Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Loguercio, Salvatore (2008) Reductionist and Integrative approaches to explore the H.pylori genome. [Tesi di dottorato]

Full text disponibile come:

Documento PDF

Abstract (inglese)

The reductionist approach of decomposing biological systems into their constituent parts has dominated molecular biology for half a century. Since organisms are composed solely of atoms and molecules without the participation of extraneous forces, it has been assumed that it should be possible to explain biological systems on the basis of the physico-chemical properties of their individual components, down to the atomic level. However, despite the remarkable success of methodological reductionism in analyzing individual cellular components, it is now generally accepted that the behavior of complex biological systems cannot be understood by studying their individual parts in isolation. To tackle the complexity inherent in understanding large networks of interacting biomolecules, the integrative viewpoint emphasizes cybernetic and systems theoretical methods, using a combination of mathematics, computation and empirical observation. Such an approach is beginning to become feasible in prokaryotes, combining an almost complete view of the genome and transcriptome with a reasonably extensive picture of the proteome.
Pathogenic bacteria are undoubtedly the most investigated subjects among prokaryotes. A paradigmatic example is the the human pathogen H.pylori, a causative agent of severe gastroduodenal disorders that infects almost half of the world population.
In this thesis, we investigated various aspects of Helicobacter pylori molecular physiology using both reductionist and integrative approaches.
In Section I, we have employed a reductionist, bottom-up perspective in studying the Cysteine oxidised/reduced state and the disulphide bridge pattern of an unusual GroES homolog expressed by H.pylori, Heat Shock protein A (HspA). This protein possesses a high Cys content, is involved in nickel binding and exhibits an extended subcellular localization, ranging from cytoplasm to cell surface. We have produced and characterized a recombinant HspA and mutants Cys94Ala and C94A/C111A. The disulphide bridge pattern has been assigned by integrating biochemical methodologies with mass spectrometry. All Cys are engaged in disulphide bonds that force the C-term domain to assume a peculiar closed loop structure, prone to host nickel ions. This novel Ni binding structural arrangement can be related to the Ni uptake/delivery to the extracellular urease, essential for the bacterium survival.
In Section II, we combined different computational methods with two main goals:
1) Analyze the H.pylori biomolecular interaction network in an attempt to select new molecular targets against H.pylori infection (Chapters 4 & 5);
2) Model and simulate the signaling perturbations induced by invading H.pylori proteins in the host ephitelial cells (Chapter 6).
Chapter 4 explores the 'robust yet fragile' feature of the H.pylori cell, viewed as a complex system in which robustness in response to certain perturbation is inevitably associated with fragility in response to other perturbations. With this in mind, we developed a general strategy aimed at identify control points in bacterial metabolic networks, which could be targets for novel drugs. The methodology is implemented on Helicobacter pylori 26695.
The entire metabolic network of the pathogen is analyzed to find biochemically critical points, e.g. enzymes which uniquely consume and/or produce a certain metabolite. Once identified, the list of critical enzymes is filtered in order to find candidate targets wich are non-homologous with the human enzymes. Finally, the essentiality of the identified targets is cross-validated by in silico deletion studies using flux-balance analysis (FBA) on a recent genome-scale metabolic model of H. pylori. Following this approach, we identified some enzymes which could be interesting targets for inhibition studies of H.pylori infection.
The study reported in Chapter 5 extends the previously described approach in light of recent theoretical studies on biological networks. These studies suggested that multiple weak attacks on selected targets are inevitably more efficient than the knockout of a single target, thus providing a conceptual framework for the recent success of multi-target drugs. We used this concept to exploit H.pylori metabolic robustness through multiple weak attacks on selected enzymes, therefore directing us toward target-sets discovery for combinatorial therapies.
We used the known metabolic and protein interaction data to build an integrated biomolecular network of the pathogen. The network was subsequently screened to find central elements of network communication, e.g. hubs, bridges with high betweenness centrality and overlaps of network communities. The selected enzymes were then classified on the basis of available data about cellular function and essentiality in an attempt to predict successful target-combinations. In order to evaluate the network effect triggered by the partial inactivation of candidate targets, robustness analysis was performed on small groups of selected enzymes using flux balance analysis (FBA) on a recent genome-scale metabolic model of H.pylori. In particular, the FBA simulation framework allowed to predict the growth phenotype associated to every partial inactivation set.
The preliminary results obtained so far may help to restrict the initial target-pool in search of target-sets for novel combinatorial drugs against H.pylori persistence. However, our long-term goal is to better understand the indirect network effects that lie at the heart of multi-target drug action and, ultimately, how multiple weak hits can perturb complex biological systems.
H.pylori produces various a cytotoxic protein, CagA, that interfere with a very important host signaling pathway, i.e. the epidermal growth factor receptor (EGFR) signaling network. EGFR signaling is one of the most extensively studied areas of signal transduction, since it regulates growth, survival, proliferation and differentiation in mammalian cells. In Chapter 6, we attempted to build an executable model of the EGFR-signaling core process using a process algebra approach. In the EGFR network, the core process is the heart of its underlying hour-glass architecture, as it plays a central role in downstream signaling cascades to gene expression through activation of multiple transcription factors. It consists in a dense array of molecules and interactions wich are tightly coupled to each other.
In order to build the executable model, a small set of EGFR core molecules and their interactions is tentatively translated in a BetaWB model. BetaWB is a framework for modelling and simulating biological processes based on Beta-binders language and its stochastic extension.
Once obtained, the computational model of the EGFR core process can be used to test and compare hypotheses regarding the principles of operation of the signaling network, i.e. how the EGFR network generates different responses for each set of combinatorial stimuli. In particular, probabilistic model checking can be used to explore the states and possible state changes of the computational model, whereas stochastic simulation (corresponding to the execution of the BetaWB model) may give quantitative insights into the dynamic behaviour of the system in response to different stimuli. Information from the above tecniques allows model validation through comparison within the experimental data available in the literature.
The inherent compositionality of the process algebra modeling approach enables further expansion of the EGFR core model, as well as the study of its behavior under specific perturbations, such as invading H.pylori proteins. This latter aspect might be of great value for H.pylori pathogenesis research, as signaling through the EGF receptors is intricately involved in gastric cancer and in many other gastroduodenal diseases.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Zagari, Adriana
Dottorato (corsi e scuole):Ciclo 20 > Corsi per il 20simo ciclo > FISIOLOGIA MOLECOLARE E BIOLOGIA STRUTTURALE
Data di deposito della tesi:Gennaio 2008
Anno di Pubblicazione:Gennaio 2008
Parole chiave (italiano / inglese):Helicobacter pylori, HspA, nickel binding, disulphide bridge pattern, mass spectrometry, integrative biology, Flux-balance analysis, metabolic network, drug target, robustness analysis, complexity, choke point, multi-component drug, metabolic network, protein interaction network, Egfr signaling, executable model, bow-tie architecture, pi-calculus, CagA
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/11 Biologia molecolare
Area 01 - Scienze matematiche e informatiche > INF/01 Informatica
Struttura di riferimento:Dipartimenti > Dipartimento di Biologia
Codice ID:395
Depositato il:23 Set 2008
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. (1994). Schistosomes, liver flukes and Helicobacter pylori. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Lyon, 7-14 June 1994. IARC Monogr Eval Carcinog Risks Hum 61, 1-241. Cerca con Google

2. Adamcsek, B., Palla, G., Farkas, I. J., Derenyi, I. & Vicsek, T. (2006). CFinder: locating cliques and overlapping modules in biological networks. Bioinformatics 22, 1021-3. Cerca con Google

3. Agoston, V., Csermely, P. & Pongor, S. (2005). Multiple weak hits confuse complex systems: a transcriptional regulatory network as an example. Phys Rev E Stat Nonlin Soft Matter Phys 71, 051909. Cerca con Google

4. Alm, R. A., Bina, J., Andrews, B. M., Doig, P., Hancock, R. E. & Trust, T. J. (2000). Comparative genomics of Helicobacter pylori: analysis of the outer membrane protein families. Infect Immun 68, 4155-68. Cerca con Google

5. Alm, R. A., Ling, L. S., Moir, D. T., King, B. L., Brown, E. D., Doig, P. C., Smith, D. R., Noonan, B., Guild, B. C., deJonge, B. L., Carmel, G., Tummino, P. J., Caruso, A., Uria-Nickelsen, M., Mills, D. M., Ives, C., Gibson, R., Merberg, D., Mills, S. D., Jiang, Q., Taylor, D. E., Vovis, G. F. & Trust, T. J. (1999). Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397, 176-80. Cerca con Google

6. Almaas, E., Oltvai, Z. N. & Barabasi, A. L. (2005). The activity reaction core and plasticity of metabolic networks. PLoS Comput Biol 1, e68. Cerca con Google

7. Amoresano, A., Orru, S., Siciliano, R. A., De Luca, E., Napoleoni, R., Sirna, A. & Pucci, P. (2001). Assignment of the complete disulphide bridge pattern in the human recombinant follitropin beta-chain. Biol Chem 382, 961-8. Cerca con Google

8. Amoresano, A., Pucci, P., Duro, G., Colombo, P., Costa, M. A., Izzo, V., Lamba, D. & Geraci, D. (2003). Assignment of disulphide bridges in Par j 2.0101, a major allergen of Parietaria judaica pollen. Biol Chem 384, 1165-72. Cerca con Google

9. Appelmelk, B. J., Martin, S. L., Monteiro, M. A., Clayton, C. A., McColm, A. A., Zheng, P., Verboom, T., Maaskant, J. J., van den Eijnden, D. H., Hokke, C. H., Perry, M. B., Vandenbroucke-Grauls, C. M. & Kusters, J. G. (1999). Phase variation in Helicobacter pylori lipopolysaccharide due to changes in the lengths of poly(C) tracts in alpha3-fucosyltransferase genes. Infect Immun 67, 5361-6. Cerca con Google

10. Appelmelk, B. J., Negrini, R., Moran, A. P. & Kuipers, E. J. (1997). Molecular mimicry between Helicobacter pylori and the host. Trends Microbiol 5, 70-3. Cerca con Google

11. Aspinall, G. O. & Monteiro, M. A. (1996). Lipopolysaccharides of Helicobacter pylori strains P466 and MO19: structures of the O antigen and core oligosaccharide regions. Biochemistry 35, 2498-504. Cerca con Google

12. Aspinall, G. O., Monteiro, M. A., Pang, H., Walsh, E. J. & Moran, A. P. (1996). Lipopolysaccharide of the Helicobacter pylori type strain NCTC 11637 (ATCC 43504): structure of the O antigen chain and core oligosaccharide regions. Biochemistry 35, 2489-97. Cerca con Google

13. Austin, J. W., Doig, P., Stewart, M. & Trust, T. J. (1992). Structural comparison of urease and a GroEL analog from Helicobacter pylori. J Bacteriol 174, 7470-3. Cerca con Google

14. Backert, S., Kwok, T., Schmid, M., Selbach, M., Moese, S., Peek, R. M., Jr., Konig, W., Meyer, T. F. & Jungblut, P. R. (2005). Subproteomes of soluble and structure-bound Helicobacter pylori proteins analyzed by two-dimensional gel electrophoresis and mass spectrometry. Proteomics 5, 1331-45. Cerca con Google

15. Bader, G. D. & Hogue, C. W. (2002). Analyzing yeast protein-protein interaction data obtained from different sources. Nat Biotechnol 20, 991-7. Cerca con Google

16. Baldwin, D. N., Shepherd, B., Kraemer, P., Hall, M. K., Sycuro, L. K., Pinto-Santini, D. M. & Salama, N. R. (2007). Identification of Helicobacter pylori genes that contribute to stomach colonization. Infect Immun 75, 1005-16. Cerca con Google

17. Becker, S. A., Feist, A. M., Mo, M. L., Hannum, G., Palsson, B. O. & Herrgard, M. J. (2007). Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. Nat Protoc 2, 727-38. Cerca con Google

18. Benoit, S. & Maier, R. J. (2003). Dependence of Helicobacter pylori urease activity on the nickel-sequestering ability of the UreE accessory protein. J Bacteriol 185, 4787-95. Cerca con Google

19. Berg, D. E., Hoffman, P. S., Appelmelk, B. J. & Kusters, J. G. (1997). The Helicobacter pylori genome sequence: genetic factors for long life in the gastric mucosa. Trends Microbiol 5, 468-74. Cerca con Google

20. Beswick, E. J., Suarez, G. & Reyes, V. E. (2006). H pylori and host interactions that influence pathogenesis. World J Gastroenterol 12, 5599-605. Cerca con Google

21. Bode, G., Malfertheiner, P., Lehnhardt, G., Nilius, M. & Ditschuneit, H. (1993). Ultrastructural localization of urease of Helicobacter pylori. Med Microbiol Immunol 182, 233-42. Cerca con Google

22. Bonday, Z. Q., Dhanasekaran, S., Rangarajan, P. N. & Padmanaban, G. (2000). Import of host delta-aminolevulinate dehydratase into the malarial parasite: identification of a new drug target. Nat Med 6, 898-903. Cerca con Google

23. Boudker, O., Todd, M. J. & Freire, E. (1997). The structural stability of the co-chaperonin GroES. J Mol Biol 272, 770-9. Cerca con Google

24. Bowers, P. M., Pellegrini, M., Thompson, M. J., Fierro, J., Yeates, T. O. & Eisenberg, D. (2004). Prolinks: a database of protein functional linkages derived from coevolution. Genome Biol 5, R35. Cerca con Google

25. Bukholm, G., Tannaes, T., Nedenskov, P., Esbensen, Y., Grav, H. J., Hovig, T., Ariansen, S. & Guldvog, I. (1997). Colony variation of Helicobacter pylori: pathogenic potential is correlated to cell wall lipid composition. Scand J Gastroenterol 32, 445-54. Cerca con Google

26. Burgard, A. P., Nikolaev, E. V., Schilling, C. H. & Maranas, C. D. (2004). Flux coupling analysis of genome-scale metabolic network reconstructions. Genome Res 14, 301-12. Cerca con Google

27. Bury-Mone, S., Skouloubris, S., Labigne, A. & De Reuse, H. (2001). The Helicobacter pylori UreI protein: role in adaptation to acidity and identification of residues essential for its activity. Mol Microbiol 42, 1021-1034. Cerca con Google

28. Cao, P., McClain, M. S., Forsyth, M. H. & Cover, T. L. (1998). Extracellular release of antigenic proteins by Helicobacter pylori. Infect Immun 66, 2984-6. Cerca con Google

29. Carlson, J. M. & Doyle, J. (2002). Complexity and robustness. Proc Natl Acad Sci U S A 99 Suppl 1, 2538-45. Cerca con Google

30. Censini, S., Lange, C., Xiang, Z., Crabtree, J. E., Ghiara, P., Borodovsky, M., Rappuoli, R. & Covacci, A. (1996). cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proc Natl Acad Sci U S A 93, 14648-53. Cerca con Google

31. Cohen, I. R. (2000). Tending Adam's garden: evolving the cognitive immune self, Academic Press, London, UK. Cerca con Google

32. Cooke, C. L., Huff, J. L. & Solnick, J. V. (2005). The role of genome diversity and immune evasion in persistent infection with Helicobacter pylori. FEMS Immunol Med Microbiol 45, 11-23. Cerca con Google

33. Covacci, A., Telford, J. L., Del Giudice, G., Parsonnet, J. & Rappuoli, R. (1999). Helicobacter pylori virulence and genetic geography. Science 284, 1328-33. Cerca con Google

34. Cowing, D. W., Bardwell, J. C., Craig, E. A., Woolford, C., Hendrix, R. W. & Gross, C. A. (1985). Consensus sequence for Escherichia coli heat shock gene promoters. Proc Natl Acad Sci U S A 82, 2679-83. Cerca con Google

35. Craig, E. A., Gambill, B. D. & Nelson, R. J. (1993). Heat shock proteins: molecular chaperones of protein biogenesis. Microbiol Rev 57, 402-14. Cerca con Google

36. Csermely, P., Agoston, V. & Pongor, S. (2005). The efficiency of multi-target drugs: the network approach might help drug design. Trends Pharmacol Sci 26, 178-82. Cerca con Google

37. Cussac, V., Ferrero, R. L. & Labigne, A. (1992a). Expression of Helicobacter pylori urease genes in Escherichia coli grown under nitrogen-limiting conditions. J. Bacteriol. 174, 2466-2473. Cerca con Google

38. Cussac, V., Ferrero, R. L. & Labigne, A. (1992b). Expression of Helicobacter pylori urease genes in Escherichia coli grown under nitrogen-limiting conditions. J Bacteriol 174, 2466-73. Cerca con Google

39. Dawson, S. V. & Elliott, E. A. (1980). Use of the choke point in the prediction of flow limitation in elastic tubes. Fed Proc 39, 2765-70. Cerca con Google

40. di Bernardo, D., Thompson, M. J., Gardner, T. S., Chobot, S. E., Eastwood, E. L., Wojtovich, A. P., Elliott, S. J., Schaus, S. E. & Collins, J. J. (2005). Chemogenomic profiling on a genome-wide scale using reverse-engineered gene networks. Nat Biotechnol 23, 377-83. Cerca con Google

41. Dian, C., Schauer, K., Kapp, U., McSweeney, S. M., Labigne, A. & Terradot, L. (2006). Structural basis of the nickel response in Helicobacter pylori: crystal structures of HpNikR in Apo and nickel-bound states. J Mol Biol 361, 715-30. Cerca con Google

42. Doig, P., Exner, M. M., Hancock, R. E. & Trust, T. J. (1995). Isolation and characterization of a conserved porin protein from Helicobacter pylori. J Bacteriol 177, 5447-52. Cerca con Google

43. Doig, P. & Trust, T. J. (1994). Identification of surface-exposed outer membrane antigens of Helicobacter pylori. Infect Immun 62, 4526-33. Cerca con Google

44. Dorrell, N. & Wren, B. W. (1998). From genes to genome biology: a new era in Helicobacter pylori research. Gut 42, 451-3. Cerca con Google

45. Dunn, B. E., Roop, R. M., 2nd, Sung, C. C., Sharma, S. A., Perez-Perez, G. I. & Blaser, M. J. (1992). Identification and purification of a cpn60 heat shock protein homolog from Helicobacter pylori. Infect Immun 60, 1946-51. Cerca con Google

46. Dunn, B. E., Vakil, N. B., Schneider, B. G., Miller, M. M., Zitzer, J. B., Peutz, T. & Phadnis, S. H. (1997). Localization of Helicobacter pylori urease and heat shock protein in human gastric biopsies. Infect Immun 65, 1181-8. Cerca con Google

47. Eamranond, P. P., Torres, J., Munoz, O. & Perez-Perez, G. I. (2004). Age-specific immune response to HspA in Helicobacter pylori-positive persons in Mexico. Clin Diagn Lab Immunol 11, 983-5. Cerca con Google

48. Efroni, S. & Cohen, I. R. (2002). Simplicity belies a complex system: a response to the minimal model of immunity of Langman and Cohn. Cell Immunol 216, 23-30. Cerca con Google

49. Ehrenman, G. (2005). Mining what others miss: highlighting the subtleties in 10e12 bytes of data, technology tries to clear up its own complex mess. Mechanical Engineering-CIME 127, 26-31. Cerca con Google

50. Ellis, R. J. & van der Vies, S. M. (1991). Molecular chaperones. Annu Rev Biochem 60, 321-47. Cerca con Google

51. Evans, D. J., Jr. & Evans, D. G. (2000). Helicobacter pylori adhesins: review and perspectives. Helicobacter 5, 183-95. Cerca con Google

52. Fayet, O., Ziegelhoffer, T. & Georgopoulos, C. (1989). The groES and groEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures. J Bacteriol 171, 1379-85. Cerca con Google

53. Ferrero, R. L., Cussac, V., Courcoux, P. & Labigne, A. (1992). Construction of isogenic urease-negative mutants of Helicobacter pylori by allelic exchange. J Bacteriol 174, 4212-7. Cerca con Google

54. Ferrero, R. L., Thiberge, J. M., Huerre, M. & Labigne, A. (1994). Recombinant antigens prepared from the urease subunits of Helicobacter spp.: evidence of protection in a mouse model of gastric infection. Infect Immun 62, 4981-9. Cerca con Google

55. Ferrero, R. L., Thiberge, J. M., Kansau, I., Wuscher, N., Huerre, M. & Labigne, A. (1995). The GroES homolog of Helicobacter pylori confers protective immunity against mucosal infection in mice. Proc Natl Acad Sci U S A 92, 6499-503. Cerca con Google

56. Fleck, L. (1979). Genesis and development of a scientific fact, University of Chicago Press, Chicago, IL. Cerca con Google

57. Fleischmann, R. D., Adams, M. D., White, O., Clayton, R. A., Kirkness, E. F., Kerlavage, A. R., Bult, C. J., Tomb, J. F., Dougherty, B. A., Merrick, J. M. & et al. (1995). Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269, 496-512. Cerca con Google

58. Frenck, R. W., Jr. & Clemens, J. (2003). Helicobacter in the developing world. Microbes Infect 5, 705-13. Cerca con Google

59. Galliano, M., Minchiotti, L., Campagnoli, M., Sala, A., Visai, L., Amoresano, A., Pucci, P., Casbarra, A., Cauci, M., Perduca, M. & Monaco, H. L. (2003). Structural and biochemical characterization of a new type of lectin isolated from carp eggs. Biochem J 376, 433-40. Cerca con Google

60. Ge, R., Sun, X., Gu, Q., Watt, R. M., Tanner, J. A., Wong, B. C., Xia, H. H., Huang, J. D., He, Q. Y. & Sun, H. (2007). A proteomic approach for the identification of bismuth-binding proteins in Helicobacter pylori. J Biol Inorg Chem. Cerca con Google

61. Ge, Z. & Taylor, D. E. (1999). Contributions of genome sequencing to understanding the biology of Helicobacter pylori. Annu Rev Microbiol 53, 353-87. Cerca con Google

62. Gebert, B., Fischer, W., Weiss, E., Hoffmann, R. & Haas, R. (2003). Helicobacter pylori vacuolating cytotoxin inhibits T lymphocyte activation. Science 301, 1099-1102. Cerca con Google

63. Gerrits, M. M., van Vliet, A. H., Kuipers, E. J. & Kusters, J. G. (2006). Helicobacter pylori and antimicrobial resistance: molecular mechanisms and clinical implications. Lancet Infect Dis 6, 699-709. Cerca con Google

64. Giaever, G., Flaherty, P., Kumm, J., Proctor, M., Nislow, C., Jaramillo, D. F., Chu, A. M., Jordan, M. I., Arkin, A. P. & Davis, R. W. (2004). Chemogenomic profiling: identifying the functional interactions of small molecules in yeast. Proc Natl Acad Sci U S A 101, 793-8. Cerca con Google

65. Girvan, M. & Newman, M. E. (2002). Community structure in social and biological networks. Proc Natl Acad Sci U S A 99, 7821-6. Cerca con Google

66. Gupta, R. S. (1995). Evolution of the chaperonin families (Hsp60, Hsp10 and Tcp-1) of proteins and the origin of eukaryotic cells. Mol Microbiol 15, 1-11. Cerca con Google

67. Ha, N. C., Oh, S. T., Sung, J. Y., Cha, K. A., Lee, M. H. & Oh, B. H. (2001). Supramolecular assembly and acid resistance of Helicobacter pylori urease. Nat Struct Biol 8, 505-9. Cerca con Google

68. Hand, D. J., Blunt, G., Kelly, M. G. & Adams, N. M. (2000). Data mining for fun and profit. Stat. Sci. 15, 111-131. Cerca con Google

69. Haque, M., Hirai, Y., Yokota, K., Mori, N., Jahan, I., Ito, H., Hotta, H., Yano, I., Kanemasa, Y. & Oguma, K. (1996). Lipid profile of Helicobacter spp.: presence of cholesteryl glucoside as a characteristic feature. J Bacteriol 178, 2065-70. Cerca con Google

70. Harris, A. G., Wilson, J. E., Danon, S. J., Dixon, M. F., Donegan, K. & Hazell, S. L. (2003). Catalase (KatA) and KatA-associated protein (KapA) are essential to persistent colonization in the Helicobacter pylori SS1 mouse model. Microbiology 149, 665-72. Cerca con Google

71. Hartwell, L. H., Hopfield, J. J., Leibler, S. & Murray, A. W. (1999). From molecular to modular cell biology. Nature 402, C47-52. Cerca con Google

72. Hawtin, P. R., Delves, H. T. & Newell, D. G. (1991). The demonstration of nickel in the urease of Helicobacter pylori by atomic absorption spectroscopy. FEMS Microbiol. Letters 61, 51-54. Cerca con Google

73. Hawtin, P. R., Stacey, A. R. & Newell, D. G. (1990). Investigation of the structure and localization of the urease of Helicobacter pylori using monoclonal antibodies. J Gen Microbiol 136, 1995-2000. Cerca con Google

74. Hays, C. L. (2004). What Wal-Mart Knows About Customers' Habits. In New York Times (14 Nov 2004). Cerca con Google

75. High, N. J., Deadman, M. E. & Moxon, E. R. (1993). The role of a repetitive DNA motif (5'-CAAT-3') in the variable expression of the Haemophilus influenzae lipopolysaccharide epitope alpha Gal(1-4)beta Gal. Mol Microbiol 9, 1275-82. Cerca con Google

76. Holzhutter, S. & Holzhutter, H. G. (2004). Computational design of reduced metabolic networks. Chembiochem 5, 1401-22. Cerca con Google

77. Huang, J. Q., Sridhar, S., Chen, Y. & Hunt, R. H. (1998). Meta-analysis of the relationship between Helicobacter pylori seropositivity and gastric cancer. Gastroenterology 114, 1169-79. Cerca con Google

78. Icatlo, F. C., Jr., Kuroki, M., Kobayashi, C., Yokoyama, H., Ikemori, Y., Hashi, T. & Kodama, Y. (1998). Affinity purification of Helicobacter pylori urease. Relevance to gastric mucin adherence by urease protein. J Biol Chem 273, 18130-8. Cerca con Google

79. Ilver, D., Arnqvist, A., Ogren, J., Frick, I. M., Kersulyte, D., Incecik, E. T., Berg, D. E., Covacci, A., Engstrand, L. & Boren, T. (1998). Helicobacter pylori adhesin binding fucosylated histo-blood group antigens revealed by retagging. Science 279, 373-7. Cerca con Google

80. Imamichi, T. (2004). Action of anti-HIV drugs and resistance: reverse transcriptase inhibitors and protease inhibitors. Curr Pharm Des 10, 4039-53. Cerca con Google

81. Jaenicke, R. & Creighton, T. E. (1993). Protein folding: junior chaperones. Curr Biol 3, 234-5. Cerca con Google

82. Jensen, L. J., Saric, J. & Bork, P. (2006). Literature mining for the biologist: from information retrieval to biological discovery. Nat Rev Genet 7, 119-29. Cerca con Google

83. Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N. & Barabasi, A. L. (2000). The large-scale organization of metabolic networks. Nature 407, 651-4. Cerca con Google

84. Jiang, Z., Huang, A. L., Tao, X. H. & Wang, P. L. (2003). Construction and characterization of bivalent vaccine candidate expressing HspA and M(r)18,000 OMP from Helicobacter pylori. World J Gastroenterol 9, 1756-61. Cerca con Google

85. Kansau, I., Guillain, F., Thiberge, J. M. & Labigne, A. (1996). Nickel binding and immunological properties of the C-terminal domain of the Helicobacter pylori GroES homologue (HspA). Mol Microbiol 22, 1013-23. Cerca con Google

86. Kansau, I. & Labigne, A. (1996). Heat shock proteins of Helicobacter pylori. Aliment Pharmacol Ther 10 Suppl 1, 51-6. Cerca con Google

87. Kitano, H. (2004). Biological robustness. Nat Rev Genet 5, 826-37. Cerca con Google

88. Kitano, H. (2007a). A robustness-based approach to systems-oriented drug design. Nat Rev Drug Discov 6, 202-10. Cerca con Google

89. Kitano, H. (2007b). Towards a theory of biological robustness. Mol Syst Biol 3, 137. Cerca con Google

90. Kluger, Y., Yu, H., Qian, J. & Gerstein, M. (2003). Relationship between gene co-expression and probe localization on microarray slides. BMC Genomics 4, 49. Cerca con Google

91. Korcsmaros, T., Kovacs, I. A., Szalay, M. S. & Csermely, P. (2007). Molecular chaperones: the modular evolution of cellular networks. J Biosci 32, 441-6. Cerca con Google

92. Krishnamurthy, P., Parlow, M., Zitzer, J. B., Vakil, N. B., Mobley, H. L., Levy, M., Phadnis, S. H. & Dunn, B. E. (1998). Helicobacter pylori containing only cytoplasmic urease is susceptible to acid. Infect Immun 66, 5060-6. Cerca con Google

93. Kusters, J. G., van Vliet, A. H. & Kuipers, E. J. (2006). Pathogenesis of Helicobacter pylori infection. Clin Microbiol Rev 19, 449-90. Cerca con Google

94. Langer, T. & Neupert, W. (1991). Heat shock proteins hsp60 and hsp70: their roles in folding, assembly and membrane translocation of proteins. Curr Top Microbiol Immunol 167, 3-30. Cerca con Google

95. Ma, H. W., Kumar, B., Ditges, U., Gunzer, F., Buer, J. & Zeng, A. P. (2004). An extended transcriptional regulatory network of Escherichia coli and analysis of its hierarchical structure and network motifs. Nucleic Acids Res 32, 6643-9. Cerca con Google

96. Mahdavi, J., Sonden, B., Hurtig, M., Olfat, F. O., Forsberg, L., Roche, N., Angstrom, J., Larsson, T., Teneberg, S., Karlsson, K. A., Altraja, S., Wadstrom, T., Kersulyte, D., Berg, D. E., Dubois, A., Petersson, C., Magnusson, K. E., Norberg, T., Lindh, F., Lundskog, B. B., Arnqvist, A., Hammarstrom, L. & Boren, T. (2002). Helicobacter pylori SabA adhesin in persistent infection and chronic inflammation. Science 297, 573-578. Cerca con Google

97. Maier, R. J., Benoit, S. L. & Seshadri, S. (2007). Nickel-binding and accessory proteins facilitating Ni-enzyme maturation in Helicobacter pylori. Biometals 20, 655-64. Cerca con Google

98. Marshall, B. J., Armstrong, J. A., McGechie, D. B. & Glancy, R. J. (1985). Attempt to fulfil Koch's postulates for pyloric Campylobacter. Med J Aust 142, 436-9. Cerca con Google

99. Marshall, B. J. & Warren, J. R. (1984). Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1, 1311-5. Cerca con Google

100. Michetti, P., Corthesy-Theulaz, I., Davin, C., Haas, R., Vaney, A. C., Heitz, M., Bille, J., Kraehenbuhl, J. P., Saraga, E. & Blum, A. L. (1994). Immunization of BALB/c mice against Helicobacter felis infection with Helicobacter pylori urease. Gastroenterology 107, 1002-11. Cerca con Google

101. Mobley, H. L., Cortesia, M. J., Rosenthal, L. E. & Jones, B. D. (1988). Characterization of urease from Campylobacter pylori. J Clin Microbiol 26, 831-6. Cerca con Google

102. Mobley, H. L., Garner, R. M., Chippendale, G. R., Gilbert, J. V., Kane, A. V. & Plaut, A. G. (1999). Role of Hpn and NixA of Helicobacter pylori in susceptibility and resistance to bismuth and other metal ions. Helicobacter 4, 162-9. Cerca con Google

103. Mobley, H. L. T., Mendz, G. L. , Hazell, S. L. . (2001). Helicobacter pylori: Physiology and Genetics, ASM Press, Washington (DC). Cerca con Google

104. Montecucco, C. & Rappuoli, R. (2001). Living dangerously: how Helicobacter pylori survives in the human stomach. Nat Rev Mol Cell Biol 2, 457-66. Cerca con Google

105. Monteiro, M. A., Chan, K. H., Rasko, D. A., Taylor, D. E., Zheng, P. Y., Appelmelk, B. J., Wirth, H. P., Yang, M., Blaser, M. J., Hynes, S. O., Moran, A. P. & Perry, M. B. (1998). Simultaneous expression of type 1 and type 2 Lewis blood group antigens by Helicobacter pylori lipopolysaccharides. Molecular mimicry between h. pylori lipopolysaccharides and human gastric epithelial cell surface glycoforms. J Biol Chem 273, 11533-43. Cerca con Google

106. Moran, A. P., Helander, I. M. & Kosunen, T. U. (1992). Compositional analysis of Helicobacter pylori rough-form lipopolysaccharides. J Bacteriol 174, 1370-7. Cerca con Google

107. Moran, A. P., Knirel, Y. A., Senchenkova, S. N., Widmalm, G., Hynes, S. O. & Jansson, P. E. (2002). Phenotypic variation in molecular mimicry between Helicobacter pylori lipopolysaccharides and human gastric epithelial cell surface glycoforms. Acid-induced phase variation in Lewis(x) and Lewis(y) expression by H. Pylori lipopolysaccharides. J Biol Chem 277, 5785-95. Cerca con Google

108. Morris, A. & Nicholson, G. (1987). Ingestion of Campylobacter pyloridis causes gastritis and raised fasting gastric pH. Am J Gastroenterol 82, 192-9. Cerca con Google

109. Morris, H. R. & Pucci, P. (1985). A new method for rapid assignment of S-S bridges in proteins. Biochem Biophys Res Commun 126, 1122-8. Cerca con Google

110. Muotiala, A., Helander, I. M., Pyhala, L., Kosunen, T. U. & Moran, A. P. (1992). Low biological activity of Helicobacter pylori lipopolysaccharide. Infect Immun 60, 1714-6. Cerca con Google

111. Neidhardt, F. C. & VanBogelen, R. A. (1987). Heat shock response. In Escherichia Coli and Salmonella typhimurium: Cellular and Molecular Biology (Neidhardt, F. C., ed.), Vol. 2, pp. 1334-45. American Society for Microbiology, Washington, DC. Cerca con Google

112. Odenbreit, S. & Haas, R. (2002). Helicobacter pylori: impact of gene transfer and the role of the cag pathogenicity island for host adaptation and virulence. Curr Top Microbiol Immunol 264, 1-22. Cerca con Google

113. Odenbreit, S., Kavermann, H., Puls, J. & Haas, R. (2002). CagA tyrosine phosphorylation and interleukin-8 induction by Helicobacter pylori are independent from alpAB, HopZ and bab group outer membrane proteins. Int J Med Microbiol 292, 257-266. Cerca con Google

114. Odenbreit, S., Wieland, B. & Haas, R. (1996). Cloning and genetic characterization of Helicobacter pylori catalase and construction of a catalase-deficient mutant strain. J Bacteriol 178, 6960-7. Cerca con Google

115. Oltvai, Z. N. & Barabasi, A. L. (2002). Systems biology. Life's complexity pyramid. Science 298, 763-4. Cerca con Google

116. Peek, R. M., Jr. & Blaser, M. J. (2002). Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nat Rev Cancer 2, 28-37. Cerca con Google

117. Pesci, E. C. & Pickett, C. L. (1994). Genetic organization and enzymatic activity of a superoxide dismutase from the microaerophilic human pathogen, Helicobacter pylori. Gene 143, 111-6. Cerca con Google

118. Phadnis, S. H., Parlow, M. H., Levy, M., Ilver, D., Caulkins, C. M., Connors, J. B. & Dunn, B. E. (1996). Surface localization of Helicobacter pylori urease and a heat shock protein homolog requires bacterial autolysis. Infect Immun 64, 905-12. Cerca con Google

119. Popper, K. R. (2000). The logic of scientific discovery. Paperback edit. Classics, Routledge, London, UK. Cerca con Google

120. Pruitt, K. D., Tatusova, T. & Maglott, D. R. (2007). NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 35, D61-5. Cerca con Google

121. Quackenbush, J. (2004). Data standards for 'omic' science. Nat Biotechnol 22, 613-4. Cerca con Google

122. Radcliff, F. J., Hazell, S. L., Kolesnikow, T., Doidge, C. & Lee, A. (1997). Catalase, a novel antigen for Helicobacter pylori vaccination. Infect Immun 65, 4668-74. Cerca con Google

123. Rahman, S. A. & Schomburg, D. (2006). Observing local and global properties of metabolic pathways: 'load points' and 'choke points' in the metabolic networks. Bioinformatics 22, 1767-74. Cerca con Google

124. Rain, J. C., Selig, L., De Reuse, H., Battaglia, V., Reverdy, C., Simon, S., Lenzen, G., Petel, F., Wojcik, J., Schachter, V., Chemama, Y., Labigne, A. & Legrain, P. (2001). The protein-protein interaction map of Helicobacter pylori. Nature 409, 211-5. Cerca con Google

125. Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N. & Barabasi, A. L. (2002). Hierarchical organization of modularity in metabolic networks. Science 297, 1551-5. Cerca con Google

126. Romano, M., Ricci, V. & Zarrilli, R. (2006). Mechanisms of disease: Helicobacter pylori-related gastric carcinogenesis--implications for chemoprevention. Nat Clin Pract Gastroenterol Hepatol 3, 622-32. Cerca con Google

127. Rothenbacher, D. & Brenner, H. (2003). Burden of Helicobacter pylori and H. pylori-related diseases in developed countries: recent developments and future implications. Microbes Infect 5, 693-703. Cerca con Google

128. Salama, N. R., Shepherd, B. & Falkow, S. (2004). Global transposon mutagenesis and essential gene analysis of Helicobacter pylori. J Bacteriol 186, 7926-35. Cerca con Google

129. Schuster, S., Fell, D. A. & Dandekar, T. (2000). A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat Biotechnol 18, 326-32. Cerca con Google

130. Scott, D. R., Weeks, D., Hong, C., Postius, S., Melchers, K. & Sachs, G. (1998). The role of internal urease in acid resistance of Helicobacter pylori. Gastroenterology 114, 58-70. Cerca con Google

131. Seshadri, S., Benoit, S. L. & Maier, R. J. (2007). Roles of His-rich hpn and hpn-like proteins in Helicobacter pylori nickel physiology. J Bacteriol 189, 4120-6. Cerca con Google

132. Sixsmith, D. G., Watkins, W. M., Chulay, J. D. & Spencer, H. C. (1984). In vitro antimalarial activity of tetrahydrofolate dehydrogenase inhibitors. Am J Trop Med Hyg 33, 772-6. Cerca con Google

133. Skouloubris, S., Labigne, A. & De Reuse, H. (1997). Identification and characterization of an aliphatic amidase in Helicobacter pylori. Mol Microbiol 25, 989-98. Cerca con Google

134. Skouloubris, S., Labigne, A. & De Reuse, H. (2001). The AmiE aliphatic amidase and AmiF formamidase of Helicobacter pylori: natural evolution of two enzyme paralogues. Mol Microbiol 40, 596-609. Cerca con Google

135. Skouloubris, S., Thiberge, J. M., Labigne, A. & De Reuse, H. (1998). The Helicobacter pylori UreI protein is not involved in urease activity but is essential for bacterial survival in vivo. Infect Immun 66, 4517-4521. Cerca con Google

136. Smith, J. I., Drumm, B., Neumann, A. W., Policova, Z. & Sherman, P. M. (1990). In vitro surface properties of the newly recognized gastric pathogen Helicobacter pylori. Infect Immun 58, 3056-60. Cerca con Google

137. Spiegelhalder, C., Gerstenecker, B., Kersten, A., Schiltz, E. & Kist, M. (1993). Purification of Helicobacter pylori superoxide dismutase and cloning and sequencing of the gene. Infect Immun 61, 5315-25. Cerca con Google

138. Suerbaum, S. & Michetti, P. (2002). Helicobacter pylori infection. N Engl J Med 347, 1175-86. Cerca con Google

139. Suerbaum, S., Thiberge, J. M., Kansau, I., Ferrero, R. L. & Labigne, A. (1994). Helicobacter pylori hspA-hspB heat-shock gene cluster: nucleotide sequence, expression, putative function and immunogenicity. Mol Microbiol 14, 959-74. Cerca con Google

140. Tannaes, T. & Bukholm, G. (2005). Cholesteryl-6-O-acyl-alpha-D-glucopyranoside of Helicobacter pylori relate to relative lysophospholipid content. FEMS Microbiol Lett 244, 117-20. Cerca con Google

141. Tannaes, T., Bukholm, I. K. & Bukholm, G. (2005). High relative content of lysophospholipids of Helicobacter pylori mediates increased risk for ulcer disease. FEMS Immunol Med Microbiol 44, 17-23. Cerca con Google

142. Tannaes, T., Dekker, N., Bukholm, G., Bijlsma, J. J. & Appelmelk, B. J. (2001). Phase variation in the Helicobacter pylori phospholipase A gene and its role in acid adaptation. Infect Immun 69, 7334-40. Cerca con Google

143. Telford, J. L., Ghiara, P., Dell'Orco, M., Comanducci, M., Burroni, D., Bugnoli, M., Tecce, M. F., Censini, S., Covacci, A., Xiang, Z. & et al. (1994). Gene structure of the Helicobacter pylori cytotoxin and evidence of its key role in gastric disease. J Exp Med 179, 1653-58. Cerca con Google

144. Thiele, I., Vo, T. D., Price, N. D. & Palsson, B. O. (2005). Expanded metabolic reconstruction of Helicobacter pylori (iIT341 GSM/GPR): an in silico genome-scale characterization of single- and double-deletion mutants. J Bacteriol 187, 5818-30. Cerca con Google

145. Todoroki, I., Joh, T., Watanabe, K., Miyashita, M., Seno, K., Nomura, T., Ohara, H., Yokoyama, Y., Tochikubo, K. & Itoh, M. (2000). Suppressive effects of DNA vaccines encoding heat shock protein on Helicobacter pylori-induced gastritis in mice. Biochem Biophys Res Commun 277, 159-63. Cerca con Google

146. Tomb, J. F., White, O., Kerlavage, A. R., Clayton, R. A., Sutton, G. G., Fleischmann, R. D., Ketchum, K. A., Klenk, H. P., Gill, S., Dougherty, B. A., Nelson, K., Quackenbush, J., Zhou, L., Kirkness, E. F., Peterson, S., Loftus, B., Richardson, D., Dodson, R., Khalak, H. G., Glodek, A., McKenney, K., Fitzegerald, L. M., Lee, N., Adams, M. D., Hickey, E. K., Berg, D. E., Gocayne, J. D., Utterback, T. R., Peterson, J. D., Kelley, J. M., Cotton, M. D., Weidman, J. M., Fujii, C., Bowman, C., Watthey, L., Wallin, E., Hayes, W. S., Borodovsky, M., Karp, P. D., Smith, H. O., Fraser, C. M. & Venter, J. C. (1997). The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388, 539-47. Cerca con Google

147. Vanet, A. & Labigne, A. (1998). Evidence for specific secretion rather than autolysis in the release of some Helicobacter pylori proteins. Infect Immun 66, 1023-7. Cerca con Google

148. Walsh, E. J. & Moran, A. P. (1997). Influence of medium composition on the growth and antigen expression of Helicobacter pylori. J Appl Microbiol 83, 67-75. Cerca con Google

149. Wang, G., Rasko, D. A., Sherburne, R. & Taylor, D. E. (1999). Molecular genetic basis for the variable expression of Lewis Y antigen in Helicobacter pylori: analysis of the alpha (1,2) fucosyltransferase gene. Mol Microbiol 31, 1265-74. Cerca con Google

150. Warren JR, M. B. (1983). Unidentifi ed curved bacilli on gastric epithelium in active chronic gastritis. Lancet Cerca con Google

151. Yeh, I., Hanekamp, T., Tsoka, S., Karp, P. D. & Altman, R. B. (2004). Computational analysis of Plasmodium falciparum metabolism: organizing genomic information to facilitate drug discovery. Genome Res 14, 917-24. Cerca con Google

152. Zhang, H., Zhang, X., Liu, M., Zhang, J., Li, Y. & Zheng, C. C. (2006). Expression and characterization of Helicobacter pylori heat-shock protein A (HspA) protein in transgenic tobacco (Nicotiana tabacum) plants. Biotechnol Appl Biochem 43, 33-8. Cerca con Google

153. Zuber, U. & Schumann, W. (1994). CIRCE, a novel heat shock element involved in regulation of heat shock operon dnaK of Bacillus subtilis. J Bacteriol 176, 1359-63. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record