cerca con Google

70. He, J. Q., Ma, Y., Lee, Y., Thomson, J. A., and Kamp, T. J. (2003). Human embryonic stem cells develop into multiple types of cardiac myocytes: action potential characterization. Circ Res 93, 32-39. Cerca con Google

71. Hemann, M. T., Rudolph, K. L., Strong, M. A., DePinho, R. A., Chin, L., and Greider, C. W. (2001). Telomere dysfunction triggers developmentally regulated germ cell apoptosis. Mol Biol Cell 12, 2023-2030. Cerca con Google

72. Hoehn, H., Bryant, E. M., Fantel, A. G., and Martin, G. M. (1975). Cultivated cells from diagnostic amniocentesis in second trimester pregnancies. III. The fetal urine as a potential source of clonable cells. Humangenetik 29, 285-290. Cerca con Google

73. Holmes, C., and Stanford, W. L. (2007). Concise review: stem cell antigen-1: expression, function, and enigma. Stem Cells 25, 1339- 1347. Cerca con Google

74. Horwitz, E. M., Gordon, P. L., Koo, W. K., Marx, J. C., Neel, M. D., McNall, R. Y., Muul, L., and Hofmann, T. (2002). Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proc Natl Acad Sci U S A 99, 8932-8937. Cerca con Google

75. Houssaint, E. (1981). Differentiation of the mouse hepatic primordium. II. Extrinsic origin of the haemopoietic cell line. Cell Differ 10, 243-252. Cerca con Google

76. Ilancheran, S., Michalska, A., Peh, G., Wallace, E. M., Pera, M., and Manuelpillai, U. (2007). Stem cells derived from human fetal membranes display multilineage differentiation potential. Biol Cerca con Google

77. Reprod 77, 577-588. Cerca con Google

78. In 't Anker, P. S., Scherjon, S. A., Kleijburg-van der Keur, C., Noort, W. A., Claas, F. H., Willemze, R., Fibbe, W. E., and Kanhai, H. H. (2003). Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood 102, 1548-1549. Cerca con Google

79. Jaffe, L., Robertson, E. J., and Bikoff, E. K. (1991). Distinct patterns of expression of MHC class I and beta 2-microglobulin transcripts at early stages of mouse development. J Immunol 147, 2740-2749. Cerca con Google

80. Jiang, Y., Vaessen, B., Lenvik, T., Blackstad, M., Reyes, M., and Verfaillie, C. M. (2002). Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp Hematol 30, 896-904. Cerca con Google

81. Kamel-Reid, S., and Dick, J. E. (1988). Engraftment of immunedeficient mice with human hematopoietic stem cells. Science 242, 1706-1709. Cerca con Google

82. Kaviani, A., Perry, T. E., Dzakovic, A., Jennings, R. W., Ziegler, M. M., and Fauza, D. O. (2001). The amniotic fluid as a source of cells for fetal tissue engineering. J Pediatr Surg 36, 1662-1665. Cerca con Google

83. Kehat, I., Amit, M., Gepstein, A., Huber, I., Itskovitz-Eldor, J., and Gepstein, L. (2003). Development of cardiomyocytes from human ES cells. Methods Enzymol 365, 461-473. Cerca con Google

84. Kehat, I., Gepstein, A., Spira, A., Itskovitz-Eldor, J., and Gepstein, L. (2002). High-resolution electrophysiological assessment of human embryonic stem cell-derived cardiomyocytes: a novel in vitro model for the study of conduction. Circ Res 91, 659-661. Cerca con Google

85. Keller, G., Kennedy, M., Papayannopoulou, T., and Wiles, M. V. (1993). Hematopoietic commitment during embryonic stem cell differentiation in culture. Mol Cell Biol 13, 473-486. Cerca con Google

86. Kennedy, M., D'Souza, S. L., Lynch-Kattman, M., Schwantz, S., and Keller, G. (2007). Development of the hemangioblast defines the onset of hematopoiesis in human ES cell differentiation cultures. Blood 109, 2679-2687. Cerca con Google

87. Kinder, S. J., Tsang, T. E., Quinlan, G. A., Hadjantonakis, A. K., Nagy, A., and Tam, P. P. (1999). The orderly allocation of mesodermal cells to the extraembryonic structures and the Cerca con Google

88. anteroposterior axis during gastrulation of the mouse embryo. Development 126, 4691-4701. Cerca con Google

89. Koc, O. N., Gerson, S. L., Cooper, B. W., Dyhouse, S. M., Haynesworth, S. E., Caplan, A. I., and Lazarus, H. M. (2000). Rapid hematopoietic recovery after coinfusion of autologous-blood stem Cerca con Google

90. cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J Clin Oncol 18, 307-316. Cerca con Google

91. Kodama, H., Nose, M., Niida, S., Nishikawa, S., and Nishikawa, S. (1994). Involvement of the c-kit receptor in the adhesion of hematopoietic stem cells to stromal cells. Exp Hematol 22, 979-984. Cerca con Google

92. Lawson, K. A., and Hage, W. J. (1994). Clonal analysis of the origin of primordial germ cells in the mouse. Ciba Found Symp 182, 68-84; discussion 84-91. Cerca con Google

93. Lawson, K. A., Meneses, J. J., and Pedersen, R. A. (1991). Clonal analysis of epiblast fate during germ layer formation in the mouse embryo. Development 113, 891-911. Cerca con Google

94. Levenberg, S., Golub, J. S., Amit, M., Itskovitz-Eldor, J., and Langer, R. (2002). Endothelial cells derived from human embryonic stem cells. Proc Natl Acad Sci U S A 99, 4391-4396. Cerca con Google

95. Li, L., Arman, E., Ekblom, P., Edgar, D., Murray, P., and Lonai, P. (2004). Distinct GATA6- and laminin-dependent mechanisms regulate endodermal and ectodermal embryonic stem cell fates. Cerca con Google

96. Development 131, 5277-5286. Cerca con Google

97. Lindvall, O. (2003). Stem cells for cell therapy in Parkinson's disease. Pharmacol Res 47, 279-287. Cerca con Google

98. Lindvall, O., Kokaia, Z., and Martinez-Serrano, A. (2004). Stem cell therapy for human neurodegenerative disorders-how to make it work. Nat Med 10 Suppl, S42-50. Cerca con Google

99. Liu, C. P., and Auerbach, R. (1991). In vitro development of murine T cells from prethymic and preliver embryonic yolk sac hematopoietic stem cells. Development 113, 1315-1323. Cerca con Google

100. Maes, J., Chappaz, S., Cavelier, P., O'Neill, L., Turner, B., Rougeon, F., and Goodhardt, M. (2006). Activation of V(D)J recombination at the IgH chain JH locus occurs within a 6-kilobase chromatin domain and is associated with nucleosomal remodeling. J Immunol 176, 5409-5417. Cerca con Google

101. Maes, J., O'Neill, L. P., Cavelier, P., Turner, B. M., Rougeon, F., and Goodhardt, M. (2001). Chromatin remodeling at the Ig loci prior to V(D)J recombination. J Immunol 167, 866-874. Cerca con Google

102. Manz, M. G., Miyamoto, T., Akashi, K., and Weissman, I. L. (2002). Prospective isolation of human clonogenic common myeloid progenitors. Proc Natl Acad Sci U S A 99, 11872-11877. Cerca con Google

103. Marcus, A. J., Coyne, T. M., Rauch, J., Woodbury, D., and Black, I. B. (2007). Isolation, characterization, and differentiation of stem cells derived from the rat amniotic membrane. Differentiation. Cerca con Google

104. Matsui, Y., Zsebo, K., and Hogan, B. L. (1992). Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 70, 841-847. Cerca con Google

105. Medina-Gomez, P., and del Valle, M. (1988). [The culture of amniotic fluid cells. An analysis of the colonies, metaphase and mitotic index for the purpose of ruling out maternal cell contamination]. Ginecol Obstet Mex 56, 122-126. Cerca con Google

106. Medvinsky, A. L., Samoylina, N. L., Muller, A. M., and Dzierzak, E. A. (1993). An early pre-liver intraembryonic source of CFU-S in the developing mouse. Nature 364, 64-67. Cerca con Google

107. Melchers, F. (1979). Murine embryonic B lymphocyte development in the placenta. Nature 277, 219-221. Cerca con Google

108. Mellor, A. L., and Munn, D. H. (2000). Immunology at the maternalfetal interface: lessons for T cell tolerance and suppression. Annu Rev Immunol 18, 367-391. Cerca con Google

109. Metcalf, D. (1970). Studies on colony formation in vitro by mouse bone marrow cells. II. Action of colony stimulating factor. J Cell Physiol 76, 89-99. Cerca con Google

110. Metcalf, D. and Moore, M. A. S (1971). in Haematopoietic Cells, eds Neuberger, A. & Tatum, E. L, pp 173–271. Amnsterdam: North Holland Publishing Cerca con Google

111. Miki, T., Lehmann, T., Cai, H., Stolz, D. B., and Strom, S. C. (2005). Stem cell characteristics of amniotic epithelial cells. Stem Cells 23, 1549-1559. Cerca con Google

112. Miki, T., Mitamura, K., Ross, M. A., Stolz, D. B., and Strom, S. C. (2007). Identification of stem cell marker-positive cells by immunofluorescence in term human amnion. J Reprod Immunol 75, 91-96. Cerca con Google

113. Miki, T., and Strom, S. C. (2006). Amnion-derived pluripotent/multipotent stem cells. Stem Cell Rev 2, 133-142. Cerca con Google

114. Mimeault, M., Hauke, R., and Batra, S. K. (2007). Stem cells: a revolution in therapeutics-recent advances in stem cell biology and their therapeutic applications in regenerative medicine and cancer Cerca con Google

115. therapies. Clin Pharmacol Ther 82, 252-264. Cerca con Google

116. Mintz, B., and Illmensee, K. (1975). Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc Natl Acad Sci U S A 72, 3585-3589. Cerca con Google

117. Moore, M. A., and Metcalf, D. (1970). Ontogeny of the haemopoietic system: yolk sac origin of in vivo and in vitro colony forming cells in the developing mouse embryo. Br J Haematol 18, 279-296. Cerca con Google

118. Muller, A. M., and Dzierzak, E. A. (1993). ES cells have only a limited lymphopoietic potential after adoptive transfer into mouse recipients. Development 118, 1343-1351. Cerca con Google

119. Muller, A. M., Medvinsky, A., Strouboulis, J., Grosveld, F., and Dzierzak, E. (1994). Development of hematopoietic stem cell activity in the mouse embryo. Immunity 1, 291-301. Cerca con Google

120. Mummery, C., Ward-van Oostwaard, D., Doevendans, P., Spijker, R., van den Brink, S., Hassink, R., van der Heyden, M., Opthof, T., Pera, M., de la Riviere, A. B., et al. (2003). Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation 107, 2733-2740. Cerca con Google

121. Nakano, T., Kodama, H., and Honjo, T. (1994). Generation of lymphohematopoietic cells from embryonic stem cells in culture. Science 265, 1098-1101. Cerca con Google

122. Ng, E. S., Davis, R. P., Azzola, L., Stanley, E. G., and Elefanty, A. G. (2005). Forced aggregation of defined numbers of human embryonic stem cells into embryoid bodies fosters robust, Cerca con Google

123. reproducible hematopoietic differentiation. Blood 106, 1601-1603. Cerca con Google

124. Nielsen, L. K. (1999). Bioreactors for hematopoietic cell culture. Annu Rev Biomed Eng 1, 129-152. Cerca con Google

125. Nussbaum, J., Minami, E., Laflamme, M. A., Virag, J. A., Ware, C. B., Masino, A., Muskheli, V., Pabon, L., Reinecke, H., and Murry, C.E. (2007). Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. Faseb J 21, 1345-1357. Cerca con Google

126. Nutt, S. L., Fairfax, K. A., and Kallies, A. (2007). BLIMP1 guides the fate of effector B and T cells. Nat Rev Immunol 7, 923-927. Cerca con Google

127. O'Donoghue, K., and Fisk, N. M. (2004). Fetal stem cells. Best Pract Res Clin Obstet Gynaecol 18, 853-875. Cerca con Google

128. Odorico, J. S., Kaufman, D. S., and Thomson, J. A. (2001). Multilineage differentiation from human embryonic stem cell lines. Stem Cells 19, 193-204. Cerca con Google

129. Ohinata, Y., Payer, B., O'Carroll, D., Ancelin, K., Ono, Y., Sano, M., Barton, S. C., Obukhanych, T., Nussenzweig, M., Tarakhovsky, A., et al. (2005). Blimp1 is a critical determinant of the germ cell lineage in mice. Nature 436, 207-213. Cerca con Google

130. Olsen, B. R., Reginato, A. M., and Wang, W. (2000). Bone development. Annu Rev Cell Dev Biol 16, 191-220. Cerca con Google

131. Orkin, S. H., and Zon, L. I. (2002). Hematopoiesis and stem cells: plasticity versus developmental heterogeneity. Nat Immunol 3, 323- 328. Cerca con Google

132. Osawa, M., Hanada, K., Hamada, H., and Nakauchi, H. (1996). Long-term lymphohematopoietic reconstitution by a single CD34- low/negative hematopoietic stem cell. Science 273, 242-245. Cerca con Google

133. Ottersbach, K., and Dzierzak, E. (2005). The murine placenta contains hematopoietic stem cells within the vascular labyrinth region. Dev Cell 8, 377-387. Cerca con Google

134. Ozato, K., Wan, Y. J., and Orrison, B. M. (1985). Mouse major histocompatibility class I gene expression begins at midsomite stage and is inducible in earlier-stage embryos by interferon. Proc Natl Acad Sci U S A 82, 2427-2431. Cerca con Google

135. Palis, J., Robertson, S., Kennedy, M., Wall, C., and Keller, G. (1999). Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Development 126, 5073-5084. Cerca con Google

136. Parameswaran, M., and Tam, P. P. (1995). Regionalisation of cell fate and morphogenetic movement of the mesoderm during mouse gastrulation. Dev Genet 17, 16-28. Cerca con Google

137. Park, I. H., Zhao, R., West, J. A., Yabuuchi, A., Huo, H., Ince, T. A., Lerou, P. H., Lensch, M. W., and Daley, G. Q. (2008). Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451, 141-146. Cerca con Google

138. Parolini, O., Alviano, F., Bagnara, G. P., Bilic, G., Buhring, H. J., Evangelista, M., Hennerbichler, S., Liu, B., Magatti, M., Mao, N., et al. (2007). CONCISE REVIEW: Isolation and Characterization of Cells from Human Term Placenta: Outcome of the First International Workshop on Placenta Derived Stem Cells. Stem Cells. Cerca con Google

139. Peixoto, A., Monteiro, M., Rocha, B., and Veiga-Fernandes, H. (2004). Quantification of multiple gene expression in individual cells. Genome Res 14, 1938-1947. Cerca con Google

140. Peranteau, W. H., Endo, M., Adibe, O. O., Merchant, A., Zoltick, P. W., and Flake, A. W. (2006). CD26 inhibition enhances allogeneic donor-cell homing and engraftment after in utero hematopoieticcell transplantation. Blood 108, 4268-4274. Cerca con Google

141. Petite, H., Viateau, V., Bensaid, W., Meunier, A., de Pollak, C., Bourguignon, M., Oudina, K., Sedel, L., and Guillemin, G. (2000). Tissue-engineered bone regeneration. Nat Biotechnol 18, 959-963. Cerca con Google

142. Phinney, D. G., and Prockop, D. J. (2007). Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair--current views. Stem Cells 25, 2896-2902. Cerca con Google

143. Potocnik, A. J., Kohler, H., and Eichmann, K. (1997). Hematolymphoid in vivo reconstitution potential of subpopulations derived from in vitro differentiated embryonic stem cells. Proc Natl Acad Sci U S A 94, 10295-10300. Cerca con Google

144. Prusa, A. R., and Hengstschlager, M. (2002). Amniotic fluid cells and human stem cell research: a new connection. Med Sci Monit 8, RA253-257. Cerca con Google

145. Prusa, A. R., Marton, E., Rosner, M., Bernaschek, G., and Hengstschlager, M. (2003). Oct-4-expressing cells in human amniotic fluid: a new source for stem cell research? Hum Reprod 18, 1489-1493. Cerca con Google

146. Queenan, J. T., Thompson, W., Whitfield, C. R., and Shah, S. I. (1972). Amniotic fluid volumes in normal pregnancies. Am J Obstet Gynecol 114, 34-38. Cerca con Google

147. Rathjen, J., Lake, J. A., Bettess, M. D., Washington, J. M., Chapman, G., and Rathjen, P. D. (1999). Formation of a primitive ectoderm like cell population, EPL cells, from ES cells in response to biologically derived factors. J Cell Sci 112 ( Pt 5), 601-612. Cerca con Google

148. Resnick, J. L., Bixler, L. S., Cheng, L., and Donovan, P. J. (1992). Long-term proliferation of mouse primordial germ cells in culture. Nature 359, 550-551. Cerca con Google

149. Reubinoff, B. E., Pera, M. F., Fong, C. Y., Trounson, A., and Bongso, A. (2000). Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol 18, 399-404. Cerca con Google

150. Robinson, W. P., McFadden, D. E., Barrett, I. J., Kuchinka, B., Penaherrera, M. S., Bruyere, H., Best, R. G., Pedreira, D. A., Langlois, S., and Kalousek, D. K. (2002). Origin of amnion and implications for evaluation of the fetal genotype in cases of mosaicism. Prenat Diagn 22, 1076-1085. Cerca con Google

151. Schenke-Layland, K., Angelis, E., Rhodes, K. E., Heydarkhan- Hagvall, S., Mikkola, H. K., and Maclellan, W. R. (2007). Collagen IV induces trophoectoderm differentiation of mouse embryonic Cerca con Google

152. stem cells. Stem Cells 25, 1529-1538. Cerca con Google

153. Schmitt, T. M., de Pooter, R. F., Gronski, M. A., Cho, S. K., Ohashi, P. S., and Zuniga-Pflucker, J. C. (2004). Induction of T cell development and establishment of T cell competence from embryonic stem cells differentiated in vitro. Nat Immunol 5, 410- 417. Cerca con Google

154. Schuldiner, M., Eiges, R., Eden, A., Yanuka, O., Itskovitz-Eldor, J., Goldstein, R. S., and Benvenisty, N. (2001). Induced neuronal differentiation of human embryonic stem cells. Brain Res 913, 201- 205. Cerca con Google

155. Schuldiner, M., Yanuka, O., Itskovitz-Eldor, J., Melton, D. A., and Benvenisty, N. (2000). Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Cerca con Google

156. Proc Natl Acad Sci U S A 97, 11307-11312. Cerca con Google

157. Secco, M., Zucconi, E., Vieira, N. M., Fogaca, L. L., Cerqueira, A., Carvalho, M. D., Jazedje, T., Okamoto, O. K., Muotri, A. R., and Zatz, M. (2007). Multipotent Stem Cells from Umbilical Cord: Cord is Richer than Blood! Stem Cells. Cerca con Google

158. Serafini, M., Dylla, S. J., Oki, M., Heremans, Y., Tolar, J., Jiang, Y., Buckley, S. M., Pelacho, B., Burns, T. C., Frommer, S., et al. (2007). Hematopoietic reconstitution by multipotent adult progenitor cells: precursors to long-term hematopoietic stem cells. J Exp Med 204, 129-139. Cerca con Google

159. Shamblott, M. J., Axelman, J., Wang, S., Bugg, E. M., Littlefield, J. W., Donovan, P. J., Blumenthal, P. D., Huggins, G. R., and Gearhart, J. D. (1998). Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci U S A 95, 13726- 13731. Cerca con Google

160. Shamblott, M. J., and Clark, G. O. (2004). Cell therapies for type 1 diabetes mellitus. Expert Opin Biol Ther 4, 269-277. Cerca con Google

161. Six, E. M., Bonhomme, D., Monteiro, M., Beldjord, K., Jurkowska, M., Cordier-Garcia, C., Garrigue, A., Dal Cortivo, L., Rocha, B., Fischer, A., et al. (2007). A human postnatal lymphoid progenitor capable of circulating and seeding the thymus. J Exp Med 204, 3085- 3093. Cerca con Google

162. Spangrude, G. J. (2003). When is a stem cell really a stem cell? Bone Marrow Transplant 32 Suppl 1, S7-11. Cerca con Google

163. Steptoe, P. C., and Edwards, R. G. (1978). Birth after the reimplantation of a human embryo. Lancet 2, 366. Cerca con Google

164. Stevens, L. C. (1958). Studies on transplantable testicular teratomas of strain 129 mice. J Natl Cancer Inst 20, 1257-1275. Cerca con Google

165. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, Cerca con Google

166. 861-872. Cerca con Google

167. Taswell, C. (1981). Limiting dilution assays for the determination of immunocompetent cell frequencies. I. Data analysis. J Immunol 126, 1614-1619. Cerca con Google

168. Theise, N. D., Nimmakayalu, M., Gardner, R., Illei, P. B., Morgan, G., Teperman, L., Henegariu, O., and Krause, D. S. (2000). Liver from bone marrow in humans. Hepatology 32, 11-16. Cerca con Google

169. Thomas, K. R., and Capecchi, M. R. (1987). Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51, 503-512. Cerca con Google

170. Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., and Jones, J. M. (1998). Embryonic stem cell lines derived from human blastocysts. Science 282, 1145- 1147. Cerca con Google

171. Thomson, J. A., and Odorico, J. S. (2000). Human embryonic stem cell and embryonic germ cell lines. Trends Biotechnol 18, 53-57. Cerca con Google

172. Till, J. E., and Mc, C. E. (1961). A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 14, 213-222. Cerca con Google

173. Tsai, M. S., Lee, J. L., Chang, Y. J., and Hwang, S. M. (2004). Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Hum Reprod 19, 1450-1456. Cerca con Google

174. Verfaillie, C. M. (2002). Hematopoietic stem cells for transplantation. Nat Immunol 3, 314-317. Cerca con Google

175. Verfaillie, C. M., Pera, M. F., and Lansdorp, P. M. (2002). Stem cells: hype and reality. Hematology Am Soc Hematol Educ Program, 369- 391. Cerca con Google

176. Vincent, S. D., Dunn, N. R., Sciammas, R., Shapiro-Shalef, M., Davis, M. M., Calame, K., Bikoff, E. K., and Robertson, E. J. (2005). The zinc finger transcriptional repressor Blimp1/Prdm1 is dispensable for early axis formation but is required for specification of primordial germ cells in the mouse. Development 132, 1315-1325. Cerca con Google

177. Wagers, A. J., Sherwood, R. I., Christensen, J. L., and Weissman, I. L. (2002). Little evidence for developmental plasticity of adult hematopoietic stem cells. Science 297, 2256-2259. Cerca con Google

178. Wang, L., Menendez, P., Shojaei, F., Li, L., Mazurier, F., Dick, J. E., Cerdan, C., Levac, K., and Bhatia, M. (2005). Generation of hematopoietic repopulating cells from human embryonic stem cells independent of ectopic HOXB4 expression. J Exp Med 201, 1603- 1614. Cerca con Google

179. Wang, X., Willenbring, H., Akkari, Y., Torimaru, Y., Foster, M., Al- Dhalimy, M., Lagasse, E., Finegold, M., Olson, S., and Grompe, M. (2003). Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature 422, 897-901. Cerca con Google

180. Weissman I., Papaioannou V., Gardner R. (1978). Fetal hematopoietic origins of the adult hemolymphoid system. In Differentiation of Normal and Neoplastic Cells, ed. B Clarkson, P Mark, Cerca con Google

181. J Till, pp. 33–47. New York: Cold Spring Harbor Lab. Press Cerca con Google

182. Wild A. E., and Fleming T. P. (2001). Cleavage and Gastrulation in Mouse Embryos. Encyclopedia of Life Science, JohnWiley and Sons Cerca con Google

183. Wu, X., and Burgess, S. M. (2004). Integration target site selection for retroviruses and transposable elements. Cell Mol Life Sci 61, 2588-2596. Cerca con Google

184. Xu, C., Police, S., Rao, N., and Carpenter, M. K. (2002). Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ Res 91, 501-508. Cerca con Google

185. Yu, J., Vodyanik, M. A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J. L., Tian, S., Nie, J., Jonsdottir, G. A., Ruotti, V., Stewart, R., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917-1920. Cerca con Google

186. Zeigler, B. M., Sugiyama, D., Chen, M., Guo, Y., Downs, K. M., and Speck, N. A. (2006). The allantois and chorion, when isolated before circulation or chorio-allantoic fusion, have hematopoietic potential. Development 133, 4183-4192. Cerca con Google

187. Zhang, S. C., Wernig, M., Duncan, I. D., Brustle, O., and Thomson, J. A. (2001). In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol 19, 1129-1133. Cerca con Google

188. Zhao, G. Q. (2003). Consequences of knocking out BMP signaling in the mouse. Genesis 35, 43-56. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record