Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Viero, Alessia (2011) The Cinque Torri Group (The Dolomites): analysis of past and present-day gravitational phenomena by laser scanning and numerical modeling. [Tesi di dottorato]

Full text disponibile come:

Documento PDF (Tesi completa)

Abstract (inglese)

Many sites in the Dolomites are endangered by mountain slope instabilities, whose effects can lead to exposure of both human life and infrastructures to landslide hazard.
In cases of reactivated or active landslides, the knowledge of the past gravitational phenomena can allow an indirect analysis of the present slope setting, therefore leading to an explanation of the triggering factors of the instability. In this cognitive process, the first step is the characterization of geometry and rock material properties of the studied unstable slope.
Among the wide variety of gravitational phenomena, the Deep Seated Gravitational Slope Deformations (DSGSDs) still represent an open issue in terms of triggering factors and slope behavior.
This study concerns the analysis of the dynamics that govern an unstable rock group named Cinque Torri, placed in the Dolomites (Eastern Alps, Italy). The rock group is an articulated system of carbonatic monoliths located in a very important touristic area, therefore characterized by a significant risk. The involved instability phenomena represent an example of lateral spreading developed over a larger DSGSD. After the recent fall of a monolith of more than 10 000 m3, a scientific study began to monitor the more unstable sectors and to characterize the past and present movements as a fundamental tool for predictions of future movements and hazard assessment.
The present research outlines how the geomorphology of the area is strongly influenced by the tectonic structures that resulted from the Alpine orogeny and the geotechnical contrast between lithologies. This DSGSD is mainly influenced by the contact of lithologies with different rheological attitudes. The setting is represented by a plastic bed mainly made up by mudstone layers, and above a dolomite cliff roof, which is extremely tectonized and separated in various rocky towers of different dimensions.
Attempting to achieve greater insight in the ongoing lateral spreading, a method aimed at producing a quantitative analysis of occurred rotations has been developed, applied and validated.
The introduction of numerical modeling as last stage of the research aims to investigate the present- day slope instability mechanisms, and indirectly to support the outcomes of the analyzed rotations. In particular, the combined use of the distinct-element and the finite-element codes allows a modeling of the stress-strain relations within the slope
and the control exerted by both discrete structures and rock-mass strength. Moreover, these codes provide a powerful method to assess the influence of the controlling factors on the overall instability.
This research project is articulated in following steps:
1. Recognition and characterization of the main discontinuity systems through the use of laser scanner datasets (terrestrial, TLS, and aerial laser scanner, ALS), and their validation through traditional field measurements.
2. Rock properties classification through field surveys and laboratory analyses.
3. Geophysical investigations (Electrical Resistivity Tomography and passive seismic reliefs) aimed to discern the buried structural setting of the slope.
4. Use of the experimental software packages Coltop-3D (Jaboyedoff, 2007) and PCM (Vosselman, 2004) on TLS/ALS data, to discriminate the tectonic influence on local
rock instability phenomena and provide a complete geometrical characterization of rock discontinuities respectively.
5. Structural correlation among the spreaded rock monoliths.
6. Estimation of the rotational components of the lateral spreading, in order to predict future instabilities and to interprete the buried features of the DSGSD.
7. Numerical modeling of the DSGSD based on a distinct element code (UDEC, 4.1).
and a finite element code (Plaxis, 8.5). In order to create a conceptual model of the present and future instabilities, a comparison of the results of the modeling and the interpretation of the rotational component analysis is achieved.
In particular, the most significant achievement of this thesis concerns the role of rock discontinuities for indirect analysis of the initial slope conditions by providing a novel methodology for rotational movements computation based on laser scanner data
The input data frame is based on the accurate geometrical survey of the Cinque Torri area obtained by laser scanning. In June 2008, the Cinque Torri rock group was observed by using a long-range TLS and an ALS. The survey was performed covering a surface of about 22 km2. In this way, a multi-scale model of the unstable rocky group and its surroundings is derived.
The results of the proposed methodology allows a primary identification of the tectonic fabric on the spread rock sectors in terms of representativeness of joint families inside the group with respect to a reference frame fixed on the external stable areas. Both bedding planes and representative joint-sets are used to derive the Euler angles that describe the rotational components of the lateral spreading. On the basis of these results, a new interpretation of the phenomena is achieved. The variations from the regional trend provide a kinematic description of the past gravitational movement of the Cinque Torri group, which can be interpreted as initially controlled by the inherited tectonic features and subsequently differentiated into sectors. After such a differentiation, the movements are most likely induced by deep seated ground deformation and local topographic anomalies related to the lateral spreading development. The geophysical data allow a confirmation and a completion of these interpretations. In particular, these data show that the tectonic action in the Cinque Torri area produced substantial changes in the strata bedding orientation which may have favored tilts and rotations of the uppermost brittle carbonates. At a final stage, in order to decipher slope behavior, a reliable slope model is derived from accurate geometrical surveys of the outcropped rocks, analysis of compositional, mechanical and physical properties of the involved lithotypes. The slope modeling shows that three major factors control the behavior of the Cinque Torri DSGSD: (i) the monolith weight; (ii) the stratigraphical heterogeneity, and (iii) the inclination of strata. Twodimensional finite difference and distinct-element modeling indicate small
displacements of the overall DSGSD, confirming the typical velocities of this type oflandslide. These computations provide a model able to describe the geometries and gravitational mechanisms acting within the investigated slope.
The results of the field observations, rotational components analysis and numerical models suggest that the Cinque Torri DSGSD involves a complex mechanism with a rotational component of the movement, and a probable differentiation of the sliding surface of the DSGSD into segments with different amounts of rotation. In addition, the plastic deformation within the cohesive layers induces tilts, rotations and displacements of the topmost monoliths.The results achieved during this research provide a comprehensive scheme of geometries and processes acting within the Cinque Torri slope. The obtained information can be used for hazard assessment purposes.

Abstract (italiano)

IL territorio dolomitico è spesso interessato da fenomeni franosi di diversa entità che possono coinvolgere comunità e infrastrutture. Da ciò deriva la necessità di valutare costantemente le condizioni di instabilità, dunque di rischio, delle aree montane, al fine di poter predisporre adeguate misure di salvaguardia. Come dimostrato nella presente tesi di dottorato, l’analisi dei processi gravitativi avvenuti nel passato può essere importante per la comprensione dei fenomeni attuali o recenti, sia in termini di processo, sia in termini di volumi coinvolti. In genere, i fenomeni gravitativi possono essere decifrati attraverso il riconoscimento di un criterio geometrico che relazioni le porzioni di pendio mobilitate dal processo gravitativo, e che perciò fornisca indicazioni sull’assetto del pendio antecedente l’instabilità. Al fine di una corretta analisi delle dinamiche di versante è perciò fondamentale definire inizialmente geometrie e proprietà delle litologie che caratterizzano il pendio instabile.
Tra i molteplici fenomeni gravitativi esistenti in natura, le Deformazioni Gravitative Profonde di Versante (DGPV) rappresentano tutt’oggi un argomento di ampia discussione.
La presente tesi di dottorato si occupa dell’analisi dei fenomeni instabilità nell’area turistica del gruppo Cinque Torri (Dolomiti bellunesi, Alpi orientali, Italia). Un'ipotesi avvalorata dai precedenti studi vede il pendio su cui poggia il gruppo roccioso coinvolto da un processo di DGPV ampio, la cui espressione superficiale è rappresentata dall’espandimento laterale dei torrioni dolomitici a monte. Il recente crollo della Torre Trephor, uno dei monoliti carbonatici che costituiscono il gruppo, avvenuto nel 2004, ha dato inizio ad un complesso studio scientifico concernente il monitoraggio dei settori più instabili e la caratterizzazione dei fenomeni d’instabilità attuali e passati come strumento di predizione e valutazione della pericolosità dell’area.
Le attività di ricerca si inseriscono in questo quadro come strumento di analisi approfondita delle dinamiche passate e in atto dell’espandimento laterale delle Cinque Torri. I processi gravitativi, così come la geomorfologia dell’area esaminata, sono strettamente legati all’assetto tettonico locale e alle caratteristiche meccaniche delle litologie ivi presenti. Difatti la DGPV dell’area Cinque Torri trova origine dal contrasto di competenza fra litologie a comportamento fragile (livelli carbonatici) e litologie a comportamento duttile (livelli marnosi).
Il punto chiave della ricerca vede lo sviluppo di una nuova metodologia di analisi basata sulla trattazione di dati geometrici derivati da acquisizioni laser scanner.
Nella fase finale di ricerca, l’introduzione di modelli numerici promuove un’analisi delle dinamiche in atto nel pendio offrendo uno strumento di validazione delle interpretazioni ottenute dall’analisi dei dati geometrici. Inoltre, l’approccio numerico permette la valutazione del grado di influenza di alcuni fattori predisponenti la DGPV in esame.
Le fasi del progetto di ricerca volte alla caratterizzazione di forme e processi nell’area in esame, possono essere così riassunte:
1. Identificazione dei principali sistemi di discontinuità degli affioramenti rocciosi attraverso l’uso di dati laser scanner (terrestre e aereo) e successiva validazione attraverso rilievi tradizionali di campagna;
2. Classificazione delle proprietà delle litologie coinvolte ottenuta da rilievi di campagna e prove di laboratorio;
3. Indagini geofisiche (tomografia elettrica e rilievi di sismica passiva) per l’identificazione indiretta dell’assetto strutturale del sottosuolo.
4. Utilizzo del pacchetto software sperimentale Coltop-3D (Jaboyedoff, 2007) per la caratterizzazione delle discontinuità e distinzione tra discontinuità tettoniche e gravitative e, inoltre, introduzione del software sperimentale PCM (Vosselman, 2004) per la caratterizzazione geometrica delle principali famiglie di discontinuità come criterio di confronto con il dato di campagna;
5. Correlazione strutturale tra monoliti rocciosi;
6. Calcolo delle componenti rotazionali dell’espandimento laterale in atto, allo scopo di predire future instabilità e di interpretare le strutture sepolte;
7. Modellazione numerica della DGPV, realizzata attraverso codici di calcolo agli elementi disstinti (UDEC, 4.1) e agli elementi finiti (Plaxis, 8.5). Paragonando i risultati ottenuti dalla modellazione numerica e le interpretazioni derivate dall’analisi delle componenti rotazionali si è potuto così ottenere un modello concettuale delle instabilità attuali e future.
In particolare, il risultato più significativo di questa tesi riguarda l’utilizzo dei rapporti geometrici esistenti fra le discontinuità tettoniche per l’analisi indiretta dei movimenti gravitativi. Infatti, attraverso l’analisi del dato laser scanner sono state ricostruite le componenti rotazionali dei movimenti che hanno determinato l’attuale assetto del gruppo Cinque Torri. Alla base di questa innovativa trattazione c’è il rilievo geometrico ad alta risoluzione, ottenuto attraverso l’impiego di tecniche laser scanner. Nel giugno 2008 infatti, la geometria del gruppo Cinque Torri è stata acquisita totalmente grazie un laser scanner terrestre (LST) a lunga portata ed inoltre un’acquisizione laser da aereo ha permesso di completare l’informazione geometrica sulle aree circostanti il gruppo roccioso. La combinazione dei due tipi di dato ha garantito la creazione di un modello geometrico multi-scala dell’area, con particolare attenzione alla rappresentazione di superfici planari sia orizzontali, sia verticali. Grazie a questo metodo sono state identificate le famiglie di discontinuità esistenti in ciascun monolite, successivamente correlate con dei set di riferimento estratti da affioramenti rocciosi esterni alla DGPV. Da tali correlazioni sono state poi dedotte le componenti angolari di spostamento dei set individuati rispetto a quelli di riferimento, fornendo le basi per nuova interpretazione dei fenomeni gravitativi in atto. Dai risultati della ricerca si evince che le dinamiche del pendio sono inizialmente controllate dalle principali direttrici tettoniche, che di fatto hanno frammentato il gruppo roccioso secondo chiare leggi geometriche. In una fase successiva la suddivisione del gruppo e l'allontanamento dei monoliti sono indotti dalla DGPV e da anomalie locali topografiche (legate con buona probabilità alla sviluppo dell’espandimento laterale).
Questa interpretazione ha trovato riscontro nei risultati delle indagini geofisiche condotte nell’area in studio. Tali indagini hanno evidenziato il quadro tettonico del pendio sottostante il gruppo Cinque Torri, mettendo in luce dislocazioni metriche verticali subite dalla stratigrafia. E' ragionevole ipotizzare che questi gradini strutturali influenzino in parte le rotazioni e i basculamenti in atto nel gruppo Cinque Torri.
L’ultima parte della tesi è dedicata alla modellazione numerica del pendio, realizzata attraverso l’uso dell’accurato modello geometrico fornito dalle acquisizioni laser scanner e dai risultati delle prove di laboratorio e di campagna attuate per la caratterizzazione delle litologie coinvolte. La modellazione numerica ha evidenziato che i fattori che maggiormente influenzano l’instabilità del pendio in studio risiedono nell’azione della forza peso agente sul pendio ad opera dei monoliti, nell’eterogeneità stratigrafica e nell’inclinazione degli strati. Inoltre, i risultati di tali modelli numerici confermano le interpretazioni dedotte dallo studio delle componenti rotazionali sulla geometria della DGPV.
In conclusione la tesi proposta fornisce un modello interpretativo dei fenomeni gravitativi dell’area Cinque Torri, che coinvolgono deformazioni gravitative profonde con componente pseudo-circolare e significative deformazioni plastiche all’interno degli strati marnosi. Queste ultime inducono basculamenti, rotazioni e traslazioni nelle porzioni sommitali del pendio, in altre parole, l’espandimento laterale.
L’insieme dei risultati così raggiunto fornisce un quadro nuovo per l’identificazione dei controlli strutturali e la comprensione dei processi agenti all’interno del pendio Cinque Torri, da cui un valido strumento per la valutazione e mitigazione del rischio.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Correlatore:PRETO, NEREO
Dottorato (corsi e scuole):Ciclo 23 > Scuole per il 23simo ciclo > SCIENZE DELLA TERRA
Data di deposito della tesi:NON SPECIFICATO
Anno di Pubblicazione:31 Gennaio 2011
Parole chiave (italiano / inglese):Cinque Torri; Lateral spreading; Deep-seated Gravitational Slope Deformations; Rock Discontinuities; Rotation Angles; Laser Scanner; Applied Geophysics; Numerical Modeling.
Settori scientifico-disciplinari MIUR:Area 04 - Scienze della terra > GEO/05 Geologia applicata
Struttura di riferimento:Dipartimenti > Dipartimento di Geoscienze
Codice ID:3834
Depositato il:21 Lug 2011 11:38
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

References Cerca con Google

Abdullah, W.S., Al-Zou’bi, M.S., Alshhibli, K.A., 1999. Influence of pore water chemistry on the swelling behavior of compacted clays. Applied Clay Science 15, 447-462. Cerca con Google

Agliardi, F., Crosta, G., Zanchi, A., 2001. Structural constraints on deep-seated slope deformation kinematics. Engineering Geology 59, 83–102. Cerca con Google

Agliardi, F., Crosta, G.B., Zanchi, A., Ravazzi, C., 2009. Onset and timing of deep-seatedgravitational slope deformations in the eastern Alps, Italy. Geomorphology 103, 113–129. Cerca con Google

Amaral, P.M., Rosa, L.G., Fernandes, J.C., 1999. Determination of Schmidt rebound hardness consistency in granite. Int. J. Rock Mech. Min. Sci. 36, 833– 837. Cerca con Google

Ambrosi, C., Crosta, G.B., 2006. Large sackung along major tectonic features in the Central Italian Alps. Engineering Geology 83, 183–200. Cerca con Google

ARPAV, 2010. Agenzia Regionale per la Prevenzione e Protezione Ambientale del Veneto. Rainfall data recordings at the Gilardon- Cortina d’Ampezzo, Faloria, Passo Falzarego weather stations for the period January 2000-2010. Private data transmission. Cerca con Google

Assereto, R., Brusca, C., Gaetani, M., Jadoul, F., 1977. Le mineralizzazioni Pb-Zn nel Triassico delle Dolomiti. Quadro geologico ed interporetazione genetica. L’Ind. Miner., 28, 367-402. (in italian) Cerca con Google

ASTM D2845-05, Standard test method for laboratory determination of pulse velocities and ultrasonic elastic constants of rock, American Society for Testing Materials, 2005. Cerca con Google

Bachmann, D., Bouissou, S., Chemenda, A., 2004. Influence of weathering and preexisting large scale fractures on gravitational slope failure: insights from 3-D physical modelling. Natural Hazards and Earth System Sciences 4, 711–717. Cerca con Google

Badger, T.C., 2002. Fracturing within anticlines and its kinematic control on slope stability. Environmental and Engineering Geoscience VIII, 19–33. Cerca con Google

Ballantyne, C.K., 2002. Paraglacial geomorphology. Quaternary Science Reviews 21, 1935–2017. Cerca con Google

Beck, A.C., 1968. Gravity faulting as a mechanism of topographic adjustment. New Zealand Journal of Geology and Geophysics 11, 191–199. Cerca con Google

Bentley, J.L., 1975. Multidimensional binary search trees used for associative searching. Communications of the ACM, 18(9): pp. 509-517, September 1975. Cerca con Google

Bentley, L.R., Gharibi, M., 2004. Two- and three-dimensional electrical resistivity imaging at a heterogeneous remediation site. Geophysics 69, 674–680. Cerca con Google

Bergevin, R., Souci, M., Gagnon, H., Laurendeau, D., 1996. Towards a general multi-view registration technique. IEEE Transactions on Pattern Analysis and Machine Intelligence 18, 540–547. Cerca con Google

Bieniawski, Z.T., 1989. Engineering Rock Mass Classifications: A complete Manual for Engineers and Geologists in Mining Civil and Petroleum Engineering. John Wiley, New York, 272 pp. Cerca con Google

Bober, L., 1984. Landslide areas in the Polish Flysch Carpathians and their connection with the geological structure of the region. Biuletyn Instytutu Geologicznego 340, 115–158 (in Polish with English summary).Boehler, W., Heinz, G., Marbs, A., 2001. The potential of non-contact close range laser scanners for cultural heritage recording. In Proceedings of CIPA 2001 International Symphosium, Potsdam, D, 18-21 September 2001. Available online at: (accessed: 12.12.2010). Vai! Cerca con Google

Bosellini, A., 1967. La tematica deposizionale della Dolomia Principale (Dolomiti e Prealpi Venete). Boll. Soc. Geol. It., 86, 133-169. (in italian) Cerca con Google

Bovis, M.J., 1982. Uphill-facing (antislope) scarps in the Coast Mountains, southwest British Columbia. Geological Society of America Bulletin 93, 804–812. Cerca con Google

Brady, B.H.G., Brown, E.T., 1985. Rock Mechanics for Underground Mining. George Allen & Unwin, London. Cerca con Google

Breda, A., Massari,. F., Meneguolo, R., Preto, N., 2006. An alluvial plain-sabkah-lagoon system in the Upper Triassic of the Dolomites, northern Italy. EGU General Assembly 2006, Wien. Cerca con Google

Brideau, M., A., Stead, D., Couture, R., 2006. Structural and engineering geology of the East Gate Landslide, Purcell Mountains, British Columbia, Canada. Engineering geology 84, 183-206. Cerca con Google

Brideau, M.-A., Yan, M., Stead, D., 2009. The role of tectonic damage and brittle rock fracture in the development of large rock slope failures. Geomorphology 103, 30–49. Cerca con Google

Casagrande, A., 1948. Classification and identification of soils. Trans. Am. Soc. Civ. Eng. 113, 901-930. Cerca con Google

Castellarin, A., Cantelli, L., Fesce, A., Mercier, J., Picotti, V., Pini, G., Prosser, G., Selli, L., 1992. Alpine compressional tectonics in the Southern Alps. Relationships with the N-Apennines. Annales Tectonicae 6, 1, 62-94. Cerca con Google

Castellaro, S., Imposa, S., Barone, F., Chiavetta, F., Gresta, S., Mulargia, F., 2008. Georadar and passive seismic survey in the Roman Amphitheatre of Catania (Sicily). Journal of Cultural Heritage 9, 357-366. Cerca con Google

Castellaro, S., Mulargia, F., 2009. Vs30 estimates using constrained H/V Measurements. Bull. Seism. Soc. Am, 99 (2). Cerca con Google

Chang, K. T., Wan, S., Lei, T. C., 2010. Development of a spatial decision support system for monitoring earthquake-induced landslides based on aerial photographs and the finite element method. International Journal of Applied Earth Observation and Geoinformation (in press). Cerca con Google

Chemenda, A.I., Bois, Bouissou, T.S., Tric, E., 2009. Numerical modelling of the gravity-induced destabilization of a slope: The example of the La Clapière landslide, southern France. Geomorphology 109 ,86-93. Cerca con Google

Clayton C. R. I., Matthews M.C., Simons N.E., (1995). Site Investigation. Second Edition. Blackwell Science, Oxford. 584 pp. Cerca con Google

Constable S.C., Parker R.L. and Constable C.G.; 1987: Occam’s inversion: a practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics 52, 289–300. Cerca con Google

Conte, E., Silvestri, F., Troncone, A., 2010. Stability analysis of slopes in soils with strain-softening behaviour. Computers and Geotechnics 37, 710-722. Cerca con Google

Cruden, D.M., Varnes, D.J., 1996. Landslide types and processes. In: Turner, A.K., Schuster, R.L. (Eds.), Landslides, Investigation and Mitigation, Transportation Research Board, Special Report 247. National Academy Press, Washington D.C., pp. 36-75. Cerca con Google

Dahlin, T., 1996. 2-D resistivity surveying for environmental and engineering applications. First break 14, 275-283. Cerca con Google

Dahlin, T., Bernstone, C., Loke, M.H., 2002. A 3-D resistivity investigation of a contaminated site at Lernacken, Sweden. Geophysics 67, 1692–1700. Cerca con Google

Daily, W., Owen, E., 1991. Cross-borehole resistivity tomography. Geophysics 56, 1228-1235. Cerca con Google

Dawson, E.M., Roth, W.H., Drescher, A., 1999. Slope stability analysis by strength reduction. Geotechnique 49, 835-840. Cerca con Google

Deere, D.U., Miller, R.P., 1966. Engineering classification and index properties for intact rock. Tech. Report. Air Force Weapons Lab., New Mexico, No. AFWL-TR-65-116. Cerca con Google

Demanet, D., Renardy, F., Vanneste, K., Jongmans, D., Camelbeeck, T., Megrahoui,M., 2001. The use of geophysical prospecting for imaging active faults. In: the Roer Graben, Belgium. Geophysics 66, 78–89. Cerca con Google

Doglioni, C., 1992. Relationships between Mesozoic extensional tectonics, stratigraphy and Alpine inversion in the Southern Alps. Eclogae Geol. It., 8, 35-36. Cerca con Google

Dramis, F., Sorriso-Valvo, M., 1994. Deep-seated gravitational slope deformations, related landslides and tectonics. Engineering Geology 38, 231–243. Cerca con Google

Feng, Q., Sjögren, P., Stephansson, O. and Jing, L. 2001. Measuring fracture orientation at exposed rock faces by using a non-reflector total station. Engineering Geology 59, 133-146. Cerca con Google

Feng, Q.H., Röshoff, K., 2004. In-situ mapping and documentation of rock faces using a full-coverage 3D laser scanner technique. International Journal of Rock Mechanics and Mining Sciences 41 (3), 139–144. Cerca con Google

Fisher, A., 1964. The Lofer cyclothems of the Alpine Triassic. Symposium of cyclic sedimentation, D. Merriam (ed.), Bull., 169, 107-150, Geol. Surv of Kansas. Cerca con Google

Forcella, F., Orombelli, G., 1984. Holocene slope deformations in Valfurva, Central Alps, Italy. Geografia Fisica e Dinamica Quaternaria 7, 41–48. Cerca con Google

Franceschi, M., Teza, G., Preto, N., Pesci, A., Galgaro, A., Girardi, S., 2009. Discrimination between marls and limestones using intensity data from terrestrial laser scanner. ISPRS Journal of Photogrammetry and Remote Sensing 64, 522–528. Cerca con Google

Fröhlich, C. and Mettenleiter, M. 2004. Terrestrial Laser Scanning – New Perspectives in 3-D Surveying. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol XXXVI – Part 8/W2, October 2004. Cerca con Google

Fuller, J., 2009. SpinCalc function at MATLAB central. Available online at: http://www. (accessed on 31.05.2010). Vai! Cerca con Google

Garlanger, J.E., 1972. The consolidation of soils exhibiting creep under constant effective stress. Geotechnique 22, 71-78. Cerca con Google

Georient, 2010. Structural Geology — Mapping/GIS Software. Holcombe Coughlin Oliver. Available online at: (accessed on 31.05.2010). Vai! Cerca con Google

Gill, D.E., Corthesy, R., Leite, M. H., 2005. Determining the minimal number of specimens for laboratory testing of rock properties. Engineering geology, 29-51. Cerca con Google

Goodman. R.E., 1989. Introduction to rock mechanics. Second edition. New York etc.: Wiley & Sons, 1989. - 562 p. Cerca con Google

Gratchev, I.B., Sassa, K., Osipov, I. V., Sokolov, V.N., 2006. The liquefaction of clayey soils under cyclic loading. Engineering Geology 86, 70-84. Cerca con Google

Greaves, T. 2004. Inside Laser Scanners. Position. October/November 2004. South Pacific Science Press International, Alexandria, N.S.W, Australia. Issue 3:pp 50-52. Cerca con Google

Gunther, T., Rucker, C., Spitzer, K., 2006. Three-dimensional modelling and inversion of dc resistivity data incorporating topography - II. Inversion. Geophysical Journal International 166, 506–517. Cerca con Google

Guzzetti, F., Cardinali, M., Reichenbach, P., 1996. The influence of structural setting and lithology on landslide type and pattern. Environmental and Engineering Geosciences Cerca con Google

2, 531–555. Cerca con Google

Hassan, M., Burdet, O., Favre, R., 1995. Ultrasonic measurements and static load tests in bridge evaluation. NDT&E International 28 (6), 331–337. Cerca con Google

Hoek, E. and Brown, E.T. ,1980a. Underground excavations in rock. London, Inst. Min. Metall. Cerca con Google

Hoek, E. and Brown, E.T. 1980b. Empirical strength criterion for rock masses. J. Geotech Cerca con Google

Engng. Div., ASCE, 106 (GT 9), 1013-1035. Cerca con Google

Hoek, E., Kaiser, P.K., Bawden, W.F., 1995. Support f Underground Excavations in Hard Rock. Balkema, Rotterdam, 215 pp. Cerca con Google

Hoek, E., Carranza-Torres, C.T., Corkum, B., 2002.Hoek-Brown failure criterion- 2002 edition. In: Hammah, et al. (Ed.), Proceedings of the Fifth North America Rock Mechanics Symposium (NARMS-TAC). Toronto, 7-10 July 2002. University of Toronto Press, pp. 267-273, vol.1. Cerca con Google

Hough, P.V.C., 1962. Method and means for recognizing complex patterns. U.S. Patent 3069654. Cerca con Google

Hurlimann, M., Ledesma, A., Corominas, J., Prat, P. C., 2006. The deep-seated slope deformation at Encampadana, Andorra: Representation of morphologic features by numerical modelling. Engineering Geology 83, 343-357. Cerca con Google

Innovmetric, 2010. PolyWorks software package technical data. (accessed on 31.11.2010). Vai! Cerca con Google

ISRM, 1978a. Barton, N., Rengers, N., et al.: Suggested Methods For the Quantitative Description of Discontinuities, International Society for Rock Mechanics, Int. J. Rock Mech. Sci. & Geomech. Abstr., Vol. 17, pp 69-76, 1978. Cerca con Google

ISRM, 1978b. Suggested methods for the quantitative description of discontinuities in rock masses. Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 15, pp. 319-368. 243 Cerca con Google

ISRM, 1981a. Rock characterization, testing and monitoring, ISRM suggested methods. Ed. E. T. Brown. Pub. Pergamon Press, Oxford. 211 pp. Cerca con Google

ISRM, 1981b. Suggested Methods, Suggested method for determining sound velocity, in: E.T. Brown (Ed.), ISRM Suggested Methods, Pergamon Press, Oxford, 107–110. Cerca con Google

ITASCA Cons. Group INC., 2004. UDEC code-vers. 4.1, Minneapolis-Minnesota, 2004. Cerca con Google

Jaboyedoff, M., Baillifard, F., Couture, R., Locat, J., and Locat, P., 2004. New insight of geomorphology and landslide prone area detection using DEM, in: Landslides: Evaluation and Stabilization, edited by: Lacerda, W. A., Ehrlich, M., Fontoura, A. B., and Saya ̃o, A., Taylor & Francis, London, 191–198. Cerca con Google

Jaboyedoff M., Metzger R., Oppikofer T., Couture R., Derron M.-H., Locat J. Turmel D., 2007. New insight techniques to analyze rock-slope relief using DEM and 3D-imaging cloud points: COLTOP-3D software. In Eberhardt, E., Stead, D and Morrison T. (Eds.): Rock mechanics: Meeting Society’s Challenges and demands (Vol. 1), Taylor & Francis. pp. 61-68. Cerca con Google

Jaboyedoff, M., Oppikofer, T., Minoia, R., Locat, J., Turmel, D., 2008. Terrestrial LIDAR investigation of the 2004 rockslide along Petit Champlain Street, Québec City (Québec, Canada). Proceedings: 4th Canadian Conference on Geohazards, 20–24 May, Québec, Canada. Cerca con Google

Jaboyedoff, M., Couture, R., Locat, P., 2009. Structural analysis of Turtle Mountain (Alberta) using digital elevation model: toward a progressive failure. Geomorphology Cerca con Google

103, 5–16. Cerca con Google

Jackson, J. E. 1991. A User's Guide to Principal Components, John Wiley and Sons, Inc., p. 592. Cerca con Google

Kaya, A., 2009. Relating equal smectite content and basal spacing to the residual friction angle of soils. Engineering Geology 108, 252-258. Cerca con Google

Kellogg, K.S., 2001. Tectonic controls on a large landslide complex: Williams Fork Mountains near Dillon, Colorado. Geomorphology 41, 355–368. Cerca con Google

Kinakin, D. and Stead, D., 2005. Analysis of the distributions of stress in natural ridge forms: implications for the deformation mechanisms of rock slopes and the formation of sackung. Geomorphology 65, 85-100. Cerca con Google

Kleczkowski, A., 1955. Osuwiska i zjawiska pokrewne. Wydawnictwa Geologiczne, Warszawa, pp. 1–94. Cerca con Google

LaBrecque, D.J., Miletto, M., Daily, W., Ramirez, A., Owen, E., 1996. The effects of noise on Occam's inversion of resistivity tomography data. Geophysics 61, 538–548. Cerca con Google

Lambe, T.W., Whitman, R.V., 1979. Soil Mechanics. SI version. Wiley, New York. Cerca con Google

Lichti, D. D., Gordon, S. J. and Stewart, M. P., 2002. Ground-based laser scanners: operations, systems and applications, Geomatica, 56(1), pp. 21 - 33. Cerca con Google

Lichti, D.D., Jamtsho, S., 2006. Angular resolution of terrestrial laser scanners. The Photogrammetric Record 21, 141–160. Cerca con Google

Lin, M.L., Lo, C.M., Chang, W.C., Dong, J.J., Huang, A.B., Lin, C.P., Chang, K.T., Lee, J.F., 2008. Site investigation of a large landslide triggered by the Chi-Chi earthquake, Taiwan. In: The 3rd International Conference on site characterization, Taipei, Taiwan. April 1-4, 2008, 449-452. Cerca con Google

Maas, H.G., Vosselman, G., 1999. Two algorithms for extracting building models from raw laser altimetry data. Journal of Photogrammetry & Remote Sensing, 54, 153-163. Cerca con Google

Markley, F.L., 1980. Parametrization of the attitude. In: Wertz, J.R. (Ed.), Spacecraft Attitude Determination and Control: Chapter 12, Three-axis Attitude Determination Methods. Springer, Berlin Heidelberg New York, pp. 410–420. Cerca con Google

Marescot, L., Loke, M.H., Chapellier, D., Delaloye R., Lambiel C. and Reynard E., 2003. Assessing reliability of the 2D resistivity imaging in mountain permafrost studies using the depth of investigation index method. Near Surface Geophysics, 57-67. Cerca con Google

Marinos, P., Hoek, E., 2001. Estimating the geotechnical properties of heterogeneous rock masses such as flysh. Bull. Eng. Geol. Env.60, 85-92. Cerca con Google

Marinos, V., Marinos, P., Hoek, E., 2005. The geological strength index: applications and limitations. Bullettin of Engineering geology and Environment, 64, 55-65. Cerca con Google

Martin, C.D., Tannant, D.D., Lan, H., 2007. Comparison of terrestrial-based, high resolution, LiDAR and digital photogrammetry surveys of a rock slope. In: Eberhardt, E., Stead, D., Morrison, T. (Eds.), Proceedings 1st Canada–U.S. Rock Mechanics Symposium, Vancouver, May 27–31, 2007, pp. 37–44. Cerca con Google

Massironi, M., Bistacchi, A., Dal Piaz, G.V., Monopoli, B., Schiavo, A., 2003. Structural control on mass-movement evolution: a case study from the Vizza Valley, Italian Eastern Alps. Eclogae Geologicae Helvetiae 96, 85–98. Cerca con Google

Matsuura, S., Asano, S., Okamoto, T., 2008. Relationship between rain and/or meltwater, pore-water pressure and displacement of a reactivated landslide. Engineering Geology 101, 49–59. Cerca con Google

McCalpin, J.P., 1999. Criteria for determining the seismic significance of sackungen and other scarp-like landforms in mountainous regions. In: United States Government Printing Office (Ed.), Techniques for Identifying Faults and Determining their Origins. U.S. Nuclear Regulatory Commission, Washington, pp. 255–259. Cerca con Google

Meglis, I.L., Chow, T., Martin, C.D., Young, R.P., 2005. Assessing in situ microcrack damage using ultrasonic velocity tomography. International Journal of Rock Mechanics and Mining Sciences 42 (1), 25–34. Cerca con Google

Menotti, R. M., Pasuto, A., Silvano, S., Siorpaes, C., Soldati, M., 64 1990. Guida alle escursioni del IV seminario DGPV, Cortina d’Ampezzo _Bl., 25–28 settembre 1990. Gruppo Informale Deformazioni Gravitative Profonde di Versante. Istituto di Geologia Applicata del CNR, Padova, 22 pp.(in italian) Cerca con Google

Metzger, R., Jaboyedoff, M., Oppikofer, T., Viero, A., Galgaro, A., 2009. Coltop3D: A New Software for Structural Analysis with High Resolution 3D Point Clouds and DEM. In:Proceedings of the Frontiers + Innovation CSPG CSEG CWLS Convention, Calgary, Alberta (Canada), 4-8 May 2009. Cerca con Google

Morelli, G., and LaBrecque, D. J., 1996, Robust scheme for ERT inverse modeling: European Journal of Environmental and Engineering Geophysics 2, 1-14. Cerca con Google

Nakamura, Y., 1989. A method for dynamic characteristic estimation of subsurface using microtremor on the ground surface. Quarterly Report of Railway Technology Research Institute 30, 25-33. Cerca con Google

Nemcok, A., 1972. Gravitational slope deformation in high mountains. Proceedings of the 24th International Geology Congress, Montreal. 24th International Geology Congress, Ottawa, pp. 132–141. Cerca con Google

Neri, C., Gianolla, P., Furlanis, S., Caputo, R., Bosellini, A., 2007. Carta Geologica d'Italia alla scala 1:50000, foglio 029 Cortina d'Ampezzo, and Note illustrative. APAT, Roma, pp. 1–200. (in italian) Cerca con Google

Nguyen, F., Garambois, S., Chardon, D., Hermitte, D., Bellier, O., Jongmans, D., Subsurface electrical imaging of anisotropic formations affected by a slow active reverse fault, Provence, France. Journal of Applied Geophysics 62, 338–353. Cerca con Google

Nichol, S.L., Hungr, O., Evans, S.G., 2002. Large-scale brittle and ductile toppling of rock slopes. Canadian Geotechnical Journal 39, 773-788. Cerca con Google

Nogoshi, M., Igarashi, T., 1970. On the propagation characteristics of microtremors. J. Seism. Soc. Jpn, 23, 264-280. Cerca con Google

Ohlmacher, G.C., 2000. The Relationships between geology and landslide hazards of Atchinson, Kansas, and vicinity. Curr. Res. Earth Sci. 244 (3), 1-16. Cerca con Google

Olayinka, A.J., Yaramanci, U., 1999. Choice of the best model in 2-D geoelectrical imaging: case study from a waste dump site. European Journal of Environmental and Engineering Geophysics 3, 221-244. Cerca con Google

Oldenburg, D. W., and Li, Y., 1999. Estimating depth of investigation in dc resistivity and IP surveys. Geophysics 64, 403-416. Cerca con Google

Oppikofer, T., Jaboyedoff, M., Keusen, H.-R., 2009a. Collapse at the eastern Eiger flank in the Swiss Alps. Nature Geoscience 1, 531–535. Cerca con Google

Oppikofer, T., Jaboyedoff, M., Blikra, L., Derron, M., 2009b. Characterization and monitoring of the Åknes rockslide using terrestrial laser scanning. Natural Hazard and Earth System Sciences 9, 1003–1019. Cerca con Google

Optech, 2010. Airborne surveying: ALTM Airborne Laser Terrain Mapper http://www. (accessed on 31.05.2010). Vai! Cerca con Google

Optech, 2011a. Brochure “Complete solution for Airborne Surveying”. Pdf file available at: (accessed on 22.12.2010) Vai! Cerca con Google

Optech, 2011b. Brochure “Gemini. Summary specification sheet”. Pdf file available at: (accessed on 22.12.2010) Vai! Cerca con Google

Panizza, M., Pasuto, A., Silvano, S., Soldati, M., 1994. Temporal occurrence and activity of landslides in the area of Cortina d'Ampezzo (Dolomites, Italy). Geomorphology 15, 311–326. Cerca con Google

Panizza, M., Pasuto, A., Silvano, S., Soldati, M., 1996a. Landsliding during the Holocene in the Cortina d’Ampezzo Region, Italian Dolomites. In: B. Frenzel, J.A. Matthews, B. Glaser & M. M. Weib (Eds.), Rapid mass movement as climatic evidence for Holocene times. Palaoklimaforschung/Paleoclimate Research, p. 19. Cerca con Google

Panizza, M., Pasuto, A., Silvano, S., Soldati, M. 1996b. Temporal occurence and activity of landslides in the area of Cortina d’Ampezzo (Dolomites, Italy) In: M.Soldati (Ed.) Landslides in the European Union. Geomorphology 15, 311-326. Cerca con Google

Pesci, A., Teza, G., Ventura, G., 2008. Remote sensing of volcanic terrains by terrestrial laser scanner: preliminary reflectance and RGB implications for studying Vesuvius crater (Italy). Annals of Geophysics 51, 619–631. Cerca con Google

Pettitt, W.S., King, M.S., 2004. Acoustic emission and velocities associated with the formation of sets of parallel fractures in sandstones. Proceedings of SINOROCK Symposium, Paper1A 25. Cerca con Google

Priest, S.D. and Hudson, J.A. 1976. Discontinuity spacings in rock, Int. J. Rock Mech. Mm. Sci. and Geomech. Abstr., 13, 135—148. Cerca con Google

Priest, S.D. and Hudson, J.A. 1981. Estimation of discontinuity spacing and trace length using scanline surveys. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. Vol 18, pp. 183-197. Cerca con Google

Priest, S.D. 1993. Discontinuity Analysis for Rock Engineering, Chapman and Hall, London, 473 pp. Cerca con Google

Radbruch-Hall, D., 1978. Gravitational creep of rock masses on slopes. In: Voight, B. (Ed.), Rockslides and Avalanches — Natural Phenomena: Developments in Geotechnical Engineering, Vol. 14. Elsevier, Amsterdam, pp. 608–657. Cerca con Google

Reshetyuk, Y. 2006. Investigation and calibration of pulsed time-of-flight terrestrial laser scanners. Licentiate thesis in Geodesy. Royal Institute of Technology (KTH). Department of Transport and Economics. Division of Geodesy. 100 44 Stockholm. October 2006. Cerca con Google

Riegl, 2010a. Laser scanner Riegl LMSZ-420i technical specifications. Available online at: http:// Cerca con Google (accessed on 31.05.2010). Vai! Cerca con Google

Riegl, 2010b. Viewer, acquisition, and processing software RiSCAN PRO. Available online at: Cerca con Google (accessed on 31.05.2010). Vai! Cerca con Google

Rocscience, 2010. Dips, v 5.0. Graphical and Statistical Analysis of Orientation Data. Technical data available at: (accessed on 31.05.2010). Vai! Cerca con Google

Rucker, D. F., Levitt, M. T., Greenwood, W. J., 2009. Three-dimensional electrical resistivity model of a nuclear waste disposal site. Journal of applied geophysics 69, 150-164. Cerca con Google

Sachpazis, C.I., 1990. Correlating Schmidt hardness with compressive strength and Young's modulus of carbonate rocks. Bull. Int. Assoc. Eng. Geol. 42, 75–83. Cerca con Google

Sack, D.A., Olson, L.D., 1995. Advanced NDT methods for evaluating concrete bridges and other structures. NDT&E International, 28 (6), 349–357. Cerca con Google

Shalabi, F. I., Cording, E.J., Al-Hattamleh, O.H., 2007.Estimation of rock engineering properties using hardness tests. Engineering Geology, 90, 138–147. Cerca con Google

Shönborn, G., 1999. Balancing cross section with kinematic constrains: The Dolomites (norther Italy). Tectonics 18, 3, 527-545. Cerca con Google

Singh, M., Singh, B., 2008. High lateral strain ratio in jointed rock masses. Engineering Geology 98, 75-85. Cerca con Google

Slob, S., Hack, H.R.G.K. and Turner, A.K. 2002. An approach to automate discontinuity measurements of rock faces using lasers scanning techniques. In: Proceedings of ISRM International Symposium on Rock Engineering for Mountainous Regions – Eurock 2002, Funchal, 2002 November 25-28th, 87-94. Cerca con Google

Slob, S., 2005. Automated rock mass characterization using 3-D terrestrial laser scanning. PhD thesis, Delft University, Delft, The Netherlands. Cerca con Google

Slob, S., van Knapen, B., Hack, R., Turner, K., Kemeny, J., 2005. A method for automated discontinuity analysis of rock slopes with 3D laser scanning. Transportation Research Record 1913, 187–208. Cerca con Google

Soldati M & Pasuto A., 1991 –Some cases of deep seated gravitetionl deformations in the area of Cortina d’Ampezzo (Dolomites). Implications in environmental risk assessment. In : M.Panizza, M. Soldati &M.M. Coltellacci (Eds.), European Experimental Course on Applied Geomorphology 2: Proceedings. Istituto di Geologia, Università degli studi di Modena, 91-104. Cerca con Google

Stead, D., Eberhardt, E., Coggan, J.S., 2006. Developments in the characterization of complex rock slope deformation and failure using numerical modelling techniques. Engineering Geology 83, 217-235. Cerca con Google

Summa, V., Tateo, F., Gianossi, M.L., Bonelli, C.G., 2010. Influence of clay mineralogy on the stability of a landslide in Plio-Pleistocene clay sediments near Grassano (Southern Italy). Cerca con Google

Sturzenegger, M., Douglas, S., 2009. Close-range terrestrial digital photogrammetry and terrestrial laser scanning for discontinuity characterization on rock cuts. Engineering Geology,(in press). Cerca con Google

TectonicsFP, 2010. Software for Structural Geology. Available online at: http://www. (accessed on 31.05.2010). Vai! Cerca con Google

Teza, G., Galgaro, A., Zaltron, N., Genevois, R., 2007. Terrestrial laser scanner to detect landslide displacement fields: a new approach. International Journal of Remote Sensing 28 (16), 3425-3446. Cerca con Google

Teza, G., Atzeni, C., Balzani, M., Galgaro, A., Galvani, G., Genevois, R., Luzi, G., Mecatti, D., Cerca con Google

Noferini, L., Pieraccini, M., Silvano, S., Uccelli, F., Zaltron, N., 2008a. Ground-based monitoring of high-risk landslides through joint use of laser scanner and interferometric radar. International Journal of Remote Sensing 29, 4735–4756. Cerca con Google

Teza, G., Pesci, A., Genevois, R., Galgaro, A., 2008b. Characterization of landslide ground Cerca con Google

surface kinematics from terrestrial laser scanning and strain field computation. Geomorphology 97, 424–437. Cerca con Google

Tripathy, S., Subba Rao, K.S., Fredlund, D.G., 2002. Water content-void ratio swell-shrink paths of compacted expansive soils. Canadian Geotechnic Journal 39, 938-959. Cerca con Google

Tyner, B. 2007. Packages: K-D trees. Vai! Cerca con Google

Uchida, E., Ogawa, Y., Maeda, N., T. Nakagawa, 1999. Deterioration of stone materials in the Angkor monuments, Cambodia. Engineering Geology 55, 101–112. Cerca con Google

UNESCO, 2010. The list of the World heritage sites. (accessed on 31.05.2010). Vai! Cerca con Google

Van Asch, T.W.J., 1997. The temporal activity of landslides and its climatological signals. In: Matthews, J.A., Brunsden, D., Frenzel, B., Gla¨ser, B., Weiß, M.M. (Eds.), Rapid Mass Movement as a Source of Climatic Evidence for the Holocene. Palaeoclimate Research, vol. 19. Gustav Fischer, Stuttgart, pp. 7 – 16. Cerca con Google

Varnes, D.J., Radbruch-Hall, D., Varnes, K.L., Smith, W.K., Savage, W.Z., 1990. Measurement of ridge-spreading movements (sackungen) at Bald Eagle Mountain, Lake County, Colorado 1975–1989. U.S. Dept. of the Interior, U.S. Geological Survey Open-File Report 90-543. 13 pp. Cerca con Google

Viero , A., Galgaro, A., Oppikofer, T., Metzger, R., Jaboyedoff, M., 2009a. Structural and geomechanical pattern recognition using terrestrial and airborne laser scanner techniques. Oral presentation. In: Proceedings of the Natural Hazard session -EGU General Assembly, Geophysical Research Abstracts, Wien (Austria), 19-24 April 2009. Cerca con Google

Viero, A., Vosselman, G., Slob, S., Galgaro, A., Hack, H.R.G.K., 2009b. Automatic analysis of terrestrial laser data: the application to a rock cliffs instability in the Dolomites (Eastern Alps- Italy. In:Proceedinds of the 6th EUREGEO- European Congress on Regional Geoscientific Cartography and Information systems, Munich, Bavaria (Germany), 9-12 June 2009. Cerca con Google

Viero A., Teza, G., Massironi, M., Jaboyedoff, M., Galgaro, A., 2010a. Laser scanning-based recognition of rotational movements on a deep seated gravitational instability: The Cinque Torri case (North-Eastern Italian Alps). Geomorphology, 122, 191-204. Cerca con Google

Viero , A., Teza, G., Massironi, M., Jaboyedoff, M., Galgaro., A., 2010b. A new method to derive rotational components of recent lateral spreadings: a laser scanning application. Oral presentation. In: Proceedings of Natural Hazard session -EGU General Assembly, Geophysical Research Abstracts, Wien (Austria), 2-7 May 2010. Cerca con Google

Vosselman, G., Gorte, B.G.H., Sithole, G. and Rabbani, T. 2004. Recognizing structure in laser scanner point clouds. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. vol. 46, part 8/W2, Freiburg, Germany, October 4-6, pp. 33-38. Cerca con Google

Welkner, D., Eberhardt, E., Hermanns, R.L., 2010. Hazard investigation of the Portillo Rock Avalanche site, central Andes, Chile, using an integrated field mapping and numerical modelling approach. Engineering Geology 114, 278–297. Cerca con Google

Willard, R.J., McWilliams, J.R., 1969. Microstructural techniques in the study of physical properties of rock. International Journal of Rock Mechanics. Min. Sci. 6, 1–12. Cerca con Google

Wise, D.J., Cassidy, J., Locke, C.A., 2003. Geophysical imaging of the Quaternary Wairoa North Fault, New Zealand: a case study. Journal of Applied Geophysics 53, 1-16. Cerca con Google

Wyllie, D.C., Mah, C.W., 2004. Rock Slope Engineering: Civil and Mining — Spon Press/ Taylor & Francis Group, London and New York. Cerca con Google

Yalcin, A., 2007. The effects of clay on landslides: a case study. Applied clay sciences 38, pp. 77-85. Cerca con Google

Yasar, E., Erdogan, Y, 2004. Correlating sound velocity with density, compressive strength and Young modulus of carbonate rocks. International Journal of Rock Mechanics and Mining Sciences 41 (5), 871–875. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record