Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Cirtita, Horatiu (2008) Performance Metrics in Downstream Supply Chain. [Ph.D. thesis]

Full text disponibile come:

Documento PDF

Abstract (english)

In a downstream supply chain (DSC), consisting of manufacturers, transportation, distribution, and retail members, end customers expect timely, reliable and quality delivery of the right amount of products at low cost. The manufacturer, in its attempt to deliver the product through the DSC, however, must balance customer expectation with profitability. This balance can be achieved through a mix of strategies. One DSC strategy tool, the SCOR model, integrates and continuously improves the performance of the various DSC activities.

The SCOR model metric system is considered a breakthrough given its standardized approach to assessment across organizations and industry types. The top tier of the SCOR metric system evaluates the overall strategic organizational activities in a supply chain context. These top tier metric system elements consist of: delivery reliability, flexibility and responsiveness, cost, and assets. These metrics follow the standard as recommended by Schneiderman (1996) who stated that a metric system should contain no more than five top tier metrics given that a large number diffuses the focus of the stregic activities. Schneiderman further suggests that this first tier metric system should consist of 1) internal process and 2) external results performance. The SCOR model activities fit these internal and external schemas well. For the SCOR model to work among the DSC members, these measurements, though, must be standardized among DSC members (Lambert and Pohlen, 2001). The use of a DSC metrics system leads to synergies of performance among supply chain members that facilitate the measure of total supply chain performance as opposed to isolated functional "silo" measures (Hausman, 2003).

We have purposely chosen performance metrics as the standard of evaluation as opposed to the terms "performance measurement" and "performance measure." The term "performance measure" carries a connotational definition that is vague, historical, and diffused (Neely, 1999). Schneiderman (1996) stated that measures and metrics differ in the following way: measures consist of the broad set of infinite forms of evaluating a firm's process whereas metrics are a subset of the few measures actually useful to improve a company's efforts. Metrics should be monotonic, that is, improvements in metrics must lead to improvement in shareholder wealth. Gunasekaran, Patel and Tirtiroglu (2001) discussed the problem of these terms in their study of the literature and stated, "Quite often, companies have a large number of performance measures to which they keep adding based on suggestions from employees and consultants, and fail to realize that performance measurement can be better addressed using a few good metrics (p. 72)."

Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Camuffo, Arnaldo
Ph.D. course:Ciclo 20 > Scuole per il 20simo ciclo > ECONOMIA E MANAGEMENT
Data di deposito della tesi:2008
Anno di Pubblicazione:2008
Key Words:downstream supply chain, performance, SCOR model, MAUT, AHP, metrics, network design
Settori scientifico-disciplinari MIUR:Area 13 - Scienze economiche e statistiche > SECS-P/07 Economia aziendale
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze Economiche e Aziendali "Marco Fanno"
Codice ID:371
Depositato il:02 Oct 2008
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Agarwal, A., Shankar, R., & Tiwari, M. K. (2006). Modeling the metrics of lean, agile and leagile supply chain: An ANP-based approach. European Journal of Operational Research, 173(1), 211-225. Cerca con Google

2. Armstrong, J. (1997). Estimating Nonresponse Bias in Mail Surveys. Journal of Marketing Research, 396-402. Cerca con Google

3. Baiman, S., Fischer, P. E., & Rajan, M. V. (2001). Performance measurement and design in supply chains. Management Science, 47(1), 173-188. Cerca con Google

4. Barnett, M. W., & Miller, C. J. (2000). Analysis of the virtual enterprise using distributed supply chain modeling and simulation: an application of e-SCOR. Proceedings of the 32nd conference on Winter simulation, 352-355. Cerca con Google

5. Basu, A. & Siems, T. (November, 2004). The Impact of E-Business Technologies on Supply Chain Operations: A Macroeconomic Perspective, Federal Reserve Bank of Dallas, Working Paper 0404. Cerca con Google

6. Beamon, B. M. (1998). Supply chain design and analysis:: Models and methods. International Journal of Production Economics, 55(3), 281-294. Cerca con Google

7. Beamon, B. M. (1999). Measuring supply chain performance. International Journal of Operations and Production Management, 19(3), 275-292. Cerca con Google

8. Bharadwaj, N. (2004). Investigating the decision criteria used in electronic components procurement. Industrial Marketing Management, 33(4), 317-323. Cerca con Google

9. Bowersox, D., & Closs, D., & Stank, T, (2000). Ten mega-trends that will revolutionize supply chain logistics. Journal of Business Logistics, 21(2), pp. 1-16. Cerca con Google

10. Brewer, P. C., & Speh, T. W. (2000). Using the balanced scorecard to measure supply chain performance. Journal of Business Logistics, 21(1), 75-93. Cerca con Google

11. Burgess, K., & Singh, P. J. (2006). A proposed integrated framework for analysing supply chains. Supply Chain Management: An International Journal, 11(4), 337-344. Cerca con Google

12. Chan, F. T. S., & Qi, H. J. (2003). Feasibility of performance measurement system for supply chain: A process-based approach and measures. Integrated Manufacturing Systems, 14(3), 179-190. Cerca con Google

13. Chiu, M., & Lin, G. (2004). Collaborative supply chain planning using the artificial neural network approach Matthew Chiu, Grier Lin The Authors. Journal of Manufacturing Technology Management, 15(8), 787-796. Cerca con Google

14. Chopra, S. (2003). Designing the distribution network in a supply chain. Transportation Research Part E, 39(2), 123-140. Cerca con Google

15. Chopra, S. & Meindl, P. (2004). Supply Chain Management: Strategy, Planning and Execution 2nd Ed. New Jersey: Pearson. Cerca con Google

16. Couper, M. P. (2000). Web Surveys. Public Opinion Quarterly, 64(4), 464-494. Cerca con Google

17. Couper, M. P., Traugott, M. W., & Lamias, M. J. (2001). Web Survey Design and Administration*. Public Opinion Quarterly, 65(2), 230-253. Cerca con Google

18. Corsten, D., & Felde, J. (2005). Exploring the performance effects of key-supplier collaboration: An empirical investigation into Swiss buyer-supplier relationships. International Journal of Physical Distribution & Logistics Management, 35(6), 445-461. Cerca con Google

19. Croxton, K., Garcia-Dastugue, S., Lambert, D. & Rogers, D. (2001). The supply chain management processes. The International Journal of Logistics Management, 12(2), pp. 13-36. Cerca con Google

20. Dey, E. L. (1997). Working with Low Survey Response Rates: The Efficacy of Weighting Adjustments. Research in Higher Education, 38(2), 215-227. Cerca con Google

21. Dias, L. C., & Climaco, J. N. (2000). Additive aggregation with variable interdependent parameters: the VIP analysis software. Journal of the Operational Research Society, 51(9), 1070-1082. Cerca con Google

22. Dillman, D. A. (1991). The Design and Administration of Mail Surveys. Annual Review of Sociology, 17(1), 225-249. Cerca con Google

23. Dillman, D. A. (2007). Mail and Internet Surveys: The Tailored Design, —2007 Update: New York: John Wiley. New York: John Wiley and Sons, Inc. Cerca con Google

24. Dillman, D. A., Tortora, R. D., & Bowker, D. (1998). Principles for Constructing Web Surveys. Cerca con Google

25. Dillman, D. A., Tortora, R. D., & Bowker, D. (1999). Principles for constructing web surveys 1998. Pullman, Washington: Washington State University; 1999: SESRC Technical Report 98-50. Cerca con Google

26. Flynn, B. B., Schroeder, R. G., & Sakakibara, S. (1994). A framework for quality management research and an associated measurement instrument. Journal of Operations Management, 11(4), 339-366. Cerca con Google

27. Folan, P., & Browne, J. (2005). A review of performance measurement: Towards performance management. Computers in Industry, 56(7), 663-680. Cerca con Google

28. Forrester, J. W. (1958). Industrial Dynamics: A Major Breakthrough for Decision Makers. Harvard Business Review, 36(4), 37-66. Cerca con Google

29. Frohlich, M. T.; & Westbrook, R. (2001). Arcs of integration: an international study of supply chain strategies. Journal of Operations Management 19(2), 185–200. Cerca con Google

30. Gelders, L., Mannaerts, P., & Maes, J. (1994). Manufacturing strategy, performance indicators and improvement programmes. International Journal of Production Research, 32(4), 797-805. Cerca con Google

31. Gilmour, P. (1999). Benchmarking supply chain operations. International Journal of Physical Distribution & Logistics Management, 29(4). Cerca con Google

32. Glaser-Segura, D., Cirtita, H. (2007). Supply Chain Performance Metrics: A Confluence of Foci and Methodology Maturation. Forthcoming Cerca con Google

33. Grosh, M. E., & Muñoz, J. (1996). A Manual for Planning and Implementing the Living Standards Measurement Study Survey: The World Bank. Cerca con Google

34. Gunasekaran, A., Patel, C., & McGaughey, R. E. (2004). A framework for supply chain performance measurement. International Journal of Production Economics, 87(3), 333-347. Cerca con Google

35. Gunasekaran, A., Patel, C., & Tirtiroglu, E. (2001). Performance measures and metrics in a supply chain environment. International Journal of Operations and Production Management, 21(1-2), 71-87. Cerca con Google

36. Harrington, T. C., & Lambert, D. M. (1991). A methodology for measuring vendor performance. Journal of Business Logistics, 12(1), 83-104. Cerca con Google

37. Harrison, A., & New, C. (2002). The role of coherent supply chain strategy and performance management in achieving competitive advantage: an international survey. Journal of the Operational Research Society, 53(3), 263-271. Cerca con Google

38. Hausman W. H. (2002). Supply chain performance metrics. In: Billington C, Harrison T, Lee H and Neale J (eds). The Practice of Supply Chain Management, Kluwer: Boston. Cerca con Google

39. Hirschman, A. O. (1958). The strategy of economic development. New Haven, CT: Yale University Press. Cerca con Google

40. Hofman, D. (2004). The hierarchy of supply chain metrics. Supply Chain Management Review, 8(6), 28-37. Cerca con Google

41. Hofmann, E. (2006). Quantifying and setting off network performance. International Journal of Networking and Virtual Organisations, 3(3), 317-339. Cerca con Google

42. Holmberg, S. (2000). A systems perspective on supply chain measurements. International Journal of Physical Distribution & Logistics Management, 30(10), 847-868. Cerca con Google

43. Huan, S.; Sheoran, S. & Wang, G. (2004). A review and analysis of supply chain operations reference (SCOR) model. Supply Chain Management: An International Journal, 9(1), pp. 23 – 29. Cerca con Google

44. Huang, S. H., & Keskar, H. (2007). Comprehensive and configurable metrics for supplier selection. International Journal of Production Economics, 105(2), 510-523. Cerca con Google

45. Huang, S. H., Sheoran, S. K., & Keskar, H. (2005). Computer-assisted supply chain configuration based on supply chain operations reference (SCOR) model. Computers and Industrial Engineering, 48(2), 377-394. Cerca con Google

46. Iarossi, G. (2006). The Power of Survey Design: A User's Guide for Managing Surveys, Interpreting Results, and Influencing Respondents: World Bank Publications. Cerca con Google

47. Jeavons, A., & Bayer, L. (1997). The Harris Poll Online. Internet, Marketing and Research, 4, 15-16. Cerca con Google

48. Johnson, M. E., & Pyke, D. F. (2000). A Framework for Teaching Supply Chain Management. Production and Operations Management 9(1), 2–18. Cerca con Google

49. Kainuma, Y., & Tawara, N. (2006). A multiple attribute utility theory approach to lean and green supply chain management. International Journal of Production Economics, 101(1 SPEC. ISS.), 99-108. Cerca con Google

50. Keeney, R. L., & Raiffa, H. (1976). Decisions with Multiple Objectives: Preferences and Tradeoffs: Wiley. Cerca con Google

51. Kehoe, C. M., & Pitkow, J. E. (1996). Surveying the Territory: GVU’s Five WWW User Surveys. The World Wide Web Journal, 1(3), 77-84. Cerca con Google

52. Kittleson, M. J. (1997). Determining effective follow-up of e-mail surveys. American Journal of Health Behavior, 21(3), 193-196. Cerca con Google

53. Khoo, L. P., & Yin, X. F. (2003). An extended graph-based virtual clustering-enhanced approach to supply chain optimisation. The International Journal of Advanced Manufacturing Technology, 22(11), 836-847. Cerca con Google

54. Kleijnen, J. P. C., & Smits, M. T. (2003). Performance metrics in supply chain management. Journal of the Operational Research Society, 54(5), 507-514. Cerca con Google

55. Krosnick, J. A. (1999). Survey Methodology. Annual Review of Psychology, 50, 537-567. Cerca con Google

56. Lambert, D. M., & Pohlen, T. L. (2001). Supply Chain Metrics. The International Journal of Logistics Management, 12(1), 1-19. Cerca con Google

57. Laura, X. X. X., William, L., Chai, L. S., & Li, Z. (2005). Performance metrics design framework for software focused supply chain. 2005 3rd IEEE International Conference on Industrial Informatics, INDIN, 2005, 176-180. Cerca con Google

58. Larson, P. D. & Halldorsson, A. (2002). What is SCM? And, where is it? The Journal of Supply Chain Management, 38(4), 36-45. Cerca con Google

59. Lee, H. L., & Billington, C. (1992). Managing supply chain inventory: pitfalls and opportunities. MIT Sloan Management Review, 33(3), 65-73. Cerca con Google

60. Levine, D. M., Berenson, M. L., Stephan, D., & Krehbiel, T. C. (2001). Statistics for Managers Using Microsoft Excel: Prentice Hall PTR Upper Saddle River, NJ, USA. Cerca con Google

61. Lockamy, A., & McCormack, K. (2004). Linking SCOR planning practices to supply chain performance. International Journal of Operations and Production Management, 24(12), 1192–1218. Cerca con Google

62. Lohman, C., Fortuin, L., & Wouters, M. (2004). Designing a performance measurement system: A case study. European Journal of Operational Research, 156(2), 267-286. Cerca con Google

63. McCrea, B. (2006). Metrics take center stage. Logistics Management, 45(1), 39-42. Cerca con Google

64. Melnyk, S. A., Stewart, D. M., & Swink, M. (2004). Metrics and performance measurement in operations management: Dealing with the metrics maze. Journal of Operations Management, 22(3), 209-217. Cerca con Google

65. Mentzer, J. T. (1991). An efficiency/effectiveness approach to logistics performance analysis. Journal of Business Logistics, 12(1), 33-62. Cerca con Google

66. Miller, G. A. (1956). The magic number seven, plus or minus two. Psychological Review, 63(2). Cerca con Google

67. Neely, A. (2005). The evolution of performance measurement research: Developments in the last decade and a research agenda for the next. International Journal of Operations and Production Management, 25(12), pp. 1264-1277. Cerca con Google

68. Neely, A. (1999). The performance measurement revolution: why now and what next? International Journal of Operations and Production Management, 19( 2), pp. 205-228 Cerca con Google

69. Neely, A., Gregory, & Platts, K. (2005). Performance measurement system design: A literature review and research agenda. International Journal of Operations and Production Management, 25(12), pp. 1228- 1263. Cerca con Google

70. Otto, A., & Kotzab, H. (2003). Does supply chain management really pay? Six perspectives to measure the performance of managing a supply chain. European Journal of Operational Research, 144(2), 306-320. Cerca con Google

71. Paxson, M. C. (1992). Follow-up mail surveys. Industrial Marketing Management, 21(3), 195-201. Cerca con Google

72. Rabelo, L., Eskandari, H., Shalan, T., & Helal, M. (2005). Supporting simulation-based decision making with the use of AHP analysis. Proceedings of the 37th conference on Winter simulation, 2042-2051. Cerca con Google

73. Ramdas, K., & Spekman, R. E. (2000). Chain or Shackles: Understanding What Drives Supply-Chain Performance. Interfaces, 30(4), 3-21. Cerca con Google

74. Röder, A., & Tibken, B. (2006). A methodology for modeling inter-company supply chains and for evaluating a method of integrated product and process documentation. European Journal of Operational Research, 169(3), 1010-1029. Cerca con Google

75. Russell, C. J., & Bobko, P. (1992). Moderated regression analysis and Likert scales: Too coarse for comfort. Journal of Applied Psycholog, 77(3), 336-342. Cerca con Google

76. Sakakibara, S., Flynn, B. B., & Schroeder, R. G. (1993). A framework and measurement instrument for just-in-time manufacturing. J Production and Operations Management, 2(3), 177-194. Cerca con Google

77. Schaefer, D. R., & Dillman, D. (1998). Development of a Standard E-Mail Methodology: Results of an Experiment. Public Opinion Quarterly, 62(3), 378-397. Cerca con Google

78. Schneiderman, A. M. (1996). Metrics for the order fulfillment process (part 1). Journal of Cost Management, 10(2), 30-42. Cerca con Google

79. Schneiderman, A. M. (1996). Metrics for the order fulfillment process (part 2). Journal of Cost Management, 10(3), 6-18. Cerca con Google

80. Shepherd, C., & Günter, H. (2006). Measuring supply chain performance: Current research and future directions. International Journal of Productivity and Performance Management, 55(3-4), 242-258. Cerca con Google

81. Simatupang, T. M., & Sridharan, R. (2004). A benchmarking scheme for supply chain collaboration. Benchmarking, 11(1), 9-30. Cerca con Google

82. Smits, M., & Kuo, D. C. L. (2003). Performance of Integrated Supply Chains: An International Case Study in High Tech Manufacturing. Proceedings of the 36th Hawaii International Conference on System Sciences. Cerca con Google

83. Smits, M., van den Heuvel, W. J., & Huisman, W. (2006). The Tacit Liaison between Networkability and Supply Chain Performance. Proceedings of the 39th Annual Hawaii International Conference on System Sciences, 08. Cerca con Google

84. Stephens, S. (2001). Supply Chain Operations Reference Model Version 5.0: A New Tool to Improve Supply Chain Efficiency and Achieve Best Practice. Information Systems Frontiers, 3(4), 471-476. Cerca con Google

85. Stewart, G. (1995). Supply chain performance benchmarking study reveals keys to supply chain excellence. Logistics Information Management, 8(2), 38-44. Cerca con Google

86. Tan, K. C. (2002). Supply chain management: practices, concerns, and performance issues. The Journal of Supply Chain Management, 38(1), 42-53. Cerca con Google

87. Tang, N. K. H., Benton, H., Love, D., Albores, P., Ball, P., MacBryde, J., et al. (2004). Developing an enterprise simulator to support electronic supply-chain management for B2B electronic business. Production Planning & Control, 15(6), 572-583. Cerca con Google

88. Tennenhouse, D. L., Smith, J. M., Sincoskie, W. D., Wetherall, D. J., & Minden, G. J. (1997). A survey of active network research. Communications Magazine, IEEE, 35(1), 80-86. Cerca con Google

89. van Hoek, R. I. (1998). " Measuring the unmeasurable"-measuring and improving performance in the supply chain. 3(4), 187-192. Cerca con Google

90. Van Landeghem, R., & Persoons, K. (2001). Benchmarking of logistical operations based on a causal model. International Journal of Operations & Production Management, 21(1-2), 254-266. Cerca con Google

91. Vehovar, V. (2001). Sensitivity of Electronic Commerce Measurement to the Survey Instrument. International Journal of Electronic Commerce, 6(1), 31-51. Cerca con Google

92. Viswanadham, N., & Raghavan, N. R. S. (2000). Performance analysis and design of supply chains: a Petri net approach. Journal of the Operational Research Society, 51(10), 1158-1169. Cerca con Google

93. Wang, G., Huang, S. H., & Dismukes, J. P. (2004). Product-driven supply chain selection using integrated multi-criteria decision-making methodology. International Journal of Production Economics, 91(1), 1-15. Cerca con Google

94. Womack, J. P., Jones, D. T., & Roos, D. (1990). The machine that changed the world. New York: Macmillan. Cerca con Google

95. Yang, C. C., & Chen, B. S. (2006). Supplier selection using combined analytical hierarchy process and grey relational analysis. Journal of Manufacturing Technology Management, 17(7), 926-941. Cerca con Google

96. Yu, Z.; Yan, H.; & Cheng, T. (2001) Benefits of information sharing with supply chain partnerships. Industrial Management and Data Systems, 101 (3&4), pp. 114-119. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record