Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Turetta, Alberto (2008) Investigation on thermal, mechanical and microstructural properties of quenchenable high strenght steels in hot stamping operations. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
Documento PDF
9Mb

Abstract (english)

Sheet metal working operations at elevated temperature have gained in the last years even more importance due to the possibility of producing parts characterized by high strength-to-mass ratio. In particular, the hot stamping of ultra high strength quenchenable steels is nowadays widely used in the automotive industry to produce body-in-white structural components with enhanced crash resistance and geometrical accuracy. The optimization of the process, where deformation takes place simultaneously with cooling, and of the final component performances requires the utilization of FE-based codes where the forming and quenching phases have to be represented by fully thermo-mechanical-metallurgical models. The accurate calibration of such models, in terms of material behaviour, tribology, heat transfer, phase transformation kinetics and formability, is therefore a strong requirement to gain reliable results from the numerical simulations and offer noticeable time and cost savings to product and process engineers.
The main target of this PhD thesis is the development of an innovative approach based on the design of integrated experimental procedures and modelling tools in order to accurately investigate and describe both the mechanical and microstructural material properties and the interface phenomena due to the thermal and mechanical events that occur during the industrial press hardening process.
To this aim, a new testing apparatus was developed to evaluate the influence of temperature and strain rate on the sheet metal elasto-plastic properties and to study the influence of applied stress and strain of the material phase transformation kinetics. Furthermore, an innovative experimental setup, based on the Nakazima concept, was designed and developed to evaluate sheet formability at elevated temperature by controlling the thermo-mechanical parameters of the test and reproducing the conditions that govern the microstructural evolution during press hardening. This equipment was utilized both to determine isothermal forming limit curves at high temperature and to perform a physical simulation of hot forming operations. Finally, a thermo-mechanical-metallurgical model was implemented in a commercial FE-code and accurately calibrated to perform fully coupled numerical simulations of the reference process.
The material investigated in this work is the Al-Si pre-coated quenchenable steel 22MnB5, well known with the commercial name of USIBOR 1500P’®, and the developed approach proves to be suitable to proper evaluate high strength steels behaviour in terms of mechanical, thermal and microstructural properties, and to precisely calibrate coupled numerical models when they are applied to this innovative manufacturing technology.

The work presented in this thesis has been carried out at DIMEG labs, University of Padova, Italy, from January 2005 to December 2007 under the supervision of Prof. Paolo F. Bariani.


Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Bariani, Paolo F.
Supervisor:Bruschi, Stefania
Ph.D. course:Ciclo 20 > Scuole per il 20simo ciclo > INGEGNERIA INDUSTRIALE > INGEGNERIA DELLA PRODUZIONE INDUSTRIALE
Data di deposito della tesi:31 January 2008
Anno di Pubblicazione:31 January 2008
Key Words:sheet metal forming, hot stamping, formability
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/16 Tecnologie e sistemi di lavorazione
Struttura di riferimento:Dipartimenti > pre 2012 - Dipartimento di Innovazione Meccanica e Gestionale
Codice ID:378
Depositato il:01 Oct 2008
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] M.Merklein and J. Lechler, "Determination of Influencing Parameters of the Hot Stamping Process," presented at Proceedings Asia Steel Conference 2006. Cerca con Google

[2] D.Lorenz and K. Roll, "Modelling and Analysis of Integrated Hot forming and quenching Processes," Sheet Metal 2005 Conf.,Proc. (2005), pp. 787-794, 2005. Cerca con Google

[3] International Iron and Steel Institute, UltraLight Steel Auto Body - Advanced Vehicle Concepts (ULSAB-AVC) Overview Report (2002). Cerca con Google

[4] J.Wilsius, P. Hein, and R. Kefferstein, "Status and future trends of hot stamping of USIBOR 1500 P," presented at Erlangen Workshop 2006. Cerca con Google

[5] P.Hein, "A Global Approach of the Finite Element Simulation of Hot Stamping," Sheet Metal 2005 Conf.,Proc. (2005), pp. 763-770, 2005. Cerca con Google

[6] D.Lorenz and K. Roll, "Simulation of Hot Stamping and Quenching of Boron alloyed Steel.," presented at 7th Int. ESAFORM Conf. on Mat. Forming, Trondheim, Norway, 2004. Cerca con Google

[7] P.F.Bariani, T. D. Negro, and S. Bruschi, "Testing and Modelling of Material Response to Deformation in Bulk Metal Forming," Annals of the CIRP Vol. 53/2/2004 573-598. Cerca con Google

[8] R.Neugebauer, T. Altan, M. Geiger, M. Kleiner, and A. Sterzing, "Sheet metal forming at elevated temperature," Annals of the CIRP, vol. 55/2/2006, pp. 793-8166. Cerca con Google

[9] "http://www.arcelor.com/." Vai! Cerca con Google

[10] M.Merklein, J. Lechler, and M. Geiger, "Determination of Thermal and Mechanical Material Properties for Hot Stamping Processes of Ultra High Strength Steels," presented at Proceedings of the 2007 SAE International World Conference. Cerca con Google

[11] L.G.Aranda, P. Ravier, and Y. Chastel, "Hot Stamping of Quenchable Steels: Material Data and process Simulations," IDDRG 2003 Conf., Proc. (2003), pp. 166-164, 2003. Cerca con Google

[12] P.Akerstrom, "Austenite decomposition during press hardening of a boron steel - Computer simulation test," Journal of Materials Processing Technology, vol. 174, pp. 399-406, 2006. Cerca con Google

[13] H. S. H. Kim, S. Kang, S. Park, "Thermal-Mechanical coupled simulation of the forming of hot press formed part," presented at Proceedings of the IDDRG 2006 Conference. Cerca con Google

[14] P.Akerstrom, G. Bergman, and M. Oldenburg, "Numerical implementation of a constitutive model for simulation of hot stamping," Modelling and Simulation in Materials Science and Engineering, vol. 15/2, pp. 105-119, 2007. Cerca con Google

[15] M.Coret and A. Combescure, "A mesomodel for the numerical simulation of the multiphasic behavior of materials under anisothermal loading (application to two low-carbon steels)," International Journal of Mechanical Sciences, vol. 44/9, pp. 1947-1963, 2002. Cerca con Google

[16] P.Akerstrom, B. Wikman, and M. Oldenburg, "Material parameter estimation for boron steel from simultaneous cooling and compression experiments," Modelling and Simulation in Materials Science and Engineering, vol. 13, pp. 1291-1308, 2005. Cerca con Google

[17] L.G.Aranda, P. Ravier, and Y. Chastel, "Experimental, material data and numerical model for hot stamping of quenchable steels," 6th ESAFORM Conference on Material Forming, 2003. Cerca con Google

[18] M.Merklein and L. Lechler, "Investigation of the thermo-mechanical properties of hot stamping steels," Journal of Materials Processing Technology, vol. 117 (2006), pp. 452-455. Cerca con Google

[19] L.Burkhardt and B. Oberpriller, "Sensitivity analysis of process and material parameters for the efficient simulation of hot forming," presented at Forming Technology Forum 2007, Zurich (Switzerland). Cerca con Google

[20] J.G.Lenard, Modeling hot deformation of steels: Springer-Verlag, 1989. Cerca con Google

[21] L.Anand, "Constitutive equations for the rate-dependent deformation of metals at elevated temperatures," Journal of engineering materials and technology, pp. 104/13, 1982. Cerca con Google

[22] C.S.Hartley and R. Srinivasan, "Constitutive equations for large plastic deformation of metals," Journal of engineering materials and technology, vol. 105, pp. 162-167, 1983. Cerca con Google

[23] J.C.Fisher and J. H. Hollomon, "Dislocation glide as an aid to precipitation at low temperatures," Acta metallurgica, vol. 3/6:608, 1955. Cerca con Google

[24] E.Voce, "A practical strain-hardening function," Acta metallurgica, vol. 51, pp. 219-226, 1948. Cerca con Google

[25] M.A.Meyers and K. K. Chawla, Mechanical metallurgy - Principles and applications: Prentice-Hall, 1984. Cerca con Google

[26] C.Aliaga, "Simulation numérique par éléments finis en 3D du comportment thermomécanique au couer du traitment thermique d'aciers: application à la trempe de pièces forgées ou coulées," in L'école nationale supérieure des mines de Paris, 2000. Cerca con Google

[27] M.C.Somani, L. P. Karjalainen, M. Eriksson, and M. Oldenburg, "Dimensional Changes and Microstructural Evolution in a B-bearing Steel in the Simulated Forming and Quenching Process," ISIL International, vol. 41, pp. 361-367, 2001. Cerca con Google

[28] S.H.Kang and Y. T. Im, "Three-dimensional thermal-elastic-plastic finite element modeling of quenching process of plain-carbon steel in couple with phase transformation," International Journal of Mechanical Sciences, vol. 49 (2007), pp. 423-439. Cerca con Google

[29] M.Merklein, J. Lechler, and M. Geiger, "Characterisation of the Flow Properties of the Quenchenable Ultra High Strength Steel 22MnB5," presented at Annals of the CIRP Vol. 55/1/2006. Cerca con Google

[30] W.Avrami, "Kinetics of Phase Change," Journal of chem Physics, vol. 7, pp. 1103-1112, 1939. Cerca con Google

[31] W.A.Johnson and R. F. Mehl, "Reaction kinetics in process of nuceation and growth," Trans. AIME, vol. 135, pp. 416-458, 1939. Cerca con Google

[32] E.Sheil, "Arch. Eisenhuttenwesen," vol. 12, 1935. Cerca con Google

[33] D. P. Koinstinem and R. E. Marburger, "A general equation prescribing the extend of the austenite-martensite transformation and temperature evolution during quenching of steels," Acta metallurgica, vol. 7, pp. 59-60, 1950. Cerca con Google

[34] B.A.Behrens, P. Olle, F. Schafer, and C. Schaffner, "Numerical simulation of microstructure evolution during the hot stamping process," presented at Proceedings of the IDDRG 2007 International Conference. Cerca con Google

[35] C.L.Magee, "Transformation kinetics, microplasticity and agening of martensite in Fe-31-Ni." Pittsburgh: Carnegie Institute of Technologie University, 1966. Cerca con Google

[36] G.W.Greenwoog and R.H.Johnson, "The deformation of metal under small stresses during phase transformations," Proc. Royal Society, vol. 283, pp. 403-422, 1965. Cerca con Google

[37] S.Petit-Grostabussiat, L. Taleb, and J. F. Jullien, "Experimental Results on Classical plasticity of steels subjected to structural transformation," Journal of Materials Processing Technology, vol. 20 (2004), pp. 1371-1386, 2003. Cerca con Google

[38] L.Taleb, N. Cavallo, and F. Waeckel, "Experimental analysis of transformation plasticity," International Journal of Plasticity, vol. 17, pp. 1-20, 2001. Cerca con Google

[39] E.Gautier, A. Simon, and G. Beck, "Plasticite de transformation durant le transformation perlitique d'un acier eutectoide," Acta metallurgica, vol. 35, pp. 1367-1375, 1987. Cerca con Google

[40] P.Akerstrom, "Modelling and Simulation of Hot Stamping," Lulea University of Technology, 2006. Cerca con Google

[41] Z.Malinowsky, J. G. Lenards, and M. E. Davies, "A Study of the Heat Transfer Coefficient as a Function of Temperature and Pressure," Journal of Materials Processing Technology, vol. 42, pp. 125-142, 1994. Cerca con Google

[42] P. R. Burte, Y. T. Im, T. Altan, and S. L. Semiation, "Measurement and Analysis of Heat Transfer and Friction during Hot Forging," J. of Eng. for Ind., vol. 112, pp. 332-339. Cerca con Google

[43] K.Lange, Handbook of Metal Forming: Mc Graw Hill. Cerca con Google

[44] C.V.Madhusudana, Thermal contact conductance. Berlin: Springer. Cerca con Google

[45] M.Croin, "MODELLING INTERACTIONS AMONG PRESS, TOOLS AND WORKPIECE IN HOT FORGING OPERATIONS," 2006. Cerca con Google

[46] M.Geiger, M. Merklein, and C. Hoff, "Basic Investigation on the Hot Stamping Steel 22MnB5," Sheet Metal 2005 Conference Proceedings (2005), pp. 795-802, 2005. Cerca con Google

[47] K.Forstner, S. Strobich, and B. Buchmayr, "Heat transfer during press hardening," presented at Proceedings of the IDDRG 2007 International Conference. Cerca con Google

[48] A.Tarantola, Inverse problem theory: Elsevier, 1987. Cerca con Google

[49] J.P.Norton, An introduction to Identification. London: Ed. Academy Press, 1986. Cerca con Google

[50] J.D.Coolins, G. C. Hart, T. K. Hassleman, and B. Kennedy, "Statistical identification of structures," AAIA Joutnal, vol. 12, pp. 185-190, 1974. Cerca con Google

[51] J. V. Beck and K. J. Arnold, Parameter estimation in Engineering and Science: John Wiley & Sons, 1986. Cerca con Google

[52] R.C.Mehta and T. Jayachandran, "Determination of Heat Transfer Coefficient using transient temperature response chart," Warme und Stoffubertrangung, vol. 26, pp. 1-5, 1990. Cerca con Google

[53] A.Badrinarayanan, A. Constantinescu, and N. Zabras, "Preform in metal forming," presented at Proceedings of the 1995 Numiform Conference (Balkema). Cerca con Google

[54] L.Fourment, T. Balan, and J. L. Chenot, "Shape optimal design in metal forming," presented at Proceeding of the 1995 Numiform Conference (Balkema). Cerca con Google

[55] D.S.Schnur and N. Zabras, "An inverse method for determining elastic material properties and a material interface," International Journal for Numerical Methods in Engineering, vol. 33, pp. 2039-2057, 1992. Cerca con Google

[56] C.Caillateaud and P. Pilvin, "Identification and inverse problem: a modular approach," presented at Winter annual meeting symposium on material parameter estimation for modern constructive equations, New Orleans, 1993. Cerca con Google

[57] D.M.Bates and D. G. Watts, Nonlinear regression Analysis and its Application, 1988. Cerca con Google

[58] P.E.Gill, W. Murray, and M. H. Wright, Pratical Optimization. London, 1981. Cerca con Google

[59] W.J.Minkowycz, E. M. Sparrow, and G. E. Schneider, Handbook of heat transfer, 1988. Cerca con Google

[60] D.A.Tortorelli and P. Michaleris, "Design sensiticity analysis: overview and review," Inverse problem in Engineering 1, pp. 71-105, 1991. Cerca con Google

[61] S.P.Keller, "Circular grid system: A valuable aid for evaluation sheet forming," Sheet Met. Ind., vol. 45, pp. 633-640, 1969. Cerca con Google

[62] G.M.Goodwin, "Application of strin analysis to sheet metal forming problems," Metall, Ital., vol. 60, pp. 767-771, 1968. Cerca con Google

[63] R.Arrieux, J. M. Chalons, J. M. Bedrin, and M. Bovin, "Computer aided method for the determination of the FLD at necking," Annals of the CIRP, vol. 33/1, pp. 171-174, 1984. Cerca con Google

[64] H.W.Swift, "Plastic instability under plane stress," J. Mech. Phys. Solids 1, pp. 1-18, 1952. Cerca con Google

[65] R.Hill, "On discontinuus plastic states with special reference to localized neking in thin sheets," J. Mech. Phys. Solids 1, pp. 19-30, 1952. Cerca con Google

[66] D.Banabic, H.-J. Bunge, K. Pohlandt, and A. E. Tekkaya, Formability of Metallic Materials: Berlin: Springer, 2000. Cerca con Google

[67] D.Banabic, "Anisotropy and formability of AA5182-0 aluminium alloy sheets," presented at Annals of CIRP, 53, pp. 219-222, 2004. Cerca con Google

[68] M.Geiger, G. V. d. Heyd, M. Merklein, and W. Hußnätter,, "Novel concept of Experimental Setup for Characterisation of Plastic Yielding of Sheet Metal at Elevated Temperatures," Advanced Materials Research, vol. 6-8, pp. 657-664, 2005. Cerca con Google

[69] Q.Q.Nie, D. Lee, and J. Matter, "The effect of strain rate sensitivity on history dependent forming limits of anisotropic sheet metals," Journal of Material Shaping Technology, vol. 9, pp. 233-240, 1991. Cerca con Google

[70] Q.Situ, M. Bruhis, and M. Jain, "Obtaining Formability Characteristics Of Automotive Materials Using On-line Strain Imaging System," presented at Proceedings of the 6th International NUMISHEET Conference (2005). Cerca con Google

[71] F.Barlat and A. B. D. Rocha, "Influence of danage on the plastic instability of sheet metals under complex strain paths," J. Mater. Sci., vol. 19, pp. 4133-4137, 1984. Cerca con Google

[72] V.Uthainsangsuk, U. Prahl, S. Munstermann, and W. Bleck, "Experimental and numerical failure criterion for formability prediction in sheet metal forming," Computational Material Science, 2007. Cerca con Google

[73] W.Thomas, T. Oenoki, and T. Altan, "Process simulation in stamping - recent applications for product and process design," International Journal of Materials Processing Technology, vol. 98 (2000), pp. 232-243. Cerca con Google

[74] M.Tolazzi and M. Merklein, "Inlfuence of Pre-forming on the Forming Limit Diagram of Aluminum and Steel Sheets," presented at Proceedings of the 2007 SHEMET Conference. Cerca con Google

[75] M.Merklein and S. Beccari, "Influence of predeformation on the formability of aluminium alloys," presented at Proceeding of the 8th International Confernce on Technology of Plasticity, 2005, Verona (Italy). Cerca con Google

[76] "Standard ISO 12004-2:1997, TC 164/SC 2." Cerca con Google

[77] M.Geiger and M. Merklein, "Determination of forming limit diagrams - a new analysis method for characterization of materials´ formability," Annals of the CIRP 52/1, 213, 2003. Cerca con Google

[78] H.Liebertz, A. Duwel, R. Illig, W. Hotz, S. Keller, A. Koehler, A. Kroeff, M. Merklein, J. Rauer, L. Staubwasser, G. Steinbeck, and H. Vegter, "Guideline for the determination of forming linit curves," presented at Proceedings of the IDDRG 2004 Conference. Cerca con Google

[79] P.Hora, M. Merklein, L. Tong, and J. Lechler, "Numerical and experimental evaluation of thermal dependent FLC (FLC-T)," presented at Proceedings of the IDDRG 2007 International Conference. Cerca con Google

[80] Y.Dahan, Y. Chastel, P. Duroux, P. Hein, E. Massoni, and J. Wilsius, "Formability investigations fot the hot stamping process," presented at Proceedings of the IDDRG 2006 International Conference. Cerca con Google

[81] Y.Dahan, Y. Chastel, P. Duroux, J. Wlsius, P. Hein, and E. Massoni, "Procedure for the experimental determination of a forming limit curve for USIBOR 1500 P," presented at Proceedings of the IDDRG 2007 International Conference. Cerca con Google

[82] "N.N.; ASTM 03.01." Cerca con Google

[83] S.Petit-Grostabussiat, L. Taleb, and J. F. Jullien, "Experimental Results on Classical plasticity of steels subjected to structural transformation," Journal of Materials Processing Technology, vol. 20 (2004), pp. 1371-1386, 2004. Cerca con Google

[84] A.S.Judlin-Denis, "Modèlisation des interactions contrainte-transformation de phase et calcul par èlèments finis de la gènère des contraintes internes au cours de la tempre des aciers," in Institut National Polytechnique de Lorraine, France, Cerca con Google

2004. Cerca con Google

[85] M.Coret, S. Calloch, and A. Combescure, "Experimental study of the phase transformation plasticity of 16MND5 low carbon steel induced by proportional and nonproportional biaxial loading paths," European Journal of Mechanics A\Solid, vol. 23 (2004), pp. 823-842, 2002. Cerca con Google

[86] E.Lamm, "Advanced Steel Solutions for Automotive Lightweighting," Windsor Workshop June 5, 2005. Cerca con Google

[87] S.Kobayashi, S. I. Oh, and T. Altan, Metal Forming and Finite Element method, 1989. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record