Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Casari, Paolo (2008) MAC and Routing in Wireless Ad Hoc and Sensor Networks: a Cross-Layer Approach. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
2539Kb

Abstract (inglese)

"Respecting a network architecture yields better guarantees of reliability, longevity, and modularity, but much better performance can be potentially achieved through wisely chosen violations to that architecture."

In a nutshell, this is the message of a recent paper (see [1] in Chapter 1) outlining pros, cons, consequences and risks of cross-layer design, a currently widely adopted paradigm for wireless networks. The increasing attention and momentum that cross-layer design has recently gained is explained by its potential advantages, namely the network performance improvements that can be achieved, especially under stringent constraints in terms of hardware and computational power. A short definition of cross-layer design identifies this technique as a means of performing information exchange among different layers in the classic ISO/OSI protocol stack model, and of harvesting the potential design opportunities and performance improvements that follow. However, by breaking the modular structure of the ISO/OSI stack, one may encounter two orders of problems: first, unwanted interactions may be introduced; second, the generality of the architecture is lost. While a careful design phase can overcome the first problem, the second one requires stronger efforts. In fact, any cross-layer design is inherently specific to the type of network and scenario it is applied to, and limits the performance improvements to that specific type. Due to this loss of generality, the same protocol hardly offers the same results as applied to different types of networks.

In this Thesis, we will show two relevant examples of successful cross-layer design applied to two very different kinds of wireless networks. The first example deals with ad hoc networks with multiple antennas and MIMO communications. Due to the specific scenario, it can be assumed that nodes have high throughput needs and can accept to, e.g., spend more energy in performing the processing required by MIMO signaling in order to achieve greater communication speed. The analysis of this scenario is focused on the design of a novel PHY-aware MAC protocol for MIMO ad hoc networks and on the analysis and optimization of its performance.

A completely different point of view is required instead to handle wireless sensor networks (WSNs), the second type of wireless network considered in this Thesis. Peculiar to WSNs are the usually low communication speed, processing capabilities and energy supplies. Among others, these constraints do not allow complicated signal processing or the storage of a large amount of information. In turn this requires to limit the buffer of the nodes (the sensors hence have only a limited packet queue) and also to design protocols whose "state" can be summarized and efficiently held in the limited memory of the sensors. In the Thesis, we will provide an in-depth analysis of a geographic MAC/routing protocol for WSNs, and build upon it to yield a complete solution for channel access and packet forwarding. Part of this study is the design of an algorithm to route packets around connectivity holes, where geographic protocols alone fail.
In the appendix, the same cross-layer design concepts are applied to wireless underwater networks, a particular instance of WSNs where communications take place over long delay, low rate acoustic channels, and incur strongly frequency-dependent channel effects. All results (analysis, simulations, comparisons with other solutions) show that cross-layer design is in fact very effective, and offers valuable opportunities to leverage specific features that can lead to performance improvements in each kind of wireless network.


Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Zorzi, Michele
Dottorato (corsi e scuole):Ciclo 20 > Scuole per il 20simo ciclo > INGEGNERIA DELL'INFORMAZIONE > INGEGNERIA ELETTRONICA E DELLE TELECOMUNICAZIONI
Data di deposito della tesi:Gennaio 2008
Anno di Pubblicazione:Gennaio 2008
Parole chiave (italiano / inglese):Wireless networks, cross-layer design, mac protocols, routing protocols, mimo, ad hoc networks, wireless sensor networks, underwater networks
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-INF/03 Telecomunicazioni
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria dell'Informazione
Codice ID:400
Depositato il:30 Set 2008
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. [V. Kawadia and P. R. Kumar, “A cautionary perspective on cross–layer design,” IEEE Commun. Mag., vol. 12, no. 1, pp. 3–11, Feb. 2005. Cerca con Google

2. D. Bertsekas and R. Gallager, Data Networks, 2nd ed. Prentice Hall, 1992. Cerca con Google

A. Ksentini, M. Naimi, and A. Gueroui, “Toward an improvement of H.264 video transmission over IEEE 802.11e through a cross–layer architecture,” IEEE Commun. Mag., vol. 44, no. 1, pp. 107–114, Jan. 2006. Cerca con Google

3. V. Srivastava and M. Motani, “Cross-layer design: a survey and the road ahead,” IEEE Commun. Mag., vol. 43, no. 12, pp. 112–119, Dec. 2005. Cerca con Google

4. S. Shakkottai, T. S. Rappaport, and P. C. Karlsson, “Cross–layer design for wireless networks,” IEEE Commun. Mag., vol. 41, no. 10, pp. 74–80, Oct. 2003. Cerca con Google

5. G. Anastasi, M. Conti, and E. Gregori, “Exploiting medium access diversity in rate adaptive wireless LANs,” in Proc. of ACM MobiCom, Philadelphia, PA, 2004, pp. 345–359. Cerca con Google

6. G. Xylomenos and G. C. Polyzos, “Quality of service support over multi-service wireless internet links,” Computer Networks, vol. 37, no. 5, pp. 601–615, 2001. Cerca con Google

7. T. Elbatt and A. Ephremides, “Joint scheduling and power control for wireless ad hoc networks,” IEEE Trans. Wireless Commun., vol. 3, no. 1, pp. 74–85, Jan. 2004. Cerca con Google

8. M. Zorzi and R. R. Rao, “Geographic random forwarding (GeRaF) for ad hoc and sensor networks: energy and latency performance,” IEEE Trans. Mobile Comput., vol. 2, no. 4, pp. 349–365, 2003. Cerca con Google

9. V. Srivastava andM.Motani, “Classification-based system for cross–layer optimized wireless video transmission,” IEEE Trans. Multimedia, vol. 8, no. 5, pp. 1082–1095, Oct. 2006. Cerca con Google

10. S. Loretti, P. Soldati, and M. Johansson, “Cross–layer optimization of multi-hop radio networks with multi-user detectors,” in Proc. of IEEE WCNC, New Orleans, LA, Mar. 2005, pp. 2201–2206. Cerca con Google

11. L. Ljung, “Analysis of recursive stochastic algorithms,” IEEE Trans. Automat. Contr., vol. AC–22, pp. 551– 575, 1977. Cerca con Google

12. IEEE Standards Department, ANSI / IEEE Standard 802.11. IEEE Press, 1999. Cerca con Google

13. F. Tobagi and L. Kleinrock, “Packet switching in radio channels: part II–The hidden terminal problem in carrier sense multiple-access and the busy-tone solution,” IEEE Trans. Commun., vol. 23, no. 12, pp. 1417–1433, Dec. 1975. Cerca con Google

14. C. E. Perkins and E. M. Belding-Royer and S. R. Das, “Ad-hoc on-demand distance vector routing,” IETF Mobile Ad-hoc Networks (MANET) Working Group RFC. [Online]. Available: http://www.ietf.org/rfc/rfc3561.txt Vai! Cerca con Google

15. J. Broch, D. B. Johnson, and D. A. Maltz, “The dynamic source routing protocol for mobile ad hoc networks,” IETF Internet Draft, Dec. 1998. [Online]. Available: http://www.ietf.org Vai! Cerca con Google

16. T. Clausen and P. Jacquet, “Optimized Link State Routing Protocol (OLSR),” IETF RFC 3626, Oct. 2003. [Online]. Available: http://www.ietf.org Vai! Cerca con Google

17. G. Anastasi, M. Conti, and E. Gregori, “IEEE 802.11 ad hoc networks: protocols, performance and open issues,” in Ad Hoc Networking. New York: IEEE Press and John Wiley and Sons, Inc., 2004. Cerca con Google

18. R. Ramanathan, J. Redi, C. Santivanez, D. Viggins, and S. Polit, “Ad hoc networking with directional antennas: a complete system solution,” IEEE J. Select. Areas Commun., vol. 23, no. 3, pp. 496–506, Mar. 2005. Cerca con Google

19. H. L. van Trees, Optimum Array Processing, Part IV. New York: JohnWiley and Sons, Inc., 2002. Cerca con Google

20. C. A. Balanis, Antenna Theory: Analysis and Design, 2nd ed. New York: John Wiley and Sons, Inc., 1996. Cerca con Google

21. J. G. Proakis, Digital Communications, 2nd ed. New York: McGraw-Hill, 1999. Cerca con Google

22. G. J. Foschini, “Layered space-time architecture for wireless communication in a fading environment when using multiple antennas,” Bell Labs Tech. J., vol. 1, no. 2, pp. 41–59, 1996. Cerca con Google

23. P. W. Wolniansky, G. J. Foschini, G. D. Golden, and R. A. Valenzuela, “V–BLAST: an architecture for realizing very high data rates over the rich–scattering wireless channel,” in Proc. of IEEE ISSSE, Pisa, Italy, Sep. 1998, pp. 295–300. Cerca con Google

24. H. Jafarkhani, Space–Time Coding: Theory and Practice. Cambridge University Press, Sep. 2005. Cerca con Google

25. S. M. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE Trans. Commun., vol. 16, no. 8, pp. 1451–1458, Oct. 1998. Cerca con Google

26. L. Zheng and D. N. C. Tse, “Diversity and multiplexing: a fundamental tradeoff in multiple- antenna channels,” IEEE Trans. Inform. Theory, vol. 49, no. 5, pp. 1073–1096, May 2003. Cerca con Google

A. J. Paulraj, D. A. Gore, R. U. Nabar, and H. B¨ olcskei, “An overview of MIMO communications: a key to gigabit wireless,” Proc. IEEE, vol. 92, no. 2, pp. 198–218, Feb. 2004. Cerca con Google

27. R. R. Choudhury, X. Yang, R. Ramanathan, and N. H. Vaidya, “On designingMAC protocols for wireless networks using directional antennas,” IEEE Trans. Mobile Comput., vol. 5, no. 5, pp. 477–491, May 2006. Cerca con Google

28. R. R. Choudhury and N. H. Vaidya, “Deafness: a MAC problem in ad hoc networks when using directional antennas,” in Proc. of IEEE ICNP, Oct. 2004. Cerca con Google

A. Nasipuri, S. Ye, J. You, and R. E. Hiromoto, “A MAC protocol for mobile ad hoc networks using directional antennas,” in Proc. of IEEE WCNC, vol. 2, Chicago, IL, Sep. 2000, pp. 1214–1219. Cerca con Google

29. T. Korakis, G. Jakllari, and L. Tassiulas, “A MAC protocol for full exploitation of directional antennas in ad hoc wireless networks,” in Proc. of ACM MobiHoc, Annapolis, MD, Jun. 2003. Cerca con Google

30. M. Takai, J. Martin, and R. Bagrodia, “Effects of wireless physical layer modeling in mobile ad hoc networks,” in Proc. of ACM MobiHoc, Long Beach, CA, Oct. 2001, pp. 87–94. Cerca con Google

A. Paulraj, R. Nabar, and D. Gore, Introduction to Space–Time Wireless Communications. Cambridge, UK: Cambridge University Press, 2003. Cerca con Google

B. Chen and M. Gans, “MIMO communications in ad hoc networks,” in Proc. of IEEE VTC 2005-Spring, Stockholm, Sweden, May 2005, pp. 2434–2438. Cerca con Google

31. M. Park, S.-H. Choi, and S. M. Nettles, “Cross–layer MAC design for wireless networks using MIMO,” in Proc. of IEEE GlobeCom, vol. 2, St. Louis, MO, Nov. 2005, pp. 938–942. Cerca con Google

32. D. Vang and U. Tureli, “Cross–layer design for broadband ad hoc networks with MIMO–OFDM,” in Proc. of Signal Processing Advances in Wireless Communications, Jun. 2005. Cerca con Google

33. M. Hu and J. Zhang, “MIMO ad hoc networks: medium access control, saturation throughput, and optimal hop distance,” Journ. of Commun. and Networks, Special Issue on Mobile Ad Hoc Networks, pp. 317– 330, Dec. 2004. Cerca con Google

34. K. Sundaresan, R. Sivakumar, M. Ingram, and T.-Y. Chang, “Medium access control in ad hoc networks withMIMO links: optimization considerations and algorithms,” IEEE Trans.Mobile Comput., vol. 3, no. 4, pp. 350–365, Oct. 2004. Cerca con Google

35. G. Jakllari, S. V. Krishnamurthy,M. Faloutsos, P. V. Krishnamurthy, and O. Ercetin, “A cross–layer framework for exploiting virtual MISO links in mobile ad hoc networks,” IEEE Trans. Mobile Comput., vol. 6, no. 6, pp. 579–594, Jun. 2007. Cerca con Google

36. S. Cui and A. J. Goldsmith, “Cross–layer optimization of sensor networks based on cooperative MIMO techniques with rate adaptation,” in Proc. of IEEE SPAWC, New York City, NY, Jun. 2005, pp. 960–964. Cerca con Google

37. Y. Yuan, Z. He, and M. Chen, “Virtual MIMO-based cross–layer design for wireless sensor networks,” IEEE Trans. Veh. Technol., vol. 55, no. 3, pp. 856–864, May 2006. Cerca con Google

38. F. Rossetto and M. Zorzi, “On gain asymmetry and broadcast efficiency in MIMO ad hoc networks,” in Proc. of IEEE ICC, Istanbul, Turkey, Jun. 2006. Cerca con Google

39. S. Sfar, R. D. Murch, and K. B. Letaief, “Layered space–time multiuser detection over wireless uplink systems,” IEEE Trans. Wireless Commun., vol. 2, no. 4, pp. 653–668, Jul. 2003. Cerca con Google

40. G. H. Golub and C. F. van Loan, Matrix Computations. Baltimore, MD: The Johns Hopkins Univ. Press, 1983. Cerca con Google

41. G. Ginis and J. M. Cioffi, “On the relation between BLAST and the GDFE,” IEEE Commun. Lett., vol. 5, no. 9, pp. 364–366, Sep. 2001. Cerca con Google

42. L. Tong, Q. Zhao, and G. Mergen, “Multipacket reception in random access wireless networks: from signal processing to optimal medium access control,” IEEE Commun. Mag., vol. 39, no. 11, pp. 108–112, Nov. 2001. Cerca con Google

43. C. Shen, Y. Zhu, S. Zhou, and J. Jiang, “On the performance of V-BLAST with zero-forcing successive interference cancellation receiver,” in Proc. of IEEE GlobeCom, Dallas, TX, Nov. 2004, pp. 2818–2822. Cerca con Google

44. K. Liu and A. M. Sayeed, “An iterative extension of BLAST decoding algorithm for layered space-time signals,” IEEE Trans. Commun., vol. 53, no. 10, pp. 1754–1761, Oct. 2005. Cerca con Google

45. S. Loyka and F. Gagnon, “Performance analysis of the V-BLAST algorithm: an analytical approach,” IEEE Trans. Wireless Commun., vol. 3, no. 4, pp. 1326–1337, Jul. 2004. Cerca con Google

46. R. Narasimhan, “Error propagation analysis of V–BLAST with channel estimation errors,” IEEE Trans. Commun., vol. 53, no. 1, pp. 27–31, Jan. 2005. Cerca con Google

47. J. Benesty, Y. Huang, and J. Chen, “A fast recursive algorithm for optimum sequential signal detection in a BLAST system,” IEEE Trans. Signal Processing, vol. 1, no. 1, pp. 1722–1730, Jul. 2003. Cerca con Google

48. B. Hassibi, “An efficient square-root algorithm for BLAST,” in Proc. of IEEE ICASSP, Istanbul, Turkey, Jun. 2000, pp. 737–740. Cerca con Google

49. H. Zhu, Z. Lei, and F. P. S. Chin, “An improved square-root algorithmfor BLAST,” IEEE Signal Processing Lett., vol. 11, no. 9, pp. 772–775, Sep. 2004. Cerca con Google

50. “TinyOS Community Network.” [Online]. Available: http://www.tinyos.net/ Vai! Cerca con Google

51. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor networks: a survey,” Computer Networks, vol. 38, no. 4, pp. 393–422, Mar. 2002. Cerca con Google

52. M. Zorzi and R. R. Rao, “Geographic random forwarding (GeRaF) for ad hoc and sensor networks: energy and latency performance,” IEEE Trans. Mobile Comput., vol. 2, no. 4, pp. 349–365, 2003. Cerca con Google

53. ——, “Geographic random forwarding (GeRaF) for ad hoc and sensor networks: multihop performance,” IEEE Trans. Mobile Comput., vol. 2, no. 4, pp. 337–348, 2003. Cerca con Google

54. D. Ferrara, L. Galluccio, A. Leonardi, G. Morabito, and S. Palazzo, “MACRO: an integrated MAC/routing protocol for geographic forwarding in wireless sensor networks,” in Proc. of IEEE Info- Com, Miami, FL, Mar. 2005, pp. 1770–1781. Cerca con Google

55. M. Rossi, R. R. Rao, and M. Zorzi, “Statistically assisted routing algorithms (SARA) for hop count based forwarding in wireless sensor networks,” ACM/Springer’s WINET, 2006. Cerca con Google

56. Seada, M. Zuniga, A. Helmy, and B. Krishnamachari, “Energy-efficient forwarding strategies for geographic routing in lossy wireless networks,” in Proc. of ACM SenSys, Baltimore, MD, Nov. 2004, pp. 108–121. Cerca con Google

57. S. Lee, B. Bhattacharjee, and S. Banerjee, “Efficient geographic routing in multihop wireless networks,” in Proc. of ACM MobiHoc, Urbana-Champaign, IL, May 2005, pp. 230–241. Cerca con Google

58. C. Li, W. Hsu, B. Krishnamachari, and A. Helmy, “A local metric for geographic routing with power control in wireless networks,” in Proc. of IEEE SECON, Santa Clara, CA, Sep. 2005, pp. 229–239. Cerca con Google

59. Savidge, H. Lee, H. Agajan, and A. Goldsmith, “Event-driven geographic routing for wireless image sensor networks,” in Proc. of COGnitive systems and Interactive Sensors (COGIS) Symposium, Paris, France, Mar. 2006. Cerca con Google

60. C. E. Perkins and E. M. Royer, “Ad hoc on-demand distance vector routing,” in Proc. of IEEE WMCSA, Feb. 1999. Cerca con Google

61. T. Clausen and P. Jacquet, “Optimized Link State Routing Protocol (OLSR),” IETF RFC 3626, Oct. 2003. [Online]. Available: http://www.ietf.org Vai! Cerca con Google

62. J. Broch, D. B. Johnson, and D. A. Maltz, “The dynamic source routing protocol for mobile ad hoc networks,” IETF Internet Draft, Dec. 1998. [Online]. Available: http://www.ietf.org Vai! Cerca con Google

63. “Global Positioning System.” [Online]. Available: http://www.gps.gov/ Vai! Cerca con Google

64. “The European Union Galileo Project.” [Online]. Available: http://ec.europa.eu/dgs/energy transport/galileo/ Vai! Cerca con Google

A. Savvides and M. B. Srivastava, Mobile Ad Hoc Networking. IEEE Press and Wiley, Inc., 2004, ch. Location Discovery, S. Basagni, M. Conti, S. Giordano, and I. Stojmenovic, eds. Cerca con Google

65. Zorzi, “A new contention–based MAC protocol for geographic forwarding in ad hoc and sensor networks,” Proc. of IEEE ICC, vol. 6, pp. 3481–3485, Jun. 2004. Cerca con Google

66. S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and S. Shenker, “GHT: a geographic hast table for data-centric storage,” in Proc. of ACM WSNA, San Diego, CA, 2003, pp. 78–87. Cerca con Google

67. R. A. Howard, Dynamic Probabilistic Systems. JohnWiley & Sons, 1971. Cerca con Google

68. W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-efficient communication protocol forwirelessmicrosensor networks,” in Proc. of the Hawaii International Conference on System Sciences,Maui, Hawaii, Jan. 2000. Cerca con Google

69. B. Karp andH. T. Kung, “GPSR: greedy perimeter stateless routing forwireless sensor networks,” Proc. Of ACM MobiCom, pp. 243–254, Aug. 2000. Cerca con Google

70. Q. Fang and J. Gao and L. J. Guibas, “Locating and bypassing holes in sensor networks,” ACM Mobile Networks and Applications, vol. 11, no. 2, pp. 187–200, Apr. 2006. Cerca con Google

71. H. Takagi and L. Kleinrock, “Optimal transmission ranges for randomly distributed packet radio terminals,” IEEE Trans. Commun., vol. 32, no. 3, pp. 246–257, Mar. 1984. Cerca con Google

72. R. Nelson and L. Kleinrock, “The spatial capacity of a slotted ALOHA multihop packet radio network with capture,” IEEE Trans. Commun., vol. 32, no. 6, pp. 684–694, Jun. 1984. Cerca con Google

73. T. Hou and V. Li, “Performance analysis of multihop routing strategies in multihop wireless networks,” in Proc. of IEEE GlobeCom, Atlanta, GA, 1984, pp. 487–492. Cerca con Google

74. G. G. Finn, “Routing and addressing problems in large metropolitan-scale networks,” ISI, Tech. Rep. ISU/RR-87-180, Mar. 1987. Cerca con Google

75. Stojmenovic and X. Lin, “GEDIR: loop–free location based routing in wireless networks,” Proc. of the International Conference on Parallel and Distributed Computers and Networks, Nov. 1999. Cerca con Google

76. ——, “Power-aware localized routing in wireless networks,” IEEE Trans. Parallel Distrib. Syst., vol. 12, no. 11, pp. 1122–1133, Nov. 2001. Cerca con Google

77. E. Kranakis, H. Singh, and J. Urrutia, “Compass routing on geometric networks,” in Proc. of the 11th Canadian Conference on Computational Geometry, Vancouver, Canada, Aug. 1999, pp. 51–54. Cerca con Google

78. S. Basagni, I. Chlamtac, V. R. Syrotiuk, and B. A. Woodward, “A distance routing effect algorithm for mobility (DREAM),” in Proc. of ACM MobiCom, Dallas, TX, Sep. 1998, pp. 76–84. Cerca con Google

79. Y.-B. Ko and N. H. Vaidya, “Location-aided routing (LAR) in mobile ad hoc networks,” ACM Wireless Networks, vol. 6, no. 4, pp. 307–321, Jul. 2000. Cerca con Google

80. N. Amouris, S. Papavassiliou, andM. Li, “A position-based multi-zone routing protocol for wide area mobile ad hoc networks,” in Proc. of IEEE VTC, Amsterdam, The Netherlands, Sep. 1999, pp. 1365–1369. Cerca con Google

81. Y. Yu, D. Estrin, and R. Govindan, “Geographical and energy–aware routing: a recursive data dissemination protocol for wireless sensor networks,” UCLA Comp. Sci. Dept., Tech. Rep. 010023, May 2001. Cerca con Google

82. Y. Xu, J. Heidemann, and D. Estrin, “Geography–informed energy conservation for ad hoc routing,” Proc. of ACM SIGMobile, pp. 70–84, Sep. 2001. Cerca con Google

83. T. Camp, J. Boleng, B. Williams, L. Wilcox, and W. Navidi, “Performance comparison of two location based routing protocols for ad hoc networks,” in Proc. of IEEE InfoCom, New York City, NY, Jun. 2002, pp. 1678–1687. Cerca con Google

84. T. E. Lu and K. T. Feng, “Predictive mobility and location-aware routing protocol in mobile ad hoc networks,” in Proc. of IEEE GlobeCom, St. Louis, MO, Nov. 2005, pp. 899–903. Cerca con Google

85. T. Camp, J. Boleng, and V. Davies, “A survey of mobility models for ad hoc network research,” Wiley Wireless Communications andMobile Computing, Special Issue onMobile Ad Hoc Networking: Research, Trends and Applications, vol. 2, pp. 483–502, Apr. 2002. Cerca con Google

86. Li and P. Mohapatra, “LAKER: location aided knowledge extraction routing for mobile ad hoc networks,” in Proc. of IEEE WCNC, New Orleans, LA, Mar. 2003, pp. 1180–1184. Cerca con Google

87. R. K. Banka and G. Xue, “Angle routing protocol: location aided routing for mobile ad hoc networks using dynamic angle selection,” in Proc. of IEEE MilCom, Anaheim, CA, Oct. 2002, pp. 501–506. Cerca con Google

88. G. V. Záruba, V. K. Chaluvadi, and A. M. Suleman, “LABAR: location area based ad hoc routing for GPS-scarce wide area ad hoc networks,” in Proc. of IEEE PerCom, Dallas–Fort Worth, TX, Mar. 2003, pp. 509–513. Cerca con Google

89. X. Yang, R. Li, and Y. Liu, “An energy-efficient geographic routing algorithm for wireless sensor networks,” in Proc. of IEEE International Symposium on Communications Information Technologies, Beijing, China, May 2005, pp. 671–676. Cerca con Google

90. H.-I. Liu and P.-C. Yen, “LB2R: a load balanced & location based routing protocol for ad hoc networks,” in Proc. of IEEE VTC, Los Angeles, CA, Sep. 2004, pp. 3970–3974. Cerca con Google

91. J. Hornsberger and G. C. Shoja, “Geographic grid routing: designing for reliability in wireless sensor networks,” in Proc. of ACM IWCMC, Vancouver, Canada, Jul. 2006, pp. 281–286. Cerca con Google

92. Z. Q. Taha and X. Liu, “On the reliability–aware geographic routing,” in Proc. of the Wireless Telecommunications Symposium, Pomona, CA, 2005, pp. 74–78. Cerca con Google

93. K. Marina and S. R. Das, “On-demand multipath distance vector routing,” in Proc. of IEEE ICNP, Riverside, CA, Nov. 2001, pp. 14–23. Cerca con Google

94. K. Zeng, K. Ren, and W. Lou, “Geographic on-demand disjoint multipath routing in wireless ad hoc networks,” in Proc. of IEEE MilCom, Atlantic City, NJ, Oct. 2005, pp. 1–7. Cerca con Google

95. H. Li and M. Singhal, “Energy-efficient forwarding strategies for geographic routing in lossy wireless networks,” in Proc. of ACM SenSys, Baltimore, MD, Nov. 2004, pp. 108–121. Cerca con Google

96. Q. Liang and Q. Ren, “Energy and mobility aware geographical multipath routing for wireless sensor networks,” in Proc. of IEEE WCNC, New Orleans, LA, Mar. 2005, pp. 1867–1871. Cerca con Google

97. T. Park and K. G. Shin, “Optimal tradeoffs for location-based routing in large-scale networks,” Cerca con Google

98. IEEE/ACM Trans. Networking, vol. 13, no. 2, pp. 398–410, Apr. 2005. Cerca con Google

99. S. Subramanian and S. Shakkottai, “Geographic routing with limited information in sensor networks,” in Proc. of ACM IPSN, Los Angeles, CA, Apr. 2005, pp. 269–276. Cerca con Google

100. B. M. Blum, T. He, S. Son, and J. A. Stankovic, “IGF: a robust state-free communication protocol for sensor networks,” University of Virginia, Tech. Rep. CS-2003-11, 2003. Cerca con Google

101. D. Chen, J. Deng, and P. K. Varshney, “On the forwarding area of contention-based geographic forwarding for ad hoc and sensor networks,” in Proc. of IEEE SECON, Santa Clara, CA, Sep. 2005, pp. 130–141. Cerca con Google

102. H. F¨ußler, J. Widmer, M. K¨asemann, M. Mauve, and H. Hartenstein, “Contention-based forwarding for mobile ad hoc networks,” Elsevier’s Ad Hoc Networks, vol. 1, no. 4, pp. 351– 369, Nov. 2003. Cerca con Google

103. Witt and V. Turau, “BGR: blind geographic routing for sensor networks,” in Proc. of 3rd International Workshop on Intelligent Solutions in Embedded Systems, Hamburg, Germany, May 2005, pp. 51–61. Cerca con Google

104. T. He, J. A. Stankovic, C. Lu, and T. Abdelzaher, “SPEED: a stateless protocol for real–time communication in sensor networks,” in Proc. of IEEE ICDCS, Providence, RI, May 2003, pp. 46–55. Cerca con Google

105. R. C. Shah and S. Wieth¨ olter and A. Wolisz and J. M. Rabaey, “When does opportunistic routing make sense?” in Proc. of IEEE PerCom, Kauai, Hawaii, Mar. 2005, pp. 350–356. Cerca con Google

106. Stojmenovic, M. Russell, and B. Vukojevic, “Depth first search, location based localized routing and QoS routing in wireless networks,” in Proc. of IEEE ICPP, Toronto, Canada, Aug. 2000, pp. 173–180. Cerca con Google

107. P. Gupta and P. R. Kumar, “The capacity of wireless networks,” IEEE Trans. Inform. Theory, vol. 46, no. 2, pp. 547–566, Mar. 2000. Cerca con Google

108. R. S. S. Shakkottai and N. B. Shroff, “Unreliable sensor grids: coverage, connectivity and diameter,” in Proc. of IEEE InfoCom, San Francisco, CA, Mar. 2003, pp. 1073–1083. Cerca con Google

109. P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia, “Routing with guaranteed delivery in ad hoc wireless networks,” Proc. of ACM DIAL-M, pp. 48–55, Aug. 1999. Cerca con Google

110. P. Bose, L. Devroye, W. Evans, and D. Kirkpatrick, “On the spanning ratio of Gabriel graphs and ß-skeletons,” in Proc. of the 5th Latin American Symposium on Theoretical Informatics, Canc ´un, Mexico, Apr. 2002, pp. 479–493. Cerca con Google

111. F. Kuhn, R. Wattenhofer, and A. Zollinger, “Worst-case optimal and average-case efficient geometric ad-hoc routing,” in Proc. of ACM MobiHoc, Annapolis, MD, 2003, pp. 267–278. Cerca con Google

112. Gao, L. J. Guibas, J. Hershberger, L. Zhang, and A. Zhu, “Geometric spanners for mobile networks,” IEEE J. Select. Areas Commun., vol. 23, no. 1, pp. 174–185, Jan. 2005. Cerca con Google

113. G. Xing, C. Lu, R. Pless, and Q. Huang, “Impact of sensing coverage on greedy geographic routing algorithms,” IEEE Trans. Mobile Comput., vol. 45, pp. 348–360, Apr. 2006. Cerca con Google

114. Barrière, P. Fraigniaud, L. Narayanan, and J. Opatrny, “Robust position-based routing in wireless ad hoc networks with unstable transmission ranges,” Journal of Wireless Communications and Mobile Computing (WCMC), vol. 2, no. 3, pp. 141–153, 2001. Cerca con Google

115. Moaveninejad, W. Song, and X. Li, “Robust position-based routing for wireless ad hoc networks,” Elsevier Journal of Ad Hoc Networks, vol. 3, no. 5, pp. 546–559, Sep. 2005. Cerca con Google

116. Blazevic, J.-Y. Le Boudec, and S. Giordano, “A location-based routing method for mobile ad hoc networks,” IEEE Trans. Mobile Comput., vol. 4, no. 2, pp. 97–110, Mar. 2005. Cerca con Google

117. B. Leong, S. Mitra, and B. Liskov, “Path vector face routing: geographic routing with local face information,” in Proc. of ICNP, Boston, MA, Nov. 2005, pp. 147–158. Cerca con Google

118. Q.Huang, S. Bhattacharya, C. Lu, and G.-C. Roman, “FAR: face-aware routing formobicast in large-scale networks,” ACM Trans. on Sensor Networks, vol. 1, no. 2, pp. 240–271, Nov. 2005. Cerca con Google

119. Fayed and H. T. Mouftah, “Characterizing the Impact of Routing Holes on Geographic Routing,” in Proc. IEEE Systems Communications, Montreal, Canada, Aug. 2005, pp. 401–406. Cerca con Google

120. He, J. Li, and L. Zhou, “A novel geographic routing algorithm for ad hoc networks based on localized delaunay triangulation,” in Proc. of the International Conference on Advanced Information Networking and Applications, Vienna, Austria, Apr. 2006, pp. 49–54. Cerca con Google

121. S. Fotopoulou-Prigipa and A. B.McDonald, “A novel paradigm for geographic routing in ad hoc networks: comparison of geograms and geocircuits,” in Proc. of Communication Networks and Distributed Systems Modeling and Simulation Conference, San Diego, CA, Jan. 2004. Cerca con Google

122. ——, “GCRP: geographic virtual circuit routing protocol for ad hoc networks,” in Proc. of IEEE MASS, Fort Lauderdale, FL, Oct. 2004, pp. 416–425. Cerca con Google

123. D. Niculescu and B. Nath, “Trajectory-based forwarding and its applications,” in Proc. of ACMMobiCom, San Diego, CA, Sep. 2003, pp. 260–272. Cerca con Google

124. S.Wu and K. S. Candan, “GPER: geographic power efficient routing in sensor networks,” in Proc. of IEEE ICNP, Berlin, Germany, Oct. 2004, pp. 161–172. Cerca con Google

125. K. R. Gabriel and R. R. Sokal, “A new statistical approach to geographic variation analysis,” Systematic Zoology, vol. 18, pp. 259–278, 1969. Cerca con Google

126. G. T. Toussaint, “The relative neighbourhood graph of a fintie planar set,” Pattern Recognition, vol. 12, pp. 261–268, 1980. Cerca con Google

127. H. Frey, “Scalable geographic routing algorithms for wireless ad hoc networks,” IEEE Network, vol. 18, no. 4, pp. 18–22, Jul. 2004. Cerca con Google

128. Y.-J. Kim, R. Govindan, B. Karp, and S. Shenker, “Geographic routing made practical,” in Proc. of NSDI, Boston, MA, May 2005. Cerca con Google

129. ——, “On the pitfalls of geographic routing,” in Proc. of ACM DIAL-M, Cologne, Germany, Sep. 2005, pp. 34–43. Cerca con Google

130. H. Frey and I. Stojmenovic, “On delivery guarantees of face and combined greedy-face routing in ad hoc and sensor networks,” in Proc. of ACM MobiCom, Los Angeles, CA, Sep. 2006, pp. 390–401. Cerca con Google

131. K. Seada, A. Helmy, and R. Govindan, “On the effect of localization errors on geographic face routing in sensor networks,” in Proc. of IEEE/ACM IPSN, Berkeley, CA, Apr. 2004, pp. 71–80. Cerca con Google

132. R. C. Shah, A. Wolisz, and J. M. Rabaey, “On the performance of geographical routing in the presence of localization errors,” in Proc. of IEEE ICC, Seoul, Korea, May 2005, pp. 2979–2985. Cerca con Google

133. R. Jain, A. Puri, and R. Sengupta, “Geographical routing using partial information for wireless ad hoc networks,” IEEE Personal Commun. Mag., vol. 8, pp. 48–57, Feb. 2001. Cerca con Google

A. Rao, S. Ratnasamy, C. Papadimitriou, S. Shenker, and I. Stoica, “Geographic routing without location information,” in Proc. of ACM MobiCom, San Diego, CA, Sep. 2003, pp. 96–108. Cerca con Google

134. Jadbabaie, “On geographic routing without location information,” in Proc. of IEEE Conference on Decision and Control, Atlantis, Paradise Island, Dec. 2004, pp. 4764–4769. Cerca con Google

135. Cao and T. Abdelzaher, “A scalable logical coordinates framework for routing in wireless sensor networks,” in Proc. of the IEEE RTSS, Lisbon, Portugal, Dec. 2004, pp. 349–358. Cerca con Google

136. Fang, J. Gao, L. J. Guibas, V. de Silva, and L. Zhang, “GLIDER: gradient landmark-based distributed routing for sensor networks,” in Proc. of IEEE InfoCom, Miami, FL, Mar. 2005, pp. 339–350. Cerca con Google

137. F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: a decentralized network coordinate system,” SIGCOMM Comput. Commun. Rev., vol. 34, no. 4, pp. 15–26, Oct. 2004. Cerca con Google

138. Fonseca, S. Ratnasamy, J. Zhao, C. T. Ee, D. Culler, S. Shenker, and I. Stoica, “Beacon Vector Routing: scalable point-to-point routing in wireless sensornets,” in Proc. of NSDI, Boston, MA, May 2004. Cerca con Google

A. Caruso, S. Chessa, S. De, and A. Urpi, “GPS free coordinate assignment and routing in wireless sensor networks,” in Proc. of IEEE InfoCom, Miami, FL, Mar. 2005, pp. 150–160. Cerca con Google

139. Y. Zhao, Q. Zhang, Y. Chen, and W. Zhu, “Hop ID based routing in mobile ad hoc networks,” in Proc. Of IEEE ICNP, Boston, MA, Nov. 2005, pp. 179–190. Cerca con Google

140. Ben Wing Lup Leong, “New techniques for geographic routing,” Ph.D. dissertation, Massachusetts Institute of Technology (MIT), Cambridge, MA, May 2006. Cerca con Google

141. P. Y. Xu and Z. L. Jun, “Virtual destination-based geographic routing in ad hoc mobile networks,” in Proc. of IEEE WCNM, Wuhan, China, Sep. 2005, pp. 686–689. Cerca con Google

142. Zou, M. Lu, and Z. Xiong, “PAGER: a distributed algorithm for the dead-end problem of locationbased routing in sensor networks,” IEEE Trans. Veh. Technol., vol. 55, pp. 1509–1522, Jul. 2005. Cerca con Google

143. Lochert, M. Mauve, H. F¨ußler, and H. Hartenstein, “Geographic routing in city scenarios,” ACM Mobile Computing and Communications Review, vol. 9, pp. 69–72, Jan. 2005. Cerca con Google

144. Radhakrishnan, G. Racherla, and C. N. Sekharan, “DST–A routing protocol for ad hoc networks using distributed spanning trees,” in Proc. of IEEE WCNC, New Orleans, LA, Sep. 1999, pp. 1543–1547. Cerca con Google

145. J. C. Navas and T. Imielinski, “Geocast: geographic addressing and routing,” in Proc. of ACM MobiCom, Budapest,Hungary, Sep. 1997, pp. 66–76. Cerca con Google

146. Imielinski and J. C. Navas, “GPS-based geographic addressing, routing and resource discovery,” Communications of the ACM, vol. 42, no. 4, pp. 86–92, 1999. Cerca con Google

147. Y.-B. Ko and N. H. Vaidya, “Flooding-based geocasting protocols for mobile ad hoc networks,” ACM/Baltzer Mobile Networks and Applications, vol. 7, no. 6, pp. 471–480, Dec. 2002. Cerca con Google

148. ——, “Anycasting-based protocol for geocast service in mobile ad hoc networks,” Elsevier Computer Networks, vol. 41, no. 6, pp. 743–760, Apr. 2003. Cerca con Google

149. Park andM. Corson, “A highly adaptive distributed routing algorithm for mobile wireless networks,” in Proc. of IEEE InfoCom, vol. 3, Anchorage, AK, Apr. 1997, pp. 1405–1413. Cerca con Google

150. K. Seada and A. Helmy, “Efficient geocasting with perfect delivery in wireless networks,” in Proc. of IEEE WCNC, vol. 4, Atlanta, GA, Mar. 2004, pp. 2551–2556. Cerca con Google

151. Y. Chen and J. L. Welch, “Location-based broadcasting for dense mobile ad hoc networks,” in Proc. Of ACM MSWiM, Montreal, Canada, Oct. 2005, pp. 63–70. Cerca con Google

152. R. Urick, Principles of Underwater Sound. McGraw-Hill, 1983. Cerca con Google

153. The National Center for Atmospheric Research, “Temperature of Ocean Water,” http://www.windows.ucar.edu/tour/link=/earth/Water/temp.html&edu=high. Vai! Cerca con Google

154. Office ofNaval Research, “OceanWater: Salinity,” http://www.onr.navy.mil/Focus/ocean/water/salinity1.htm. Vai! Cerca con Google

155. L. Berkhovskikh and Y. Lysanov, Fundamentals of Ocean Acoustics. Springer, 1982. Cerca con Google

156. Stojanovic, “On the relationship between capacity and distance in an underwater acoustic communication channel,” in Proc. of ACM WUWNet, Los Angeles, CA, Sep. 2006, pp. 41–47. Cerca con Google

157. Stojanovic, “Optimization of a data link protocol for an underwater acoustic channel,” in Proc. Of IEEE Oceans, Brest, France, Jun. 2005, pp. 68–73. Cerca con Google

158. L. Rizzo and L. Vicisano, “RMDP: An FEC-based Reliable Multicast Protocol for Wireless Environments,” ACM SIGMOBILE Mobile Computing and Communications Review, vol. 2, no. 2, pp. 23–31, Apr. 1998. Cerca con Google

159. J.-M. Chang andN.Maxemchuk, “Reliable broadcast protocols,” ACMTransactions on Computer Systems, vol. 2, no. 3, pp. 251–273, Aug. 1984. Cerca con Google

160. E. Pagani and G. P. Rossi, “Reliable Broadcast in Mobile Multihop Packet Networks,” in Proc. Of ACM/IEEE (MobiCom), 1997. Cerca con Google

161. S.-T. Sheu, Y. Tsai, and J. Chen, “A Highly Reliable Broadcast Scheme for IEEE 802.11 Multi-hop Ad Hoc Networks,” in Proc. of IEEE ICC, 2002. Cerca con Google

162. Sklar, Digital Communications: Fundamentals and Applications, 2nd ed. Prentice Hall PTR, 2001. Cerca con Google

163. M. K. Park and V. Rodoplu, “UWAN-MAC: an energy-efficient MAC protocol for underwater acoustic wireless networks,” IEEE J. Oceanic Eng., 2007, to appear. [Online]. Available: http://www.ece.ucsb.edu/rodoplu/Pubs/ParkRodoplu UWANMAC.pdf Vai! Cerca con Google

164. Sengul and R. Kravets, “Heuristic approaches to energy-efficient network design problem,” in Proc. Of IEEE ICDCS, June 2007. Cerca con Google

A. F. Harris III and M. Zorzi, “Energy–efficient routing protocol design considerations for underwater networks,” in Proc. of IEEE SECON, Jun. 2007. Cerca con Google

165. L. Freitag, M. Grund, S. Singh, J. Partan, P. Koski, and K. Ball, “The whoi micro-modem: An acoustic communications and navigation system for multiple platforms,” http://www.whoi.edu, 2005. Vai! Cerca con Google

166. B. Kilfoyle and A. B. Baggeroer, “The state of the art in underwater acoustic telemetry,” IEEE J.Oceanic Eng., vol. 25, no. 1, pp. 4–27, Jan. 2000. Cerca con Google

167. M. Feder and J. A. Catipovic, “Algorithms for joint channel estimation and data recovery-application to equalization in underwater communications,” IEEE J. Oceanic Eng., vol. 16, no. 1, pp. 42–55, Jan. 1991. Cerca con Google

168. Qian and J. A. Ritcey, “Spatial diversity equalization applied to underwater communications,” IEEE J. Oceanic Eng., vol. 19, no. 2, pp. 227–241, Apr. 1994. Cerca con Google

169. M. Stojanovic, “Recent advances in high-speed underwater acoustic communications,” IEEE J. Oceanic Eng., vol. 21, no. 2, pp. 125–136, Apr. 1996. Cerca con Google

170. ——, “Retrofocusing techniques for high rate acoustic communications,” Journal of the Acoustical Society of America, vol. 117, no. 3, pp. 1173–1185, Mar. 2005. Cerca con Google

171. Akyildiz, D. Pompili, and T. Melodia, “Underwater acoustic sensor networks: research challenges,” Elsevier’s Ad Hoc Networks, vol. 3, no. 3, 2005. Cerca con Google

172. M. Sozer, M. Stojanovic, and J. G. Proakis, “Underwater acoustic networks,” IEEE J. Oceanic Eng., vol. 25, no. 1, pp. 72–83, Jan. 2000. Cerca con Google

173. Casari, S. Marella, and M. Zorzi, “A comparison of multiple access techniques in clustered underwater acoustic networks,” in Proc. of IEEE/OES OCEANS, Aberdeen, Scotland, Jun. 2007. Cerca con Google

174. M. Molins and M. Stojanovic, “Slotted FAMA: a MAC Protocol for underwater acoustic networks,” in Proc. of IEEE Oceans, Singapore, Sep. 2006. Cerca con Google

175. Guo, M. Frater, and M. Ryan, “A propagation-delay-tolerant collision avoidance protocol for underwater acoustic sensor networks,” in Proc. of IEEE Oceans, Singapore, Sep. 2006. Cerca con Google

176. B. Peleato and M. Stojanovic, “A MAC protocol for ad hoc underwater acoustic sensor networks,” in Proc. of ACM WUWNet, Los Angeles, CA, Sep. 2006, pp. 113–115. Cerca con Google

A. F. Harris III, M. Stojanovic and M. Zorzi, “When underwater acoustic nodes should sleep with one eye open: idle–time power management in underwater sensor networks,” in Proc. of ACM WUWNet, Los Angeles, CA, Sep. 2006, pp. 105–108. Cerca con Google

177. Syed, W. Ye, and J. Heidemann, “Medium Access Control for Underwater Acoustic Networks,” in Proc. of ACM WUWNet, Los Angeles, CA, Sep. 2006, work-in-progress paper. Cerca con Google

178. Xie, J.-H. Cui, and L. Lao, “VBF: vector-based forwarding protocol for underwater sensor networks,” UCONN CSE, Tech. Rep. UbiNet-TR05-03 (BECAT/CSE-TR-05-6), Feb. 2005. Cerca con Google

179. Xie and J.-H. Cui, “SDRT: a reliable data transport protocol for underwater sensor networks,” UCONN CSE, Tech. Rep. UbiNet-TR06-03, Feb. 2006. Cerca con Google

180. D. Pompili, T.Melodia, and I. F. Akyildiz, “Routing algorithms for delay-insensitive and delay-sensitive applications in underwater sensor networks,” in Proc. of ACMMobicom, Los Angeles, CA, Sep. 2006, pp. 298–309. Cerca con Google

181. Casari, M. Levorato, and M. Zorzi, “Some issues concerning MAC design in ad hoc networks with MIMO communications,” in Proc. of WPMC, Aalborg, Denmark, Sep. 2005. Cerca con Google

182. ——, “On the implications of layered space–time multiuser detection on the design of MAC protocols for ad hoc networks,” in Proc. of IEEE PIMRC, Berlin, Germany, Sep. 11–14, 2005. Cerca con Google

183. M. Levorato, S. Tomasin, P. Casari, and M. Zorzi, “An approximate approach for layered space–time multiuser detection performance and its application to MIMO ad hoc networks,” in Proc. of IEEE ICC, Istanbul, Turkey, Jun. 2006. Cerca con Google

184. ——, “Analysis of spatial multiplexing for cross–layer design of MIMO ad hoc networks,” in Proc. Of IEEE VTC-Spring, Melbourne, Australia, May 2006. Cerca con Google

185. Casari, M. Levorato, and M. Zorzi, “DSMA: an access method for MIMO ad hoc networks based on distributed scheduling,” in Proc. of ACM IWCMC, Vancouver, Canada, Jul. 2006. Cerca con Google

186. M. Levorato, P. Casari, and M. Zorzi, “On the performance of access strategies for MIMO ad hoc networks,” in Proc. of IEEE GlobeCom, Nov. 2006, pp. 1–5. Cerca con Google

187. M. Levorato, S. Tomasin, P. Casari, and M. Zorzi, “Physical layer approximations for cross–layer performance analysis in MIMO–BLAST ad hoc networks,” IEEE Trans. Wireless Commun., vol. 6, no. 11, pp. 4390–4400, Dec. 2007. Cerca con Google

188. Casari, M. Levorato, and M. Zorzi, “Cross–layer design of MIMO ad hoc networks with layered multiuser detection,” IEEE Trans. Wireless Commun., submitted. Cerca con Google

189. ——, “On the design of routing protocols in MIMO ad hoc networks under uniform and correlated traffic,” in Proc. of IEEE IWCMC, Chania, Crete Island, Jun. 2008, submitted. Cerca con Google

190. P. Casari, A. Marcucci, M. Nati, C. Petrioli, and M. Zorzi, “A detailed simulation study of geographic random forwarding (GeRaF) in wireless sensor networks,” in Proc. of IEEE MilCom, Atlantic City, NJ, Oct. 2005. Cerca con Google

191. P. Casari,M.Nati, C. Petrioli, andM. Zorzi, “ALBA: an adaptive load–balanced algorithmfor geographic forwarding in wireless sensor networks,” in Proc. of IEEE MilCom, Washington, DC, Oct. 2006. Cerca con Google

192. ——, “Efficient non–planar routing around dead ends in sparse topologies using random forwarding,” in Proc. of IEEE ICC, Glasgow, Scotland, Jun. 2007. Cerca con Google

193. ——, “ALBA: an integrated cross–layer solution for load–balancing geographic routing in wireless sensor networks,” IEEE Trans. Mobile Comput., submitted. Cerca con Google

194. ——, “A detailed analytical and simulation study of geographic random forwarding (GeRaF),” IEEE Trans. Wireless Commun., submitted. Cerca con Google

195. ——, “Poster abstract: Geographic forwarding and adaptive load balancing in wireless sensor networks,” ACM Mobile Comp. and Commun. Review, vol. 11, pp. 53–54. Cerca con Google

196. P. Casari, F. Zorzi, and M. Zorzi, “Efficient packet converge–casting: relieving the sink congestion in wireless sensor networks,” in Proc. of IEEE PIMRC, Athens, Greece, Sep. 2008. Cerca con Google

197. P. Casari, M. Stojanovic, and M. Zorzi, “Exploiting the bandwidth–distance relationship in underwater acoustic networks,” in Proc. of MTS/IEEE Oceans, Vancouver, Canada, Sep. 2007. Cerca con Google

198. P. Casari and A. F. Harris III, “Energy–efficient reliable broadcast in underwater acoustic networks,” in Proc. of ACM WUWNet, Montreal, Canada, Sep. 2007. Cerca con Google

199. P. Casari, S.Marella, andM. Zorzi, “A comparison ofmultiple access techniques in clustered underwater acoustic networks,” in Proc. of IEEE/OES OCEANS, Aberdeen, Scotland, Jun. 2007. Cerca con Google

200. P. Casari, F. E. Lapiccirella, and M. Zorzi, “A detailed simulation study of the UWAN-MAC protocol for underwater acoustic networks,” in Proc. of MTS/IEEE Oceans, Vancouver, Canada, Sep. 2007. Cerca con Google

201. P. Casari, M. Rossi, and M. Zorzi, “Towards optimal broadcasting policies for HARQ based on fountain codes in underwater networks,” in Proc. of IEEE/IFIP WONS, Garmisch- Partenkirchen, Germany, Jan. 2008, invited paper. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record