Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Fogar, Paola (2008) Modulazione termica dell'espressione della subunità  catalitica della tossina difterica e delle sue varianti CRM176 e CRM197 nella terapia genica del carcinoma del pancreas. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
1921Kb

Abstract (inglese)

Despite surgery and/or chemotherapy more than 80% of patients affected by pancreatic cancer do not survive more than 5 years after diagnosis.
Gene therapy with bacterial toxins might be an effective approach for pancreatic cancer treatment.
The aims of the present study were: 1. to create expression vectors, encoding highly toxic compounds, which can be activated and modulated by heat; 2. to verify, in vitro, their possible application in pancreatic cancer gene therapy.
First objective
The catalytic domain of diphtheria toxin (DTA) and of its variants CRM176 and CRM197 have been employed in this study as potent inhibitors of protein synthesis.
To confine the expression of these cytotoxic agents to neoplastic tissue we focused our attention on heat inducible promoters, which allow a selective spatial and time control of gene induction by external heat.
We chose the promoter of HSPA6 (encoding Hsp70B' protein) because it is strictly inducible, its basal expression levels being barely detectable in most tissues.
We engineered three expression vectors with different heat-inducible HSPA6-derived promoter sequences driving the reporter gene eGFP: V1 containing a 473bp commercial sequence with a 91% homology to HSPA6; V2 with a 104bp sequence designed by us containing five Heat Shock Elements in tandem and the minimal promoter of HSPA6; V3 containing the 104bp sequence located downstream the 473bp promoter.
In order to define the optimal heat shock temperature and exposure time we used four pancreatic cancer cell lines stably transfected with V1: the highest levels of eGFP expression (measured by Q-RT-PCR and FACS analysis) were obtained with a heat shock of 42,5¬įC for 1,5 hours.
After setting the experimental conditions we compared the eGFP protein and mRNA levels in V1, V2 and V3 transfected pancreatic cancer cell lines.
At 37¬įC there were minimal eGFP expression levels in cells transfected with all three vectors. After heat shock, however, V1, V2 and V3 transfected cells behaved differently: V1 and V2 transfected lines showed low and similar levels of expression (fold increase in mRNA about 8) while V3 transfected cells were highly induced by heat reaching up to 30 times the basal levels.
V3, therefore, was shown to offer the best combination of high transciption efficiency and low background levels and was selected to drive the expression of DTA and its less toxic variants.
Second objective
The growth of all cell lines, transfected with DTA or its twenty fold less active variant CRM176, was significantly delayed even at 37¬įC. In other words the basal transcription levels of these toxins are sufficient to cause cell death; therefore DTA and CRM176 cannot be considered suitable candidates for gene therapy protocols using V3 promoter.
At 37¬įC the supposedly inactive toxin CRM197 caused mild distress in transfected cells. After heat shock this phenomenon was amplified: cell growth was reduced in all CRM197 transfected cell lines.
These findings indicate that the lethal effects of CRM197 are probably dose correlated.
A spatial and time controlled expression of this toxin variant might offer the opportunity of combining its cytotoxic effects with its immunogenic properties, which may help antitumor immune system reaction.
Conclusions
The expression vector with the V3 heat-inducible promoter driving the CRM197 variant can be considered a promising starting point for future in vivo applications of pancreatic cancer gene therapy.


Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Pozzan, Tullio
Correlatore:Montecucco, Cesare
Dottorato (corsi e scuole):Ciclo 20 > Scuole per il 20simo ciclo > BIOSCIENZE > BIOLOGIA CELLULARE
Data di deposito della tesi:2008
Anno di Pubblicazione:2008
Parole chiave (italiano / inglese):Gene therapy, pancreatic cancer, Dyphtheria toxin, heat shock proteins
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/12 Biochimica clinica e biologia molecolare clinica
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze Biomediche Sperimentali
Codice ID:389
Depositato il:28 Ott 2008
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Aghdassi A, Phillips P, Dudeja V, Dhaulakhandi D, Sharif R, Dawra R, Lerch MM,Saluja A. Heat shock protein 70 increases tumorigenicity and inhibits apoptosis in pancreatic adenocarcinoma. Cancer Res. 2007; 67:616-25. Cerca con Google

2. Aguirre AJ, Bardeesy N, Sinha M, Lopez L, Tuveson DA, Horner J, Redston MS, DePinho RA. Activated K-ras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes Dev 2003; 17: 3112-3126. Cerca con Google

3. Ammori JB, Colletti LM, Zalupski MM, Eckhauser FE, Greenson JK, Dimick J, Lawrence TS, McGinn CJ. Surgical resection following radiation therapy with concurrent gemcitabine in patients with previously unresectable adenocarcinoma of the pancreas. J Gastrointest Surg 2003; 7: 766-772. Cerca con Google

4. Anderson KE, Potter JD, Mack TM. Pancreatic cancer. In: Schottenfeld D, Fraumene JF Jr, eds Cancer epidemiology and prevention, Oxford: Oxford University Press, 1996: 725-771. Cerca con Google

5. Anderson WF. Human gene therapy. Science. 1992; 256:808-13. Cerca con Google

6. Anderson WF. Gene therapy for cancer.Hum Gene Ther. 1994; 5:1-2. Cerca con Google

7. Aoki K, Yoshida T, Matsumoto N, Ide H, Sugimura T, Terada M. Suppresion of ki-ras p21 levels leading to growth inhibition of pancreatic cancer cell lines with ki-ras mutation but not those without ki-ras mutation. Mol Carcinogen 1997; 20: 251-8. Cerca con Google

8. Aoki K, Yoshida T, Matsumoto N, Ide H, Hosokawa K, Sugimura T, Terada M. Gene therapy for peritoneal dissemination of pancreatic cancer by liposome-mediated transfer of herpes simplex virus thymidine kinase gene. Hum Gene Ther 1997; 8: 1105-1113. Cerca con Google

9. Bardeesy N, DePinho RA. Pancreatic cancer biology and genetics. Nat Rev Cancer 2002; 2: 897-909. Cerca con Google

10. Barton CM, Lemoine NR. Antisense oligonucleotides directed against p53 have antiproliferative effects unrelated to effects on p53 expression. Br J Cancer 1995; 71: 429-437. Cerca con Google

11. Berndt C, Haubold K, Wenger F, Brux B, Muller J, Bendzko P, Hillebrand T, Kottgen E, Zanow J. K-ras mutations in stools and tissue samples from patients with malignant and nonmalignant pancreatic diseases. Clin Chem 1998; 44: 2103-2107. Cerca con Google

12. .Bhagat L, Singh VP, Song AM, van Acker GJ, Agrawal S, Steer ML, Saluja AK. Thermal stress-induced HSP70 mediates protection against intrapancreatic trypsinogen activation and acute pancreatitis in rats. Gastroenterology. 2002;122:156-65. Cerca con Google

13. Bhagat L, Singh VP, Dawra RK, Saluja AK. Sodium arsenite induces heat shock protein 70 expression and protects against secretagogue-induced trypsinogen and NF-kappaB ctivation. J Cell Physiol. 2007 Cerca con Google

14. Bharadwaj U, Li M, Zhang R, Chen C, Yao Q. Elevated interleukin-6 and G-CSF in human pancreatic cancer cell conditioned medium suppress dendritic cell differentiation and activation. Cancer Res 2007; 67: 5479-88. Cerca con Google

15. Bhattacharyya M, Lemoine NR. Gene therapy developments for pancreatic cancer. Best Pract Res Clin Gastroenterol 2006; 20(2):285-98. Cerca con Google

16. Block A, Chen S-H, Kosai K-I, Finegold M, Woo SLC. Adenoviral-mediated herpes simplex virus thymidine kinase gene transfer: regression of hepatic metastasis of pancreatic tumors. Pancreas 1997; 15: 25-34 Cerca con Google

17. Bouvet M, Bold RJ, Lee J, Evans DB, Abbruzzese JL, Chiao PJ, McConkey DJ, Chandra J, Chada S, Fang B, Roth JA. Adenovirus-mediated wild-type p53 tumor suppressor gene therapy induces apoptosis and suppresses growth of human pancreatic cancer. Ann Surg Oncol 1998; 5: 667-669. Cerca con Google

18. Buzzi S, Rubboli D, Buzzi G, Buzzi AM, Morisi C, Pironi F. CRM197 (nontoxic diphtheria toxin): effects on advanced cancer patients. Cancer Immunol Immunother 2004; 53: 1041-8. Cerca con Google

19. Calbò J, Marotta M, Cascallo M, Roig JM, Gelpi JL, Fueyo J, Mazo A. Adenovirus mediated wt-p16 reintroduction induces cell cycle arrest or apoptosis in pancreatic cancer. Cancer Gene Ther 2001; 8: 740-750. Cerca con Google

20. Cao G, Kuriyama S, Gao J, Kikukawa M, Cui L, Nakatani T, Zhang X, Tsujinoue H, Pan X, Fukui H, Qi Z. Effective and safe gene therapy for colorectal carcinoma using the cytosine deaminase gene directed by the carcinoembryonic antigen promoter. Gene Ther. 1999 Jan;6(1):83-90. Cerca con Google

21. Carriò M, Romagosa A, Mercadè E, Mazo A, Nadal M, Gomez-Foix A-M, Fillat C. Enhanced pancreatic tumor regression by a combination of adenovirus and retrovirus-mediated delivery of herpes simplex virus thymidine kinase gene. Gene Ther 1999; 6: 547-553. Cerca con Google

22. Carriò M, Mazo A, Lòpez-Iglesias C, Estivill X, Fillat C. Retrovirus-mediated transfer of the Herpes Simplex Virus Thymidine Kinase and connexin26 genes in pancreatic cells. Results in variable efficiency on the bystander killing: implications for gene therapy. Int J Cancer 2001; 94: 81-88. Cerca con Google

23. Cascallo M, Mercade E, Capella G, Lluis F, Fillat C, Gomez-Foix AM, Mazo A. Genetic background determines the response to adenovirus-mediated wild-type p53 expression in pancreatic tumor cells. Cancer Gene Ther. 1999; 6: 428-436. Cerca con Google

24. Chandler LA, Sosnowski BA, McDonald JR, Price JE, Aukerman SL, Baird A, Pierce GF, Houston LL. Targeting tumor cells via EGF receptors: selective toxicity of an HBEGF-toxin fusion protein. Int J Cancer 1998; 78: 106-111. Cerca con Google

25. Chappuis PO, Ghadirian P, Foulkes WD. The role of genetic factors in the etiology of pancreatic adenocarcinoma: an update. Cancer Invest. 2001; 19:65-75. Cerca con Google

26. Chen WB, Lenschow W, Tiede K, Fischer JW, Kalthoff H, Ungefroren H. Smad4/DPC4-dependent regulation of biglycan gene expression by transforming growth factor-beta in pancreatic tumor cells. J Biol Chem 2002; 277: 36118-36128. Cerca con Google

27. Clackson T. Regulated gene expression systems. Gene Ther. 2000;7(2):120-5. Cerca con Google

28. Comanducci M, Ricci S, Rappuoli R, Ratti G.The nucleotide sequence of the gene coding for diphtheria toxoid CRM176. Nucleic Acids Res. 1987;15(14):5897. Cerca con Google

29. Cook T, Urrutia R. TIEG proteins join the Smads as TGF-beta-regulated transcription factors that control pancreatic cell growth. Am J Physiol Gastrointest Liver Physiol 2000; 278: G513-G521. Cerca con Google

30. Cowgill SM, Muscarella P. The genetics of pancreatic cancer. Am J Surg 2003; 186: 279-286. Cerca con Google

31. Cross D, Burmester JK.Gene therapy for cancer treatment: past, present and future. Clin Med Res 2006; 4: 218-27. Cerca con Google

32. Daugaard M, Rohde M, Jäättelä M. The heat shock protein 70 family: Highly homologous proteins with overlapping and distinct functions. FEBS Lett 2007; 581(19):3702-10. Cerca con Google

33. Diasio RB, Harris BE. Clinical pharmacology of 5-fluorouracil. Clin Pharmacokinet 1989; 16(4):215-37. Cerca con Google

34. Dilber MS, Abedi MR, Christensson B, Björkstrand B, Kidder GM, Naus CC, Gahrton G, Smith CI. Gap junctions promote the bystander effect of herpes simplex virus thymidine kinase in vivo.Cancer Res. 1997;57(8):1523-8. Cerca con Google

35. Dranoff G. Cytokines in cancer pathogenesis and cancer therapy. Nature Rev 2004; 4: 11-22. Cerca con Google

36. Duda DG, Sunamura M, Lefter LP, Furukawa T, Yokoyama,T, Yatsuoka T, Abe T, Inoue H, Motoi F, Egawa S, Matsuno S, Horii A. Restoration of SMAD4 by gene therapy reverses the invasive phenotype in pancreatic adenocarcinoma cells. Oncogene 2003; 22: 6857-6864. Cerca con Google

37. Duesbery NS, Resau J, Webb CP, Koochekpour S, Koo HM, Leppla SH, Vande Woude GF. Suppression of ras-mediated transformation and inhibition of tumor growth and angiogenesis by anthrax lethal factor, a proteolytic inhibitor of multiple MEK pathways. Proc Natl Acad Sci U S A. 2001; 98(7):4089-94. Cerca con Google

38. Edwards BK, Brown ML, Wingo PA, Howe HL, Ward E, Ries LA, Schrag D, Jamison PM, Jemal A, Wu XC, Friedman C, Harlan L, Warren J, Anderson RN, Pickle LW. Annual report to the nation on the status of cancer, 1975-2002, featuring population-based trends in cancer treatment. J Natl Cancer Inst. 2005; 97:1407-27. Cerca con Google

39. El Kamar FG, Grossbard ML, Kozuch PS. Metastatic pancreatic cancer: emerging strategies in chemotherapy and palliative care. The Oncologist 2003; 8:18-34. Cerca con Google

40. Elion FB. The biochemistry and mechanism of action of acyclovir. Antimicrob Chemother 1983; 12 (suppl.B): 9-17. Cerca con Google

41. Elshami AA, Saavedra A, Zhang H, Kucharczuk JC, Spray DC, Fishman GI, Amin KM, Kaiser LR, Albelda SM. Gap junction play a role in the "bystander effect" of the herpes simplex virus thymidine kinase/ganciclovir system in vitro. Gene Ther 1996; 3: 85-92. Cerca con Google

42. Erbs P, Regulier E, Kintz J, Leroy P, Poitevin Y, Exinger F, Jund R, Mehtali M. In vivo cancer gene therapy by adenovirus-mediated transfer of bifunctional yeast cytosine deaminasi/uracil phosphoribosyltransferase fusion gene. Cancer Res 2000; 60: 3813-3822. Cerca con Google

43. Evoy D, Hirschowitz EA, Naama HA, Kui X, Crystal RG, Daly JM, Lieberman MD. In vivo adenoviral-mediated gene transfer in the treatment of pancreatic cancer. J Surg Res 1997; 69: 226-231 Cerca con Google

44. Faulds D, Rennie CH. Ganciclovir. A review of its antiviral activity, pharmacokinetic properties and therapeutic efficacy in cytomegalovirus infection. Drugs 1990; 39: 567-638. Cerca con Google

45. Fick J, Barker FG 2nd, Dazin P, Westphale EM, Beyer EC, Israel MA. The extent of heterocellular communication mediated by gap junctions is predictive of bystander tumor cytotoxicity in vitro. Proc Natl Acad Sci U S A. 1995;92(24):11071-5. Cerca con Google

46. Fogar P, Greco E, Basso D, Habeler W, Navaglia F, Zambon C-F, Tormen D, Gallo N, Cecchetto A, Plebani M, Pedrazzoli S. Suicide gene therapy with HSV-TK in pancreatic cancer has no effect in vivo in a mouse model. Eur J Surg Oncol 2003; 29: 721-730. Cerca con Google

47. Fogar P, Greco E, Basso D, Navaglia F, Plebani M, Pedrazzoli S. Killer genes in pancreatic cancer therapy. Cell Mol Biol 2005; 51(1):61-76. Cerca con Google

48. Fogar P, Navaglia F, Basso D, Greco E, Zambon CF, Fadi E, Falda A, Stranges A, Vannozzi F, Danesi R, Pedrazzoli S, Plebani M. Suicide gene therapy with the yeast fusion gene cytosine deaminase/uracil phosphoribosyltransferase is not enough for pancreatic cancer. Pancreas 2007;35(3):224-31. Cerca con Google

49. Frankel AE, Powell BL, Lilly MB. Diphtheria toxin coniugate therapy of cancer. In: Cancer Chemotherapy and Biological Response Modifiers, Annual 20. Giaccone G, Schilsky R, Sondel P (Eds). Elsevier Science BV 2002. pp 301-313. Cerca con Google

50. Freeman SM, Abboud CN, Whartenby KA, Packman CH, Koeplin DS, Moolten FL, Abraham GN. The "bystander effect": tumor regression when a fraction of the tumor mass is genetically modified. Cancer Res 1993;53(21):5274-83. Cerca con Google

51. Frossard JL, Pastor CM, Hadengue A. Effect of hyperthermia on NF-kappaB binding activity in cerulein-induced acute pancreatitis. Am J Physiol Gastrointest Liver Physiol. 2001; 280: G1157-62. Cerca con Google

52. Frossard JL, Bhagat L, Lee HS, Hietaranta AJ, Singh VP, Song AM, Steer ML, Saluja AK. Both thermal and non-thermal stress protect against caerulein induced pancreatitis and prevent trypsinogen activation in the pancreas. Gut. 2002; 50:78-83. Cerca con Google

53. Fryzek JP, Garabrant DH, Greenson JK, Schottenfeld D. A review of the epidemiology and pathology of pancreas cancer. Gastrointest Cancer 1997; 2:99-110. Cerca con Google

54. Gardis L, Gold BL. Epidemiology and etiology of pancreatic cancer. In: The pancreas: biology, pathobiology and disease. 2nd ed. Go VL et al. Raven Press Ltd, New York 1993: 837-855. Cerca con Google

55. Ghaneh P, Greenhalf W, Humphreys M, Wilson D, Zumstein L, Lemoine NR, Neoptolemos JP. Adenovirus-mediated transfer of p53 and p16(INK4a) results in pancreatic cancer regression in vitro and in vivo. Gene Ther 2001; 8: 199-208 Cerca con Google

56. Giannini CD, Roth WK, Piiper A, Zeuzem S. Enzymatic and antisense effects of a specific anti ki-ras ribozyme in vitro and in cell culture. Nucleic Acids Res 1999; 13: 2737-2744. Cerca con Google

57. Giannini G, Rappuoli R, Ratti G. The amino-acid sequence of two non-toxic mutants of diphtheria toxin: CRM45 and CRM197. Nucleic Acids Res. 1984; 12(10):4063-9. Cerca con Google

58. Gilliam AD, Watson SA. Emerging biological therapies for pancreatic carcinoma. Eur J Surg Oncol. 2002; 28:370-8. Cerca con Google

59. Gossen M, Bujard H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci USA. 1992; 89:5547-51. Cerca con Google

60. Gossen M, Freundlieb S, Bender G, M√ľller G, Hillen W, Bujard H. Transcriptional activation by tetracyclines in mammalian cells.Science 1995; 268(5218):1766-9. Cerca con Google

61. Greco E, Fogar P, Basso D, Stefani AL, Navaglia F, Zambon CF, Mazza S, Gallo N, Piva MG, Scarpa A, Pedrazzoli S, Plebani M. Retrovirus-mediated herpes simplex virus thymidine kinase gene transfer in pancreatic cancer cell lines: an incomplete antitumor effect. Pancreas. 2002;25(2):e21-9. Cerca con Google

62. Greenlee RT, Murray T, Golden S, Wingo PA. Cancer Statistics, 2000. Cancer J Clin 2000; 50: 7-33. Cerca con Google

63. Gress TM, Muller-Pillasch F, Weber C, Lerch MM, Friess H, Buchler M, Beger HG, Adler G. Differential expression of heat shock proteins in pancreatic carcinoma. Cancer Res. 1994;54:547-51. Cerca con Google

64. Haller DG. New perspectives in the management of pancreas cancer. Sem Oncol 2003; 30 (Suppl 11): 3-10. Cerca con Google

65. Hara H, Kobayashi A, Yoshida K, Ohashi M, Ohnami S, Uchida E, Higashihara E, Yoshida T, Aoki K. Local interferon-alpha gene therapy elicits systemic immunity in a syngeneic pancreatic cancer model in hamster.Cancer Sci 2007; 98: 455-63. Cerca con Google

66. Hoshida T, Sunamura M, Duda DG, Egawa S, Miyazaki S, Shineha R, Hamada H, Ohtani H, Satomi S, Matsuno S. Gene therapy for pancreatic cancer using an adenovirus vector encoding soluble flt-1 vascular endothelial growth factor receptor. Pancreas. 2002; 25:111-21. Cerca con Google

67. Hotz HG, Gill PS, Masood R, Hotz B, Buhr HJ, Foitzik T, Hines OJ, Reber HA. Specific targeting of tumor vasculature by diphtheria toxin-vascular endothelial growth factor fusion protein reduces angiogenesis and growth of pancreatic cancer. J Gastrointest Surg 2002; 6:159-166. Cerca con Google

68. Huang Q, Hu JK, Lohr F, Zhang L, Braun R, Lanzen J, Little JB, Dewhirst MW, Li CY. Heat-induced gene expression as a novel targeted cancer gene therapy strategy. Cancer Res. 2000; 60(13):3435-9. Cerca con Google

69. Huber BE, Austin EA, Richards CA, Davis ST, Good SS. Metabolism of 5-fluorocytosine to 5-fluorouracil in human colorectal tumor cells transduced with the cytosine deaminase gene: significant antitumor effects when only a small percentage of tumor cells express cytosine deaminase. Proc Natl Acad Sci U S A. 1994;91(17):8302-6. Cerca con Google

70. Humphreys MJ, Greenhalf W, Neoptolemos JP, Ghaneh P. The potential for gene therapy in pancreatic cancer. Int J Pancreatol 1999: 26: 5-21. Cerca con Google

71. Hung C-F, Cheng W-F, Hsu K-F, Chai C-Y, He L, Ling M, Wu T-C. Cancer immunotherapy using a DNA vaccine encoding the translocation domain of a bacterial toxin linked to a tumor antigen. Cancer Res 2001; 61: 3698-3703. Cerca con Google

72. Hwang JH, Ryu JK, Yoon YB, Lee KH, Park YS, Kim JW, Kim N, Lee DH, Jeong JB, Seo JS, Kim YT. Spontaneous activation of pancreas trypsinogen in heat shock protein 70.1 knock-out mice. Pancreas. 2005; 31:332-6. Cerca con Google

73. Hwang RF, Gordon EM, Anderson WF, Parekh D. Gene therapy for primary and metastatic pancreatic cancer with intraperitoneal retroviral vector bearing the wild-type p53 gene. Surgery 1998; 124: 143-150. Cerca con Google

74. Igney FH, Krammer PH. Immune escape of tumors: apoptosis resistance and tumor counterattack. J Leukoc Biol 2002; 71: 907-20. Cerca con Google

75. Ishii-Morita H. Mechanism of "bystander effect" killing in the herpes simplex thimidine kinase gene therapy model of cancer treatment. Gene Ther 1997; 4: 244-251. Cerca con Google

76. Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ.Cancer statistics, 2007.CA Cancer J Clin. 2007;57:43-66. Cerca con Google

77. Johannes L, Decaudin D. Protein toxins: intracellular trafficking for targeted therapy.Gene Ther. 2005; 12(18):1360-8. Cerca con Google

78. Johnson VG, Nicholls PJ. Identification of a single amino acid substitution in the diphtheria toxin A chain of CRM 228 responsible for the loss of enzymatic activity.J Bacteriol. 1994;176(15):4766-9. Cerca con Google

79. Kageyama T, Ohishi M, Miyamoto S, Mizushima H, Iwamoto R, Mekada E. Diphtheria toxin mutant CRM197 possesses weak EF2-ADP-ribosyl activity that potentiates its anti-tumorigenic activity. J Biochem 2007; 142: 95-104. Cerca con Google

80. Kanyama H, Tomita N, Yamano T, Aihara T, Miyoshi Y, Ohue M, Sekimoto M, Salita I, Tamaki Y, Kaneda Y, Senter PD, Monden M. Usefulness of repeated direct intratumoral gene transfer using hemagglutinating virus of Japan-liposome method for cytosine deaminase suicide gene therapy. Cancer Res. 2001; 61: 14-18. Cerca con Google

81. Katz MH, Bouvet M. Novel gene therapy approaches to pancreatic cancer. Int J Gastrointestinal. Cancer 2003; 33: 89-97. Cerca con Google

82. Kijima H, Yamazaki H, Nakamura M, Scanlon KJ, Osamura RY, Ueyama Y. Ribozyme against mutant k-ras mRNA suppresses tumor growth of pancreatic cancer. Int J Oncol 2004; 24: 559-564. Cerca con Google

83. Kimura M, Tagawa M, Takenaga K, Kondo F, Yamaguchi T, Saisho H, Nakagawara A, Sakiyama S. Loss of tumorigenicity of human pancreatic carcinoma cells engineered to produce interleukin-2 or interleukin-4 in nude mice: a potentiality for cancer gene therapy. Cancer Lett 1998; 128: 47-53. Cerca con Google

84. Kimura M, Yoshida Y, Narita M, Takenaga K, Takenouchi T, Yamaguchi T, Saisho H, Sakiyama S, Tagawa M. Acquired immunity in nude mice induced by expression of the IL-2 or IL-4 gene in human pancreatic carcinoma cells and anti-tumor effect generated by in vivo gene transfer using retrovirus. Int J Cancer 1999; 82: 549-555. Cerca con Google

85. Kishida T, Asada H, Itokawa Y, Cui F-D, Shin-Ya M, Gojo S, Yasutomi K, Ueda Y, Yamagishi H, Imanishi J, Mazda O. Interleukin (IL)-21 and IL-15 genetic transfer synergistically augments therapeutic antitumor immunity and promotes regression of metastatic lymphoma. Mol Ther 2003; 8: 552-558. Cerca con Google

86. Kita K, Saito S, Morioka, CY, Watanabe A. Growth inhibition of human pancreatic cancer cell lines by anti-sense oligonucleotides specific to mutated K-ras genes. Int J Cancer 1999; 80:553-8. Cerca con Google

87. Kobayashi S, Shirasawa H, Sashiyama H, Kawahira H, Kaneko K, Asano T, Ochiai, T. pP16INK4a expression adenovirus vector to suppress pancreas cancer cell proliferation. Clin. Cancer Res. 1999; 5: 4182-4185. Cerca con Google

88. Koo HM, VanBrocklin M, McWilliams MJ, Leppla SH, Duesbery NS, Woude GF. Apoptosis and melanogenesis in human melanoma cells induced by anthrax lethal factor inactivation of mitogen-activated protein kinase kinase. Proc Natl Acad Sci U S A. 2002; 99(5):3052-7 Cerca con Google

89. Kreitman RJ. Recombinant toxins for the treatment of cancer. Curr Opin Mol Ther 2003; 5: 44-51. Cerca con Google

90. Kumar NM, Gilula NB. The gap junction communication channel. Cell 1996; 84: 381-388. Cerca con Google

91. Kuriyama S, Kikukawa M, Masui K, Okuda H, Nakatani T, Sakamoto T, Yoshiji H, Fukui H, Ikenaka K, Mullen CA, Tsujii T. Cytosine deaminase/5-fluorocytosine gene therapy can induce efficient anti-tumor effects and protective immunity in immunocompetent mice but not in athymic nude mice. Int J. Cancer 1999; 81: 592-597. Cerca con Google

92. Lawrence TS, Rehemtulla A, Ng EY, Wilson M, Trosko JE, Stetson PL. Preferential cytotoxicity of cells transduced with cytosine deaminase compared to bystander cells after treatment with 5-flucytosine. Cancer Res 1998;58(12):2588-93. Cerca con Google

93. Lemoine NR, Jain S, Hughes CM, Staddon SL, Maillet B, Hall PA, Kloppel G. Ki-ras oncogene activation in preinvasive pancreatic cancer. Gastroenterology 1992; 102: 230-236. Cerca con Google

94. Li J, Weghorst CM, Tsutsumi M, Poi MJ, Knobloch TJ, Casto BC, Melvin WS, Tsai MD, Muscarella P. Frequent p16INK4A/CDKN2A alterations in chemically induced Syrian golden hamster pancreatic tumors. Carcinogenesis 2004; 25: 263-268. Cerca con Google

95. Li Y, McCadden J, Ferrer F, Kruszewski M, Carducci M, Simons J, Rodriguez R. Prostate-specific expression of the diphtheria toxin A chain (DT-A): studies of inducibility and specificity of expression of prostate-specific antigen promoter-driven DT-A adenoviral-mediated gene transfer. Cancer Res 2002; 62: 2576-2582 Cerca con Google

96. Liu F, Pouponnot C, Massaguè J. Dual role of the Smad4/DPC4 tumor suppressor in TGFbeta-inducible transcriptional complexes. Genes Dev 1997; 11: 3157-3167. Cerca con Google

97. Liu S, Bugge TH, Leppla SH. Targeting of tumor cells by cell surface urokinase plasminogen activator-dependent antral toxin. J Biol Chem 2001; 276: 17976-17984. Cerca con Google

98. Liu S, Aaronson H, Mitola DJ, Leppla SH, Bugge TH. Potent antitumor activity of a urokinase-activated engineered anthrax toxin. Proc Natl Acad Sci USA 2003; 100: 657-662. Cerca con Google

99. Liu TF, Cohen KA, Ramage JG, Willingham MC, Thorburn AM, Frankel AE. A diphtheria toxin-epidermal growth factor fusion protein is cytotoxic to human glioblastoma multiforme cells. Cancer Res 2003; 63: 1834-1837. Cerca con Google

100. Liyanage UK, Moore TT, Joo HG, Tanaka Y, Herrmann V, Doherty G, Drebin JA, Strasberg SM, Eberlein TJ, Goedegebuure PS, Linehan DC. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol 2002; 169: 2756-61. Cerca con Google

101. Liyanage UK, Goedegebuure PS, Moore TT, Viehl CT, Moo-Young TA, Larson JW, Frey DM, Ehlers JP, Eberlein TJ, Linehan DC. Increased prevalence of regulatory T cells (Treg) is induced by pancreas adenocarcinoma. J Immunother 2006; 29: 416-24. Cerca con Google

102. Longley DB, Harkin DP, Johnston PG. 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 2003; 3: 330-338. Cerca con Google

103. Luttges J, Schlehe B, Menke MA, Vogel I, Henne-Bruns D, Kloppel G. The K-ras mutation pattern in pancreatic ductal adenocarcinoma usually is identical to that in associated normal, hyperplastic, and metaplastic ductal epithelium. Cancer 1999; 85: 1703-1710. Cerca con Google

104. Makinen K, Loimas S, Wahlfors J, Alhava E, Janne J. Evaluation of herpes simplex thymidine kinase mediated gene therapy in experimental pancreatic cancer. J Gene Med 2000; 2: 361-367. Cerca con Google

105. Mawatari F, Tsuruta S, Ido A, Ueki T, Nakao K, Kato Y, Tamaoki T, Ishii N, Nakata K. Retrovirus-mediated gene therapy for hepatocellular carcinoma: selective and enhanced suicide gene expression regulated by human alpha-fetoprotein enhancer directly linked to its promoter. Cancer Gene Ther. 1998; 5(5):301-6. Cerca con Google

106. Mesnil M, Yamasaki H. Bystander effects in herpes simplex virus-thimidine kinase/ganciclovir cancer gene therapy: role of gap-junctional intercellular communication. Cancer Res 2000; 60: 3989-3999. Cerca con Google

107. Mishra G, Liu TF, Frankel AE. Recombinant toxin DAB(389)EGF is cytotoxic to human pancreatic cancer cells. Expert Opin Biol Ther 2003; 3:1173-1180 Cerca con Google

108. Mizuno M, Yoshida J, Colosi P, Kurtzman G. Adeno-associated virus vector containing the herpes simplex virus thymidine kinase gene causes complete regression of intracerebrally implanted human gliomas in mice, in conjunction with ganciclovir administration. Jpn J Cancer Res. 1998;89(1):76-80. Cerca con Google

109. Moore PS, Sipos B, Orlandini S, Sorio C, Real FX, Lemoine NR, Gress T, Bassi C, Kloppel G, Kalthoff H, Ungefroren H, Lohr M, Scarpa A. Genetic profile of 22 pancreatic carcinoma cell lines. Analysis of K-ras, p53, p16 and DPC4/Smad4. Virch Arch 2001; 439: 798-802. Cerca con Google

110. Nakada Y, Saito S, Ohzawa K, Morioka CY, Kita K, Minemura M, Takahara T, Watanabe A. Antisense oligonucleotides specific to mutated k-ras genes inhibit invasiveness of human pancreatic cancer cell lines. Pancreatology 2001;1:314-9. Cerca con Google

111. Nollen EA, Morimoto RI. Chaperoning signaling pathways: molecular chaperones as stress-sensing 'heat shock' proteins. J Cell Sci 2002; 15: 2809-16. Cerca con Google

112. Noonan EJ, Place RF, Giardina C, Hightower LE. Hsp70B' regulation and function.Cell Stress Chaperones. 2007;12(3):219-29. Cerca con Google

113. Noonan EJ, Place RF, Rasoulpour RJ, Giardina C, Hightower LE. Cell number-dependent regulation of Hsp70B' expression: evidence of an extracellular regulator. J Cell Physiol. 2007;210(1):201-11. Cerca con Google

114. Nummer D, Suri-Payer E, Schmitz-Winnenthal H, Bonertz A, Galindo L, Antolovich D, Koch M, Buchler M, Weitz J, Schirrmacher V, Beckhove P. Role of tumor endothelium in CD4+ CD25+ regulatory T cell infiltration of human pancreatic carcinoma. J Natl Cancer Inst 2007; 99: 1188-99. Cerca con Google

115. O'Connell-Rodwell CE, Shriver D, Simanovskii DM, McClure C, Cao YA, Zhang W, Bachmann MH, Beckham JT, Jansen ED, Palanker D, Schwettman HA, Contag CH. A genetic reporter of thermal stress defines physiologic zones over a defined temperature range. FASEB J 2004; 18(2):264-71. Cerca con Google

116. Ogata M, Naito Z, Tanaka S, Moriyama Y, Asano G. Overexpression and localization of heat shock proteins mRNA in pancreatic carcinoma. J Nippon Med Sch. 2000; 67:177-85. Cerca con Google

117. Ohwada A, Hirschowitz EA, Crystal RG. Regional delivery of an adenovirus vector containing the Escherichia coli cytosine deaminase gene to provide local activation of 5-fluorocytosine to suppress the growth of colon carcinoma metastatic to liver. Hum Gene Ther 1996;7(13):1567-76. Cerca con Google

118. Pandha H, Rigg A, John J, Lemoine N. Loss of expression of antigen-presenting molecules in human pancreatic cancer and pancreatic cancer cell lines.Clin Exp Immunol 2007; 148: 127-35. Cerca con Google

119. Pang S. Targeting and eradicating cancer cells by a prostate-specific vector carrying the diphtheria toxin A gene.Cancer Gene Ther. 2000;7(7):991-6. Cerca con Google

120. Pappenheimer AM Jr. Diphtheria toxin. Annu Rev Biochem. 1977;46:69-94. Cerca con Google

121. Peng B, Fleming JB, Breslin T, Grau AM, Fojioka S, Abbruzzese JL, Evans DB, Ayers D, Wathen K, Wu T, Robertson KD, Chiao PJ. Suppression of tumorigenesis and induction of p15(ink4b) by Smad4/DPC4 in human pancreatic cancer cells. Clin Cancer Res 2002; 8: 3628-3638. Cerca con Google

122. Peng W, Vverbitsky A, Bao Y, Sawicki JA. Regulated expression of diphtheria toxin in prostate cancer cells. Mol Ther 2002; 6: 527-545. Cerca con Google

123. Peng W, Chen J, Huang YH, Sawicki JA.Tightly-regulated suicide gene expression kills PSA-expressing prostate tumor cells.Gene Ther 2005; 12: 1573-80. Cerca con Google

124. Phillips PA, Dudeja V, McCarroll JA, Borja-Cacho D, Dawra RK, Grizzle WE, Vickers SM, Saluja AK. Triptolide induces pancreatic cancer cell death via inhibition of heat shock protein 70. Cancer Res. 2007;67:9407-16. Cerca con Google

125. Raijman I, Levin B.Exocrine tumors of the pancreas In: The pancreas: biology, pathobiology and disease. 2nd ed. Go VL et al. Raven Press Ltd, New York 1993: 899-912. Cerca con Google

126. Rakonczay Z Jr, Takacs T, Boros I, Lonovics J. Heat shock proteins and the pancreas. J Cell Physiol. 2003;195:383-91. Cerca con Google

127. Rasmussen H, Rasmussen C, Lempicki M, Durham R, Brough D, King CR, Weichselbaum R. TNFerade Biologic: preclinical toxicology of a novel adenovector with a radiation-inducible promoter, carrying the human tumor necrosis factor alpha gene. Cancer Gene Ther 2002; 9: 951-7. Cerca con Google

128. Ratti G, Rappuoli R, Giannini G. The complete nucleotide sequence of the gene coding for diphtheria toxin in the corynephage omega (tox+) genome. Nucleic Acids Res. 1983; 11(19):6589-95. Cerca con Google

129. Reni M, Passani P, Panucci MG, Nicoletti R, Galli L, Balzano G, Zerbi A, Di Carlo V, Villa E. Definitive results of phase II trial of cisplatin, epirubicin, continuous-infusion fluorouracil, and gemcitabine in stage IV pancreatic adenocarcinoma. J Clin Oncol 2001; 19: 2679-2686. Cerca con Google

130. Rigg AS, Lemoine NR. Genetic prodrug activation therapy for pancreatic cancer. Ann N Y Acad Sci USA 1999; 880: 319-325. Cerca con Google

131. Ritossa FA. A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia 1962; 18:571-573. Cerca con Google

132. Rodicker F, Putzer BM. pP73 is effective in p53-null pancreatic cancer cells resistant to wild-type TP53 gene replacement. Cancer Res 2003; 63: 2737-2741. Cerca con Google

133. Rome C, Couillaud F, Moonen CT. Spatial and temporal control of expression of therapeutic genes using heat shock protein promoters. Methods. 2005; 35(2):188-98. Cerca con Google

134. Rosenfeld ME, Vickers SM, Raben D, Wang M, Sampson L, Feng M, Jaffee E, Curiel, DT. Pancreatic carcinoma cell killing via adenoviral mediated delivery of herpes simplex virus thymidine kinase gene. Ann. Surg. 1997; 5: 609-620. Cerca con Google

135. Rubanyi GM. The future of human gene therapy. Mol Aspects Med 2001; 22: 113-142. Cerca con Google

136. Ryschich E, Notzel T, Hinz U, Autschbach F, Ferguson J, Simon I, Weitz J, Frohlich B, Klar E, Buchler MW, Schmidt J. Control of T-cell-mediated immune response by HLA class I in human pancreatic carcinoma.Clin Cancer Res 2005; 11: 498-504. Cerca con Google

137. Saimura M, Nagai E, Mizumoto K, Maehara N, Minamishima YA, Katano M, Matsumoto K, Nakamura T, Tanaka M. Tumor suppression through angiogenesis inhibition by SUIT-2 pancreatic cancer cells genetically engineered to secrete NK4. Clin Cancer Res. 2002; 8:3243-9. Cerca con Google

138. Saimura M, Nagai E, Mizumoto K, Maehara N, Okino H, Katano M, Matsumoto K, Nakamura T, Narumi K, Nukiwa T, Tanaka M. Intraperitoneal injection of adenovirus-mediated NK4 gene suppresses peritoneal dissemination of pancreatic cancer cell line AsPC-1 in nude mice. Cancer Gene Ther. 2002; 9:799-806. Cerca con Google

139. Saito Y, Sunamura M, Motoi F, Abe H, Egawa S, Duda DG, Hoshida T, Fukuyama S, Hamada H, Matsuno S. Oncolytic replication-competent adenovirus suppresses tumor angiogenesis through preserved E1A region. Cancer Gene Ther. 2006;13:242-52. Cerca con Google

140. Sangro B, Mazzolini G, Ruiz J, Herraiz M, Quiroga J, Herrero I, Benito A, Larrache J, Pueyo J, Subtil JC, Olague C, Sola J, Sadaba B, Lacasa C, Melero I, Qian C, Prieto J. Phase I trial of intratumoral injection of an adenovirus encoding interleukin-12 for advanced digestive tumors. J Clin Oncol 2004; 22: 1389-97. Cerca con Google

141. Santoro MG. Heat shock factors and the control of the stress response.Biochem Pharmacol. 2000;59(1):55-63 Cerca con Google

142. Schmid RM. Genetic basis of pancreatic cancer. Best Pract & Res Clin Gastroenterol 2002; 16: 421-433. Cerca con Google

143. Schneider G, Schmid RM. Genetic alterations in pancreatic carcinoma. Mol Cancer 2003; 2:15. Cerca con Google

144. Schwarte-Waldhoff I, Volpert OV, Bouck NP, Sipos B, Hahn SA, Klein-Scory S, Luttges J, Kloppel G, Graeven U, Eilert-Micus C, Hintelmann A, Schmiegel W. Smad4/DPC4-mediated tumor suppression through suppression of angiogenesis. Proc Natl Acad Sci USA 2000; 97: 9624-9629. Cerca con Google

145. Shaw JP, Akiyoshi DE, Arrigo DA, Rhoad AE, Sullivan B, Thomas J, Genbauffe FS, Bacha P, Nichols JC. Cytotoxic properties of DAB486EGF and DAB389EGF, epidermal growth factor (EGF)receptor-targeted fusion toxins J Biol Chem. 1991;266(31):21118-24. Cerca con Google

146. Shi X, Liu S, Kleeff J, Friess H, Buchler MW. Acquired resistance of pancreatic cancer towards 5-fluorouracil and gemcitabine is associated with altered expression of apoptosis-regulating genes. Oncology 2002; 62: 354-362. Cerca con Google

147. Smith RC, Machluf M, Bromley P, Atala A, Walsh K. Spatial and temporal control of transgene expression through ultrasound-mediated induction of the heat shock protein 70B promoter in vivo. Hum Gene Ther. 2002;13(6):697-706. Cerca con Google

148. Stauffer PR. Evolving technology for thermal therapy of cancer.Int J Hyperthermia. 2005;21(8):731-44. Cerca con Google

149. Su Z, Lebedeva IV, Gopalkrishnan RV, Goldstein NI, Stein CA, Reed JC, Dent P, Fisher PB. A combinatorial approach for selectively inducing programmed cell death in human pancreatic cancer cells. Proc Natl Acad Sci USA 2001; 98:10332-7. Cerca con Google

150. Tada H, Maron DJ, Choi EA, Barsoum J, Lei H, Xie Q, Liu W, Ellis L, Moscioni AD, Tazelaar J, Fawell S, Qin X, Propert KJ, Davis A, Fraker DL, Wilson JM, Spitz FR. Systemic IFN gene therapy results in long-term survival in mice with established colorectal liver metastases. J Clin Invest 2001; 108: 83-95. Cerca con Google

151. Tada M, Ohashi M, Shiratori Y, Okudaira T, Komatsu Y, Kawabe T, Yoshida H, Machinami R, Kishi K, Omata M. Analysis of K-ras gene mutation in hyperplastic duct cells of the pancreas without pancreatic disease. Gastroenterology 1996; 110: 227-231. Cerca con Google

152. Tanaka S, Iwai M, Harada Y, Morikawa T, Muramatsu A, Mori T, Okanoue T, Kashima K, Maruyama-Tabata H, Hirai H, Satoh E, Imanishi J, Mazda O. Targeted killing of carcinoembryonic antigen (CEA)-producing cholangiocarcinoma cells by polyamidoamine dendrimer-mediated transfer of an Epstein-Barr virus (EBV)-based plasmid vector carrying the CEA promoter. Cancer Gene Ther. 2000; 7(9):1241-50. Cerca con Google

153. Tateishi K, Tada M, Yamagata M, Isayama H, Komatsu Y, Kawabe T, Shiratori Y, Omata M. High proportion of mutant K-ras gene in pancreatic juice of patients with pancreatic cystic lesions. Gut 1999; 45: 737-740. Cerca con Google

154. Tavaria M, Gabriele T, Kola I, Anderson RL. A hitchhiker's guide to the human Hsp70 family. Cell Stress Chaperones. 1996; 1:23-8. Cerca con Google

155. Tseng JF, Mulligan RC. Gene therapy for pancreatic cancer. Surg Oncol Clin N Am 2002; 11: 537-569. Cerca con Google

156. Tsuchida T, Kijima H, Hori S, Oshika Y, Tokunaga T, Kawai K, Yamazaki H, Ueyama Y, Scanlon KJ, Tamaoki N, Nakamura M. Adenovirus-mediated anti-K-ras ribozyme induces apoptosis and growth suppression of human pancreatic carcinoma. Cancer Gene Ther 2000; 7:373-383. Cerca con Google

157. Uchida T, Pappenheimer AM Jr, Greany R. Diphtheria toxin and related proteins. I. Isolation and properties of mutant proteins serologically related to diphtheria toxin. J Biol Chem. 1973; 248: 3838-44. Cerca con Google

158. Ugai S-I, Shimozato O, Yu L, Wang Y-Q, Kawamura K, Yamamoto H, Yamaguchi T, Saisho H, Sakiyama S, Tagawa M. Transduction of the IL-21 and IL-23 genes in human pancreatic carcinoma cells produces natural killer cell-dependent and independent antitumor effects. Cancer Gene Ther 2003; 10:771-778. Cerca con Google

159. Vermes A, Guchelaar H-J, Dankert J. Flucytosine: a review of its pharmacology, clinical indications, pharmacokinetics, toxicity and drug interactions. JAC 2000; 46:171-179. Cerca con Google

160. Viehl CT, Moore TT, Liyanage UK, Frey DM, Ehlers JP, Eberlein TJ, Goedegebuure PS, Linehan DC. Depletion of CD4+CD25+ regulatory T cells promotes a tumor-specific immune response in pancreas cancer-bearing mice. Ann Surg Oncol 2006; 13: 1252-8. Cerca con Google

161. Wagner AC, Weber H, Jonas L, Nizze H, Strowski M, Fiedler F, Printz H, Steffen H, Göke B. Hyperthermia induces heat shock protein expression and protection against cerulein-induced pancreatitis in rats. Gastroenterology. 1996; 111:1333-42. Cerca con Google

162. Wang CY, Li F, Yang Y, Guo HY, Wu CX, Wang S.Recombinant baculovirus containing the diphtheria toxin A gene for malignant glioma therapy.Cancer Res 2006; 66: 5798-806. Cerca con Google

163. Wang J, Xiao-Xuan L, Dao-Zhen C, Shu-Feng L, Li-Shan Z. Herpes simplex virus thymidine kinase and ganciclovir suicide gene therapy for human pancreatic cancer. World J Gastroenterol 2004; 10: 400-403. Cerca con Google

164. Wang X-P, Yazawa K, Yang J, Kohn D, Fisher WE, Brunicardi C. Specific gene expression and therapy for pancreatic cancer using the cytosine deaminase gene directed by the rat insulin promoter. J Gastrointest Surg 2004; 8: 98-108. Cerca con Google

165. Weber H, Wagner AC, Jonas L, Merkord J, Höfken T, Nizze H, Leitzmann P, GökeB,, Schuff-Werner P. Heat shock response is associated with protection against acute interstitial pancreatitis in rats. Dig Dis Sci. 2000; 45:2252-64. Cerca con Google

166. Wheeler DS, Wong HR. Heat shock response and acute lung injury. Free Radic Biol Med. 2007;42:1-14 Cerca con Google

167. Wohlhueter RM, McIvor RS, Plagemann PG. Facilitated transport of uracil and 5-fluorouracil, and permeation of orotic acid into cultured mammalian cells. J Cell Physiol 1980; 104(3):309-19. Cerca con Google

168. Yanagimoto H, Takai S, Satoi S, Toyokawa H, Takahashi K, Terakawa N, Kwon AH, Kamiyama Y. Impaired function of circulating dendritic cells in patients with pancreatic cancer. Clin Immunol 2005; 114: 52-60. Cerca con Google

169. Yang L, Chiang Y, Lenz H-J, Danenberg KD, Spears CP, Gordon EM, Anderson WF, Parekh D. Intercellular communication mediates the bystander effect during herpes simplex thymidine kinase/ ganciclovir-based gene therapy of human gastrointestinal tumor cells. Hum Gene Ther 1998; 9: 719-728. Cerca con Google

170. Yang L, Hwang R, Pandit L, Gordon EM, Anderson WF, Parekh D. Gene therapy of metastatic pancreas cancer with intraperitoneal injections of concentrated retroviral herpes simplex thymidine kinase vector supernatant and ganciclovir. Ann Surg 1996; 224: 405-417. Cerca con Google

171. Yang L, Hwang R, Chiang Y, Gordon EM, Anderson WF, Parekh D. Mechanisms for ganciclovir resistance in gastrointestinal tumor cells transduced with a retroviral vector containing the herpes simplex virus thymidine kinase gene Clin Cancer Res 1998; 4: 731-741. Cerca con Google

172. Yoshida Y, Tasaki K, Miyauchi M, Narita M, Takenaga K, Yamamoto H, Yamaguchi T, Saisho H, Sakiyama S, Tagawa M. Impaired tumorigenicity of human pancreatic cancer cells retrovirally transduced with interleukin-12 or interleukin-15 gene. Cancer Gene Ther 2000; 7: 324-331. Cerca con Google

173. Yu D, Chen D, Chiu C, Razmazma B, Chow YH, Pang S. Prostate-specific targeting using PSA promoter-based lentiviral vectors. Cancer Gene Ther. 2001;8(9):628-35. Cerca con Google

174. Zhang YA, Nemunaitis J, Scanlon KJ, Tong AW. Anti-tumorigenic effect of a K-ras ribozyme against human lung cancer cell line heterotransplants in nude mice. Gene Ther 2000; 7: 2041-2050. Cerca con Google

175. Zheng JY, Chen D, Chan J, Yu D, Ko E, Pang S. Regression of prostate cancer xenografts by a lentiviral vector specifically expressing diphtheria toxin A. Cancer Gene Ther 2003; 10: 764-70. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record