Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Pellizzari, Caterina (2011) Identificazione di marcatori molecolari per la resistenza alla fotobatteriosi nell'orata di allevamento (Sparus aurata). [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF (Tesi di dottorato)
761Kb

Abstract (inglese)

Fish photobacteriosis is an infectious disease that affects several fish species living in marine temperate waters. Its causative agent is the Gram-negative bacterium Photobacterium damselae subsp. piscicida (Phdp). Fish photobacteriosis represents a serious health problem for the majority of intensive sea bream hatcheries, with 90–100% mortality during disease outbreaks. Larvae and juveniles are the most susceptible stages. A potential strategy to prevent fish photobacteriosis is to select for animals that are genetically resistant to it. Resistance to Phdp infection has low medium hereditabilty (0.12-0.45) and it is costly to measure, thus the best option for selective breeding is marked assisted selection. Aim of this work is to identify genetic loci involved in disease resistance in the gilthead sea bream (Sparus aurata) through an integrated genomic approach.
A QTL analysis for resistance to photobacteriosis was carried out on an experimental population of 500 offspring, originating from eight sires and six dams in a single mass-spawning event and experimentally infected with Phdp. A total of 151 microsatellite loci were genotyped in the experimental population, and half-sib regression QTL analysis was carried out on two continuous traits, body length at time of death and survival, and for two binary traits, survival at day 7 and survival at day 15, when the highest peaks of mortality were observed. Two significant QTLs were detected for disease resistance. The first one was located on linkage group LG3 affecting late survival (survival at day 15). The second one, for overall survival, was located on LG21, which allowed us to highlight a potential marker (Id13) linked to disease resistance. A significant QTL was also found for body length at death on LG6 explaining 5-8% of the phenotypic variation.
Microarray-based experiments were used to analyse changes at the transcriptome level upon Phdp experimental infection in sea bream juvenile head kidney. An update of the oligo-DNA microarray developed by Ferraresso et al. (2008) was produced by adding 6,412 novel unique transcripts. Statistical analysis identified 293 transcripts significantly up-regulated and 123 transcripts down-regulated leading to an infection response mainly associated to the more immediate innate immune system. It was observed, however, a significant predominance of anti-inflammatory mediators/signals, which help controlling excessive collateral damage to host tissue and cells due to host response, but, in so doing, might also reduce the effectiveness of immune mechanisms responsible for the clearance of the pathogen. Independent testing of a selection of differentially expressed genes with real-time RT-PCR confirmed microarray results.
Differentially expressed genes based on microarray analysis were mapped onto the stickleback genome, to find a possible co-localization of the loci contributing to disease resistance or susceptibility. These genes, which putatively co-localize with genome-wide significant QTLs, represent a starting point to refine the candidate regions for the already identified QTLs and might constitute potential markers for the implementation of selective breeding programs for photobacteriosis resistance.

Abstract (italiano)

La fotobatteriosiosi ittica, causata dal batterio Gram negativo Photobacterium damselae subsp. piscicida (Phdp), è una patologia infettiva che colpisce diverse specie di pesci che vivono in acque marine temperate. La fotobatteriosi rappresenta un reale problema sanitario per gran parte degli allevamenti intesivi di orata (Sparus aurata), con tassi di mortalità che possono raggiungere il 90-100%; gli stadi larvali e giovanili sono i più suscettibili all’infezione. Una possibile strategia per prevenire la patologia prevede la selezione di animali geneticamente resistenti a essa. La resistenza alla fotobatteriosi presenta un’ereditabilità medio bassa (0.12-0.45) e la sua stima risulta dispendiosa, di conseguenza, la strategia migliore per l’attuazione di programmi di miglioramento genetico per questo tratto è la selezione assistita da marcatori. Scopo di questo progetto è l’identificazione di loci genetici coinvolti nella determinazione della resistenza all’infezione in orata, mediante un approccio genomico integrato. Un’analisi di QTL per la resistenza alla fotobatteriosi è stata effettuata considerando una popolazione di 500 individui, generati da 8 maschi e 5 femmine, infettati sperimentalmente con Phdp e genotipizzati utilizzando 151 loci microsatelliti. I dati ottenuti sono stati elaborati attraverso un’analisi di regressione half-sib per due caratteri con distribuzione continua, la lunghezza al momento del decesso e la saprovvivenza, e per due caratteri binari, la sopravvivenza al giorno 7 e al giorno 15, associati ai maggiori picchi di mortalità. Per la resistenza alla fotobatteriosi sono stati identificati due QTL significativi. Il primo, coinvolto nella sopravvivenza al giorno 15, è stato associato al LG3. Il secondo, per la sopravvivenza al termine del challenge, è stato collocato nel LG21, per cui è stato possibile anche identificare un potenziale marcatore (Id13) associato alla resistenza alla patologia. Per la lunghezza al momento del decesso è stato individuato un QTL significativo nel LG6, in grado di spiegare il 5-8% della varianza fenotipica. La tecnologia microarray è stata impiegata per analizzare i cambiamenti a livello trascrizionale nel rene cefalico di orate sottoposte a un’infezione sperimentale con Phdp. La piattaforma microarray a oligonucleotidi, sviluppata da Ferraresso e colleghi (2008), è stata aggiornata aggiungendo 6412 nuovi trascritti unici. Le analisi statistiche dei dati di espressione hanno identificato 293 trascritti significativamente sovraespressi e 123 trascritti significativamente sottoespressi, associati a una risposta all’infezione che coinvolge principalmente i più immediati meccanismi del sistema immunitario innato. È stata rilevata, inoltre, una significativa predominanza di molecole antinfiammatorie che aiutano a controllare gli eccessivi danni collaterali ai tessuti dovuti alla risposta dell’ospite, ma così facendo, porterebbero anche a una riduzione dell’efficacia dei meccanismi immunitari responsabili dell’eliminazione del patogeno. I saggi di espressione in Real time RT-PCR hanno confermato i risultati di microarray. I geni differenzialmente espressi sono stati localizzati nel genoma di Gasterosteus aculeatus, per trovare una possibile co-localizzazione dei loci che contribuiscono alla resistenza all’infezione o alla suscettibilità. Questi geni, che apparentemente si collocano nelle stesse regioni dei QTL significativi, rappresentano un punto di partenza per raffinare la localizzazione dei QTL qui identificati e potrebbero raprresentare dei potenziali marcatori per la selezione di linee di animali maggiormente resistenti alla fotobatteriosi

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Bargelloni, Luca
Dottorato (corsi e scuole):Ciclo 23 > Scuole per il 23simo ciclo > SCIENZE VETERINARIE > SANITA' PUBBLICA E PATOLOGIA COMPARATA
Data di deposito della tesi:NON SPECIFICATO
Anno di Pubblicazione:31 Gennaio 2011
Parole chiave (italiano / inglese):Fotobatteriosi, resistenza alla patologia, QTL, microarray, Sparus aurata
Settori scientifico-disciplinari MIUR:Area 07 - Scienze agrarie e veterinarie > VET/03 Patologia generale e anatomia patologica veterinaria
Struttura di riferimento:Dipartimenti > Dipartimento di Sanità pubblica, Patologia comparata ed Igiene veterinaria
Codice ID:3717
Depositato il:01 Ago 2011 10:11
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Acosta F, Vivas J, Padilla D, Vega J, Bravo J, Grasso V, Real F. Invasion and survival of photobacterium damselae subsp. piscicida in non-phagocytic cells of gilthead sea bream, Sparus aurata L. J Fish Dis 2009, 32(6): 535-41. Cerca con Google

Acosta F, Ruiz de Galarreta CM, Ellis AE, Díaz R, Gómez V, Padilla D, Real F. Activation of the nitric oxide response in gilthead sea bream after experimental infection with Photobacterium damselae subsp. piscicida. Fish Shellfish Immunol 2004, 16(5): 581-588. Cerca con Google

Amos W, Sawcer SJ, Feakers RW, Rubistein DC. Microsatellites Show Directional Bias and Heterozigote Instability. Nature genetics 1996, 13: 390-391. Cerca con Google

Andersson L. Genetic dissection of phenotypic diversity in farm animals. Nature Reviews Genetics 2001, 2: 130-138. Cerca con Google

Antonello J, Massault C, Franch R, Haley C, Pellizzari C, Bovo G, Patarnello T, de Koning DJ, Bargelloni L. Estimates of heritability and genetic correlation for body length and resistance to fish pasteurellosis in the gilthead sea bream (Sparus aurata L.). Aquaculture 2009, 298(1-2): 29-35. Cerca con Google

Aoki T, Takano T, D. Santos M, Kondo H, Hirono I. Molecular innate immunity in teleost fish: review and future perspectives. Fisheries for Global Welfare and Environment, 5th World Fisheries Congress 2008, 263-276. Cerca con Google

Aoki T. Drug-resistance plasmids from fish pathogens. Microbiological Science 1988, 5: 219-223. Cerca con Google

Apweiler R, Attwood TK, Bairoch A, Bateman A, Birney E, Biswas M, Bucher P, Cerutti L, Corpet F, Croning MD, Durbin R, Falquet L, Fleischmann W, Gouzy J, Hermjakob H, Hulo N, Jonassen I, Kahn D, Kanapin A, Karavidopoulou Y, Lopez R, Marx B, Mulder NJ, Oinn TM, Pagni M, Servant F, Sigrist CJ, Zdobnov EM. The InterPro database, an integrated documentation resource for protein families, domains and functional sites. Nucleic Acid Res 2001, 29: 37-40. Cerca con Google

Arabaci M, Yilmaz Y, Ceyhun SB, Erdogan O, Dorlay HG, Diler I, Akhan S, Kocabas M, Ozdemir K, Koyun H, Koncagul S. A Review on Population Characteristics of Gilthead Seabream (Sparus aurata). Journal of Animal and Veterinary Advances 2010, 9(6): 976-981. Cerca con Google

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G. The Gene Ontology Consortium. Nat Genet 2000, 25: 25-29. Cerca con Google

Bakopoulos V, Peric Z, Rodger H, Adams A, Richards R.H. First Report of Fish Pasteurellosis from Malta. Aquatic Animal Health 1997, 9: 26-33. Cerca con Google

Bakopoulos V, Adams A, Richards RH. Some biochemical properties and antibiotics sensitivities of Pasteurella piscicida isolated in Greece and comparison with strains from Japan, France and Italy. Journal of Fish Diseases 1995, 18: 1-7. Cerca con Google

Baptista T, Romalde JL, Toranzo AE. First epizootic of pasteurellosis in Portugal affecting cultured gilthaed seabream (Sparus aurata). Bulletin of the European Association of Fish Pathology 1996, 1: 92-95. Cerca con Google

Behrens EM, Gadue P, Gong SY, Garrett S, Stein PL, Cohen PL. The mer receptor tyrosine kinase: expression and function suggest a role in innate immunity. Eur J Immunol 2003, 33(8): 2160-2167. Cerca con Google

Boschi I, Randelli E, Buonocore F, Casani D, Fausto AM, Scapigliati G. Transcription of T cell-related genes in teleost fish, and the european sea bass (Dicentrarchus labrax) as a model. Fish & Shellfish Immunol 2010, doi:10.1016/j.fsi.2010.10.001. Cerca con Google

Boshra H, Li J, Sunyer JO. Recent advances on the complement system of teleost fish. Fish & Shellfish Immunol 2006, 20(2): 239-262. Cerca con Google

Brown RC, Woolliams JA, McAndrew BJ. Factors influencing effective population size in commercial populations of gilthead seabream, Sparus aurata. Acquaculture 2005, 247: 219-225. Cerca con Google

Brown TA. Genomi. Edises Edizioni, Napoli 2004. Cerca con Google

Camon E, Barrell D, Brooksbank C, Magrane M, Apweiler R. The Gene Ontology Annotation (GOA) Project--Application of GO in SWISS-PROT, TrEMBL and InterPro. Comp Funct Genomics 2003, 4(1): 71-4. Cerca con Google

Canario AVM, Bargelloni L, Volckaert F, Houston RD, Massault C, Guiguen Y. Genomics Toolbox for Farmed Fish. Reviews in Fisheries Science 2008, 16: 3–15. Cerca con Google

Candan A, Kucuker M.A, Karatas S. Pasteurellosis in cultured seabass (Dicentrarchus labrax) in Turkey. Bulletin of the European Association of Fish Pathologists 1996, 16: 150-153. Cerca con Google

Castro J, Pino A, Hermida M, Bouza C, Chavarrías D, Merino P, Sánchez L, Martínez P. A microsatellite marker tool for parentage assessment in gilthead sea bream (Sparus aurata). Aquaculture 2007, 272S1: S210–S216. Cerca con Google

Cataudella SP, Perin R, Sola L. A chromosome study of eight Mediterranean species of Sparidae (Pisces, Perciformes). Genetica 1980, 54: 155–9. Cerca con Google

Ceschia G, Quaglio F, Giorgetti G, Bertoja G, Bovo G. Serious outbreak of pasteurellosis (Pasteurella piscicida) in euryhhaline species along the Italian coasts. Abstracts 5th International Conference of the European Association of Fish Pathologists, Budapest, Hungary, 1991, p.26. Cerca con Google

Clark MS, Smith SF, Elgar G. Use of the Japanese pufferfish (Fugu rubripes) in comparative genomics. Mar Biotechnol 2001, 3:S130-40. Cerca con Google

Coffman MA, Pinter JH, Goetz FW. Trout ovulatory proteins: site of synthesis, regulation, and possible biological function. Biol Reprod 2000, 62(4): 928-938. Cerca con Google

Costa-Ramos C, Vale AD, Ludovico P, Dos Santos NM, Silva MT. The bacterial exotoxin AIP56 induces fish macrophage and neutrophil apoptosis using mechanisms of the extrinsic and intrinsic pathways. Fish Shellfish Immunol 2011, 30(1): 173-181. Cerca con Google

Crollius HR. The tetraodon genome. Genome Dyn 2006, 2:154-64. Cerca con Google

Crosetti D, Sola L, Allegrucci G, Libertini A. Genetica in acquacoltura. Acquacoltura responsabile. S. Cataudella e P. Bronzi (editori), Unimar-Uniprom 2001, Roma. Cerca con Google

Dekkers JCM, Hospital F. The use of molecular genetics in the improvement of agricultural populations. Nature Reviews Genetics 2002, 3: 22-32. Cerca con Google

Dunham, RA. Aquaculture and fisheries biotechnology – genetic approaches. CABI publishing, Oxford 2004. Cerca con Google

do Vale A, Silva MT, dos Santos NM, Nascimento DS, Reis-Rodrigues P, Costa-Ramos C et al. AIP56, a novel plasmid-encoded virulence factor of Photobacterium damselae subsp. piscicida with apoptogenic activity against sea bass macrophages and neutrophils. Mol Microb 2005, 58(4): 1025-38. Cerca con Google

do Vale A, Marques F, Silva MT. Apoptosis of sea bass (Dicentrarchus labrax L.) neutrophils and macrophages induced by experimental infection with Photobacterium damselae subsp. piscicida. Fish & Shellfish Immunol 2003, 15(2): 129-44. Cerca con Google

Duchesne P, Godbout M, Bernatchez L. PAPA (package for the analysis of parental allocation): a computer program for simulated and real parental allocation. Molecular Ecology Notes 2002, 2: 191-193. Cerca con Google

Ellis AE. Immunity to bacteria in fish. Fish Shellfish Immunol 1999, 9:291-308. Cerca con Google

Etzold T, Ulyanov A, Argos P. SRS: information retrieval system for molecular biology data banks. Methods Enzymol 1996, 266: 114-28. Cerca con Google

Evans ML, Neff BD. Major histocompatibility complex heterozygote advantage and widespread bacterial infections in populations of Chinook salmon (Oncorhynchus tshawytscha). Molecular Ecology 2009, 18: 4716–4729. Cerca con Google

Falconer D.S. Introduction to quantitative genetics – second edition. Longman group limited, London 1981. Cerca con Google

FAO Fishery Statistic (2006). Fisheries and Aquaculture topics. Introduction of species. http://www.fao.org/fishery/culturedspecies/Sparus_aurata/en, gennaio 2011. Vai! Cerca con Google

Farkas J, Olah J. Occurrence of Pasteurella and Streptococcus in sheatfish (Silurus glanis L.) and common carp (Cyprinus carpio L.). Proceedings of the International Seminar on Fish, J. Olah, K. Molnar, Z. Jeney (editori), 1981. Cerca con Google

Ferraresso S, Vitulo N, Mininni AN, Romualdi C, Cardazzo B, Negrisolo E, Reinhardt R, Canario AVM, Patarnello T, Bargelloni L. Development and validation of a gene expression oligo microarray for the gilthead sea bream (Sparus aurata). BMC Genomics 2008, 9: 580. Cerca con Google

Fjalestad KT, Gjedrem T, Gjerde B. Genetic-Improvement of Disease Resistance in Fish - an Overview. Aquaculture 1993, 111: 65–74. Cerca con Google

Fouz B, Toranzo EA, Milan M, Amaro C. Evidence that water transmits the disease caused by the fish pathogen Photobacterium damselae subsp. Damselae. Journal of Applied Microbiology 2000, 88: 531-535. Cerca con Google

Franch R, Louro B, Tsalavouta M, Chatziplis D, Tsigenopoulos CS, Sarropoulou E, Antonello J, Magoulas A, Mylonas CC, Babbucci M, Patarnello T, Power DM, Kotoulas G, Bargelloni L. A genetic linkage map of the hermaphrodite teleost fish Sparus aurata L. Genetics 2006, 174: 851-61. Cerca con Google

Fuji K, Hasegawa O, Honda K, Sakamoto T, Okamoto N. Marker-assisted breeding of a lymphocystis disease-resistant Japanese flounder (Paralichthys olivaceus). Aquaculture 2007, 272: 291–5. Cerca con Google

Friars GW. Transfer of breeding technology from terrestrial agriculture to aquaculture. Bulletin of the aquaculture association of Canada 1998, 98(3): 5-8. Cerca con Google

Gauthier G, Lafay B, Ruimy R, Breittmayer V, Nicolas J, Gauthier M, Christen R. Small subunit rRNA sequences and whole DNA relatedness concur for the reassignment of Pasteurella piscicida to the genus Photobacterium as Photobacterium damsela subsp. Piscicida. Internat Journ of System Bacteriol 1995, 45: 139-144. Cerca con Google

Gazi U, Martinez-Pomares L. Influence of the mannose receptor in host immune responses. Immunobiology 2009, 214(7): 554-561. Cerca con Google

Gerwick L, Corley-Smith G, Bayne CJ. Gene transcript changes in individual rainbow trout livers following an inflammatory stimulus. Fish & Shellfish Immunol 2007; 22:157-171. Cerca con Google

George AW, Visscher PM, Haley CS. Mapping quantitative trait loci in complex pedigrees: a two-step variance component approach. Genetics 2000, 156: 2081–92. Cerca con Google

Ghebrehiwet B, Lim BL, Kumar R, Feng X, Peerschke EI. gC1q-R/p33, a member of a new class of multifunctional and multicompartmental cellular proteins, is involved in inflammation and infection. Immunological Reviews 2001, 180: 65-77. Cerca con Google

Gjedrem T. Selection and breeding programs in aquaculture. Springer, The Netherlands 2005. Cerca con Google

Gjedrem, T. Genetic improvement of cold-water fish species. Aquaculture research 2000, 31: 25-33. Cerca con Google

Gjedrem, T. Selective breeding to improve aquaculture production. World aquaculture 1997, 28(1): 33-45. Cerca con Google

Grimholt U, Larsen S, Nordmo R, Midtlyng P, Kjoeglum S, Storset A, Saebø S, Stet RJ. MHC polymorphism and disease resistance in Atlantic salmon (Salmo salar); facing pathogens with single expressed major histocompatibility class I and class II loci. Immunogenetics 2003, 55: 210–9. Cerca con Google

Goldstein DB, Ruiz-Linares A, Cavalli-Sforza LL, Feldman MW. An Evaluation of genetic distances for use with Microsatellite loci. Genetics 1995, 139: 463-471. Cerca con Google

Hanif A, Bakopoulos V, Leonardos I, Dimitriadis GJ. The effect of seabream (Sparus aurata) broodstockand larval vaccination on the susceptibility by Photobacterium damselae subsp. piscicida and on the humoral immune parameter. Fish Shellfish Immunology 2005, 19: 345-361. Cerca con Google

Hastein T, Bullock GL. An acute septicemic disease of brown trout (Salmo trutta) and Atlantic salmon (Salmo salar) caused by Pasteurella-like organism. Journal of Fish Biology 1976, 8: 23-26. Cerca con Google

Hawke JP, Thune RL, Cooper RK, Judice E, Kelly-Smith M. Molecular and phenotypic characterization of strains of Photobacterium damselae subsp. piscicida isolated from hybrid striped bass cultured in louisiana, USA. Journal of Aquatic Animal Health 2003, 15(3): 189-201. Cerca con Google

Hawke JP. Pathogenesis and virulence of Pasteurella piscicida in hybrid striped bass (Morone saxatilis x Morone chysops). International symposium on Aquatic Animal Health, Seattle, Washington, 1994. Cerca con Google

Houston RD, Haley CS, Hamilton A, Guy DR, Tinch AE, Taggart JB, McAndrew BJ, Bishop SC. Major Quantitative Trait Loci Affect Resistance to Infectious Pancreatic Necrosis in Atlantic Salmon (Salmo salar). Genetics 2008, 178: 1109–15. Cerca con Google

Huang X, Madam A. CAP3: a DNA sequenze assembly program. Genome Res 1999; 9: 868-77. Cerca con Google

Hughes TR, Mao M, Jones AR, Burchard J, Marton MJ, Shannon KW, Lefkowitz SM, Ziman M, Schelter JM, Meyer MR, Kobayashi S, Davis C, Dai H, He YD, Stephaniants SB, Cavet G, Walker WL, West A, Coffey E, Shoemaker DD, Stoughton R, Blanchard AP, Friend SH, Linsley PS: Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat Biotechnol 2001, 19:342-7. Cerca con Google

Iwama GK, Afonso LO, Todgham A, Ackerman P, Nakano K. Are hsps suitable for indicating stressed states in fish? J Exp Biol 2004, 207(Pt 1): 15-19. Cerca con Google

Janssen WA, Surgalla MJ. Morphology, physiology and serology of Pasteurella species pathogenic for white perch (Roccus americanus). Journal of Bacteriology 1968, 96(5): 1606-1610. Cerca con Google

Johnson NA, Vallejo RL, Silverstein JT, Welch TJ, Wiens GD, Hallerman EM, Palti Y. Suggestive association of major histocompatibility IB genetic markers with resistance to bacterial coldwater disease in rainbow trout (Oncorhynchus mykiss). Marine Biotechnology 2008, 10: 429–37. Cerca con Google

Jones MW, Cox DI. Clinical disease in seafarmed Atlantic salmon (Salmo salar) associated with a member of the family Pasteurellaceae – a case history. Bulletin of the European Association of Fish pathologists 1999, 19: 75. Cerca con Google

Jørgensen SM, Afanasyev S, Krasnov A. Gene expression analyses in Atlantic salmon challenged with infectious salmon anemia virus reveal differences between individuals with early, intermediate and late mortality. BMC Genomics 2008, 9: 179. Cerca con Google

Karaiskou N, Triantafyllidis A, Katsares V, Abatzopoulos TJ, Triantaphyllidis C. Microsatellite variability of wild and farmed populations of Sparus aurata. J Fish Biol 2009, 74(8):1816-25. Cerca con Google

Kawahara E, Kusuda R. Location of Pasteurella piscicida antigens in tissues of yellowtail Seriola quinqueradiata vaccinated by immersion. Bullet of the Jap Soc of Scient fisher 1997, 54: 1101-1105. Cerca con Google

Kjøller L, Hall A. Signaling to rho GTPases. Exp Cell Res 1999, 253(1): 166-179. Cerca con Google

Knauf U, Tschopp C, Gram H. Negative regulation of protein translation by mitogen-activated protein kinase-interacting kinases 1 and 2. Mol Cell Biol 2001, 21(16): 5500-5511. Cerca con Google

Knott SA, Elsen JM, Haley CS. Methods for multiplemarker mapping of quantitative trait loci in half-sib populations. Theoretical and Applied Genetics 1996, 93: 71–80. Cerca con Google

Kolbehdari D, Jansen GB, Schaeffer LR, Allen BO. Power of QTL detection by either fixed or random models in halfsib designs. Genetics, Selection, Evolution 2005, 37: 601–14. Cerca con Google

Koudandé OD, Thomson PC, Bovenhuis H, Iraqi F, Gibson JP, van Arendonk JAM. Biphasic survival analysis of trypanotolerance QTL in mice. Heredity 2008, 100: 407–14. Cerca con Google

Krasnov A, Timmerhaus G, Afanasyev S, Jørgensen SM. Development and assessment of oligonucleotide microarrays for Atlantic salmon (Salmo salar L.). Comp Biochem Physiol Part D Genomics Proteomics 2010, doi:10.1016/j.cbd.2010.04.006. Cerca con Google

Kubota SS, Kimura M, Egusa S. Studies of a bacterial tuberculoidosis of the yellowtail. Symptomatology and histopathology. Fish Pathology 1970, 4: 111–118. Cerca con Google

Kuhl H, Sarropoulou E, Tine M, Kotoulas G, Magoulas A, Reinhardt R. A Comparative BACMap for the Gilthead Sea Bream (Sparus aurata L.). Journal of Biomedicine and Biotechnology 2011, doi:10.1155/2011/329025. Cerca con Google

Kuno M, Seki N, Tsujimoto S, Nakanishi I, Kinoshita T, Nakamura K, Terasaka T, Nishio N, Sato A, Fujii T. Anti-inflammatory activity of non-nucleoside adenosine deaminase inhibitor FR234938. Eur J Pharmacol 2006, 534(1-3): 241-249. Cerca con Google

Lai L (2001). Genetic markers for aquatic domestication and selective breeding programs. Biotechnology-aquaculture interface: the site of maximum impact workshop. www.nps.ars.usda.gov/static/arsoibiotecws2001/contributions/Lai.htm, gennaio 2011. Vai! Cerca con Google

Lasky LA. Selectins: interpreters of cell-specific carbohydrate information during inflammation. Science 1992, 258(5084): 964-969. Cerca con Google

LeBlanc F, Laflamme M, Gagné N. Genetic markers of the immune response of Atlantic salmon (Salmo salar) to infectious salmon anemia virus (ISAV). Fish & Shellfish Immunology 2010, 29: 217-232. Cerca con Google

Lewis DH, Crumbles LC, McConnell S, Flowers AI. Pasteurella-like bacteria from an epizootic in menhaden and mullet from Galveston bay. Journal of Wildlife Diseases 1970, 6: 160-163. Cerca con Google

Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 2006; 22(13):1658-9. Cerca con Google

MacKenzie S, Balasch JC, Novoa B, Ribas L, Roher N, Krasnov A, Figueras A. Comparative analysis of the acute response of the trout, O. mykiss, head kidney to in vivo challenge with virulent and attenuated infectious hematopoietic necrosis virus and LPS-induced inflammation. BMC Genomics 2008, 9:141. Cerca con Google

Magariños B, Romalde JL, Barja JL, Nunez S, Toranzo AE. Protection of gilthead seabream against pasteurellosis at the larval stages. Bulletin of the European Association of Fish Pathology 1999, 19: 159-161. Cerca con Google

Magariños B, Toranzo AE, Romalde JL. Phenotipic and pathobiological characteristics of Pasteurella piscicida. Annual review of fish diseases 1996a, 6: 41-64. Cerca con Google

Magariños B, Romalde JL, Noya M, Barja JL, Toranzo AE. Adherence and invasive capacities of the fish pathogen Pasteurella piscicida. FEMS Microbiol Lett 1996b, 138(1): 29-34. Cerca con Google

Magariños B, Bonet R, Romalde JL, Martínez MJ, Congregado F, Toranzo AE. Influence of the capsular layer on the virulence of Pasteurella piscicida for fish. Microb Pathog 1996c, 21(4): 289-97. Cerca con Google

Magariños B, Pazos F, Santos Y, Romalde JL, Toranzo AE. Response of Pasteurella piscicida and Flexibacter maritimus to skin mucus of marine fish. Diseases of Aquatic Organisms 1995, 21: 103-108. Cerca con Google

Magariños B, Romalde JL, Barja JL, Toranzo AE. Evidence of a dormant but infective state of the fish pathogen Pasteurella piscicida in seawater and sediment. Applied and Environmental Microbiology 1994a, 60: 180-186. Cerca con Google

Magariños B, Romalde JL, Lemos ML, Barja JL, Toranzo AE. Iron uptake by pasteurella piscicida and its role in pathogenicity for fish. Appl Environ Microbiol 1994b, 60(8): 2990-8. Cerca con Google

Magariños B, Romalde JL, Santos Y, Casal JF, Barja JL, Toranzo AE. Vaccination trials on gilthead seabream (Sparus aurata) against Pasteurella piscicida. Aquaculture 1994c, 120: 201-208. Cerca con Google

Magariños B, Santos Y, Romalde JL, Rivas C, Barja JL, Toranzo AE. Pathogenic activities of live cells and extracellular products of the fish pathogen Pasteurella piscicida. J Gen Microbiol 1992, 138(12): 2491-8. Cerca con Google

Massault C, Franch R, Haley C, de Koning DJ, Bovenhuis H, Pellizzari C, Patarnello T, Bargelloni L. Quantitative trait loci for resistance to fish pasteurellosis in gilthead sea bream (Sparus aurata). Animal Genetics 2010, doi:10.1111/j.1365-2052.2010.02110.x Cerca con Google

Massault C, Bovenhuis H, Haley C, de Koning DJ. QTL mapping design for aquaculture. Aquaculture 2008, 285: 23-29. Cerca con Google

Matsuyama T, Fujiwara A, Nakayasu C, Kamaishi T, Oseko N, Tsutsumi N, Hirono I, Aoki T. Microarray analyses of gene expression in Japanese flounder Paralichthys olivaceus leucocytes during monogenean parasite Neoheterobothrium hirame infection. Dis Aquat Organ 2007, 75(1): 79-83. Cerca con Google

Meiri I, Gothilf Y, Zohar Y, and Elizur A. Physiological changes in the spawning gilthead seabream, Sparus aurata, succeeding the removal of males. Journ of Experiment Zool 2002, 292: 555–564. Cerca con Google

Miller KM, Maclean N. Teleost microarrays: development in a broad phylogenetic range reflecting diverse applications. Journal of Fish Biology 2008, 72: 2039–2050. Cerca con Google

Miller KM, Winton JR, Schulze AD, Purcell MK, Mling TJ. Major histocompatibility complex loci are associated with susceptibility of Atlantic salmon to infectious hematopoietic necrosis virus. Environmental Biology of Fishes 2004, 69: 307–16. Cerca con Google

Moen T, Baranski M, Sonesson AK, Kjøglum S. Confirmation and fine-mapping to infectious pancreatic necrosis in Atlantic salmon (Salmo salar): population-level associations between markers and trait. BMC Genomics 2009, 10: 368. Cerca con Google

Morey JS, Ryan JC, VanDolah FM. Microarray validation: factors influencing correlation between oligonucleotide microarrays and real-time PCR. Biol Porced Online 2006, 219(2): 201-215. Cerca con Google

Moss SE, Morgan RO. The annexins. Genome Biol 2004, 5(4): 219. Cerca con Google

Noga EJ. Fish Disease. Diagnosis and Treatment. Mosby-Year Book Inc, Missouri 1996. Cerca con Google

Noya M, Magariños B, Toranzo AE, Lamas J. Sequential pathology of experimental pasteurellosis in gilthead seabream Sparus aurata. A light- and electron-microscopic study. Diseases of Aquatic Organisms 1995a, 21(3): 177-86. Cerca con Google

Noya M, Magariños B, Lamas J. Interactions between peritoneal exudate cells (PECs) of gilthead seabream (Sparus aurata) and Pasteurella piscicida. A morphological study. Aquaculture 1995b, 131(1-2): 11-21. Cerca con Google

Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 1999, 27(1): 29-34. Cerca con Google

Ozaki A, Khoo SK, Yoshiura Y, Ototake M, Sakamoto T, Dijkstra JM, Okamoto N. Identification of additional quantitative trait loci (QTL) responsible for susceptibility to infectious pancreatic necrosis virus in rainbow trout. Fish Pathology 2007, 42: 131–40. Cerca con Google

Ozaki A, Sakamoto T, Khoo S, Nakamura K, Coimbra MRM, Akutu T, Okamoto N. Quantitative trait loci (QTLs) associated with resistance/susceptibility to infectious pancreatic necrosis virus (IPN) in rainbow trout (Oncorhynchus mykiss). Molecular Genetics and Genomics 2001, 265: 23–31. Cerca con Google

Park KC, Osborne JA, Montes A, Dios S, Nerland AH, Novoa B, Figueras A, Brown LL, Johnson SC. Immunological responses of turbot (Psetta maxima) to nodavirus infection or polyriboinosinic polyribocytidylic acid (pIC) stimulation, using expressed sequence tags (ESTs) analysis and cDNA microarrays. Fish & Shellfish Immunology 2009, 26: 91-108. Cerca con Google

Peatman E, Baoprasertkul P, Terhune J, Xu P, Nandi S, Kucuktas H, Li P, Wang S, Somridhivej B, Dunham R, Liu Z. Expression analysis of the acute phase response in channel catfish (Ictalurus punctatus) after infection with a Gram-negative bacterium. Developmental and Comparative Immunology 2007, 31: 1183–1196. Cerca con Google

Pepitone C, Massari F, Thomas M. I pesci delle acque costiere italiane. L’EPOS 1995. Cerca con Google

Pinto RD, Nascimento DS, Reis MIR, do Vale A, dos Santos NMS. Molecular characterization, 3D modelling and expression analysis of sea bass (Dicentrarchus labrax L.) interleukin-10. Molecular Immunol 2007, 44(8): 2056-2065. Cerca con Google

Proskuryakov SY, Konoplyannikov AG, Gabai VL. Necrosis: a specific form of programmed cell death? Exp Cell Res 2003, 283(1): 1-16. Cerca con Google

Randelli E, Buonocore F, Scapigliati G. Cell markers and determinants in fish immunology. Fish & Shellfish Immunol 2008, 25(4): 326-340. Cerca con Google

Rassman K, Schlotterer C, Tautz D. Isolation of simple sequence loci for use in polymerase chain reaction-base DNA fingerprinting. Electrophoresis 1991, 12: 113-118. Cerca con Google

Ravagnan G. Vallicoltura integrata. Edagricole 1992, Bologna. Cerca con Google

Raynes DA, Guerriero V. Isolation and characterization of isoforms of HspBP1, inhibitors of Hsp70. Biochim Biophys Acta 2000, 1490(1-2): 203-207. Cerca con Google

Refstie, T. Application of breeding schemes. Aquaculture 1990, 85: 163-169. Cerca con Google

Reyes-Becerril M, Ascencio-Valle F, Tovar-Ramírez D, Meseguer J, Esteban MA. Effects of polyamines on cellular innate immune response and the expression of immune-relevant genes in gilthead sea bream leucocytes. Fish Shellfish Immunol 2010, doi:10.1016/j.fsi.2010.10.011. Cerca con Google

Reynaud S, Raveton M, Ravanel P. Interactions between immune and biotransformation systems in fish: a review. Aquat Toxicol 2008, 87(3): 139-145. Cerca con Google

Rise ML, Jones SR, Brown GD, von Schalburg KR, Davidson, WS, Koop BF. Microarray analyses identify molecular biomarkers of Atlantic salmon macrophage and hematopoietic kidney response to Piscirickettsia salmonis infection. Physiol Genomics 2004, 20: 21–35. Cerca con Google

Roberge C, Páez DJ, Rossignol, O, Guderley H, Dodson J, Bernatchez, L. Genome-wide survey of the gene expression response to saprolegniasis in Atlantic salmon. Mol Immunol 2007, 44: 1374–1383. Cerca con Google

Rodriguez F, LaPatra S, Williams S, Famula T, May B. Genetic markers associated with resistance to infectious hematopoietic necrosis in rainbow trout and steelheads trout (Oncorhynchus mykiss) backcrosses. Aquaculture 2004, 241: 93–115. Cerca con Google

Romalde J. Photobacterium damselae subsp. piscicida : An integrated view of a bacterial fish pathogen. Int Microbiol 2002, 5: 3-9. Cerca con Google

Sarropoulou E, Nousdili D, Magoulas A, Kotoulas G. Linking the genomes of nonmodel teleosts through comparative genomics. Mar Biotechnol 2008, 10(3): 227-233. Cerca con Google

Sarropoulou E, Franch R, Louro B, Power DM, Bargelloni L, Magoulas A, Senger F, Tsalavouta M, Patarnello T, Galibert F, Kotoulas G, Geisler R. A gene-based radiation hybrid map of the gilthead sea bream Sparus aurata refines and exploits conserved synteny with Tetraodon nigroviridis. BMC Genomics 2007, 7:8:44. Cerca con Google

Sarropoulou E, Kotoulas G, Power DM, Geisler R. Gene expression profiling of gilthead sea bream during early development and detection of stress-related genes by the application of cDNA microarray technology. Physiol Genomics 2005, 23: 182-191. Cerca con Google

Schlötterer C, Tautz D. Slippage synthesis of simple sequence DNA. Nucleic Acids Research 1992, 20: 211-215. Cerca con Google

Senger F, Priat C, Hitte C, Sarropoulou E, Franch R, Geisler R, Bargelloni L, Power D, Galibert F. The first radiation hybrid map of a perch-like fish: the gilthead seabream (Sparus aurata L). Genomics 2006, 87: 793-800. Cerca con Google

Škugor S, Škugor A, Todorcević M, Torgersen J, Ruyter B, Krasnov A. Exposure to lipopolysaccharide induces immune genes in cultured preadipocytes of Atlantic salmon. Fish Shellfish Immunol 2010, 29(5): 817-824. Cerca con Google

Škugor S, Jørgensen SM, Gjerde B, Krasnov, A. Hepatic gene expression profiling reveals protective responses in Atlantic salmon vaccinated against furunculosis. BMC Genomics 2009, 10: 503. Cerca con Google

Škugor S, Glover KA, Nilsen F, Krasnov A. Local and systemic gene expression responses of Atlantic salmon (Salmo salar L.) to infection with the salmon louse (Lepeophtheirus salmonis). BMC Genomics 2008, 9: 498. Cerca con Google

Snieszko SF, Bullock GL, Hollis E, Boone JG. Pasteurella sp. from an epizootic of white perch (Roccus americanus) in Chesapeake Bay tidewater areas. Journal of Bacteriology 1964, 88: 1814-1815. Cerca con Google

Sonesson AK, Meuwissen T. Testing strategies for genomic selection in aquaculture breeding programs. Genetics selection evolution 2009, 41: 37. Cerca con Google

Stempin CC, Dulgerian LR, Garrido VV, Cerban FM. Arginase in parasitic infections: macrophage activation, immunosuppression, and intracellular signals. J Biomed Biotechnol 2010, 2010: 683485. Cerca con Google

Takeda H. Draft genome of the medaka fish: a comprehensive resource for medaka developmental genetics and vertebrate evolutionary biology. Dev Growth Differ 2008, 1: S157-66. Cerca con Google

Tave, D. Genetics for fish hatchery managers – 2nd edition. Van Norstrand Reinhold, New York 1993. Cerca con Google

Teh C, Parinov S, Korzh V. New ways to admire zebrafish: progress in functional genomics research methodology. Biotechniques 2005, 38: 897-906. Cerca con Google

Toranzo AE, Magariños B, Romaldo JL. A review of the main bacterial fish diseases in mariculture system. Aquaculture 2005, 246: 37-61. Cerca con Google

Toranzo AE, Barreiro S, Casal JF, Figueras A, Magariños B, Barja JL. Pasteurellosis in cultured gilthead seabream (Sparus aurata): first report in Spain. Aquaculture 1991, 99: 1-15. Cerca con Google

Tung MC, Tsai SS, Ho LF, Huang ST, Chen SC. An acute septicemic infection of Pasteurella organism in pond-cultured Formosa snake-head fish (Channa maculata Lacepede) in Taiwan. Fish Pathology 1985, 20: 143-148. Cerca con Google

Van Muiswinkel WB, Wiegertjes GF, Stet RJM, 1999. The influence of environmental and genetic factors on the disease resistance of fish. Aquaculture 1999, 172: 103–110. Cerca con Google

Vanya Ewart K, Williams J, Richards RC, Gallant JW, Melville K, Douglas SE. The early response of Atlantic salmon (Salmo salar) macrophages exposed in vitro to Aeromonas salmonicida cultured in broth and in fish. Dev Comp Immunol 2008, 32: 380–390. Cerca con Google

Waldbieser GC, Wolters WR. Application of polymorphic microsatellite loci in a channel catfish, Ictalurus punctatus, breeding program. Journal of the world aquaculture society 1999, 30: 256-262. Cerca con Google

Wang T, Secombes CJ. Rainbow trout suppressor of cytokine signalling (SOCS)-1, 2 and 3: Molecular identification, expression and modulation. Molecular Immunol 2008, 45(5): 1449-1457. Cerca con Google

Wang T, Li BY, Danielson PD, Shah PC, Rockwell S, Lechleider RJ, Martin J, Manganaro T, Donahoe PK. The immunophilin FKBP12 functions as a common inhibitor of the TGF beta family type I receptors. Cell 1996, 86(3): 435-444. Cerca con Google

Wynne JW, O’Sullivand MG, Stoned G, Cooka MT, Nowak BF, Lovell DR, Taylor RS, Elliott NG. Resistance to amoebic gill disease (AGD) is characterised by the transcriptional dysregulation of immune and cell cycle pathways. Developmental and Comparative Immunology 2008, 32: 1539–1560. Cerca con Google

Zappulli V, Patarnello T, Patarnello P, Frassineti F, Franch R, Manfrin A, Castagnaro M, Bargelloni L. Direct identification of Photobacterium damselae subspecies piscicida by PCR-RFLP analysis. Diseases of Aquatic Organisms 2005, 65(1): 53-61. Cerca con Google

Zhang Z, Schwartz S, Wagner L, Miller W. A greedy algorithm for aligning DNA sequences. J Comput Biol 2000; 7(1-2): 203-14. Cerca con Google

Zheng W, Sun L. Evaluation of housekeeping genes as references for quantitative real time RT-PCR analysis of gene expression in Japanese flounder (Paralichthys olivaceus). Fish & Shellfish Immunol 2010, doi:10.1016/j.fsi.2010.12.014. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record